Almost intersecting families - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Almost intersecting families

Peter Frankl
  • Fonction : Auteur
Andrey Kupavskii

Résumé

Let $n > k > 1$ be integers, $[n] = \{1, \ldots, n\}$. Let $\mathcal F$ be a family of $k$-subsets of~$[n]$. The family $\mathcal F$ is called intersecting if $F \cap F' \neq \emptyset$ for all $F, F' \in \mathcal F$. It is called almost intersecting if it is not intersecting but to every $F \in \mathcal F$ there is at most one $F'\in \mathcal F$ satisfying $F \cap F' = \emptyset$. Gerbner et al. proved that if $n \geq 2k + 2$ then $|\mathcal F| \leq {n - 1\choose k - 1}$ holds for almost intersecting families. The main result implies the considerably stronger and best possible bound $|\mathcal F| \leq {n - 1\choose k - 1} - {n - k - 1\choose k - 1} + 2$ for $n > (2 + o(1))k$.

Dates et versions

hal-03236591 , version 1 (26-05-2021)

Identifiants

Citer

Peter Frankl, Andrey Kupavskii. Almost intersecting families. 2021. ⟨hal-03236591⟩
18 Consultations
0 Téléchargements

Altmetric

Partager

More