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Abstract

We propose a new strategy for best-arm identification with fixed confidence of Gaussian variables
with bounded means and unit variance. This strategy, called Exploration-Biased Sampling, is not
only asymptotically optimal: it is to the best of our knowledge the first strategy with non-asymptotic
bounds that asymptotically matches the sample complexity. But the main advantage over other algo-
rithms like Track-and-Stop is an improved behavior regarding exploration: Exploration-Biased
Sampling is biased towards exploration in a subtle but natural way that makes it more stable and in-
terpretable. These improvements are allowed by a new analysis of the sample complexity optimization
problem, which yields a faster numerical resolution scheme and several quantitative regularity results
that we believe of high independent interest.

Keywords: Best arm identification · Fixed confidence · Multi-armed bandits · Sequential learning

1 Introduction

Many modern systems of automatic decisions (from recommender systems to clinical trials, through auto-
ML and parameter tuning) require to find the best among a set of options, using noisy observations obtained
by successive calls to a random mechanism (see e.g. Lattimore and Szepesvári, 2020). The simplest formal
model for such situations is the standard Gaussian multi-armed bandit, a collection of K ≥ 2 independent
Gaussian distributions called arms of unknown means µ = (µa)1≤a≤K ∈ RK and variances all equal to 1.
They are sampled sequentially and independently: at every discrete time step t ∈ N∗, an agent chooses
an arm At ∈ [K] = {1, . . . ,K} based on past information, and observes an independent draw Yt from
distribution N (µAt , 1).

Among the set G of all standard Gaussian multi-armed bandits with means in the interval [0, 1], we
focus in this work on the subset G∗ of bandits µ ∈ G that have exactly one arm a∗(µ) ∈ [K] with the highest
mean, that is µ∗ = µa∗(µ) > maxa∈[K]\{a∗(µ)} µa, and we address the problem of optimally sampling the
arms in order to identify a∗(µ) as quickly as possible. We consider the sequential statistics framework
often called fixed confidence setting (see Even-Dar et al., 2006; Kalyanakrishnan1 et al., 2012): by defining
Ft = σ(Y1, . . . , Yt) the sigma-field generated by the observations up to time t, a strategy consists of a
sampling rule (At)t≥1 where each At is Ft−1-measurable, a stopping rule τ with respect to (Ft)t≥0, and a
Fτ -measurable decision rule âτ . Given a risk parameter δ ∈ (0, 1), a strategy is called δ-correct if, whatever
the parameter µ ∈ G∗, it holds that Pµ(τ < +∞, âτ 6= a∗(µ)) ≤ δ. The goal is to find a δ-correct strategy
that minimizes the expected number of observations Eµ[τδ] needed to identify a∗(µ).
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The sample complexity of δ-correct strategies cannot be arbitrarily good: it has been proved by Garivier
and Kaufmann (2016) that they essentially obey the lower bound Eµ[τδ] ≥ T (µ) log(1/δ) for any µ ∈ G∗,
where the characteristic time T (µ) is the solution of the following optimization problem

T (µ)−1 = sup
v∈ΣK

inf
λ∈Alt(µ)

∑
a∈[K]

va
(µa − λa)2

2
, (1)

where ΣK = {v ∈ [0, 1]K : v1 + · · · + vK = 1} and Alt(µ) = {λ ∈ G∗ : a∗(λ) 6= a∗(µ)} is the set of
bandit models with an optimal arm different from a∗(µ). Moreover, this bound is tight: the authors
introduced Track-and-Stop, a strategy for which they proved that lim supδ→0 Eµ[τδ]/ log(1/δ) = T (µ)
(see also Russo, 2016).

The information-theoretic analysis of Garivier and Kaufmann (2016) also highlights the nature of the
optimal sampling strategy: whatever the value of the risk δ, one should sample the arms with frequencies
proportional to v = w(µ), the (unique and well-defined) maximizer in the right-hand side of Equation (1).
Indeed, the Track-and-Stop algorithm works as follows: at every time step t, an estimate µ̂(t) of the
mean parameter µ is computed thanks to the available observations. The optimal frequencies relative to
this estimate are computed, and used to determine which action is to be selected next: we pick the action
that lays the most behind its estimated optimal frequency, unless one action was severely undersampled
(in which case its exploration is forced). A formal description of the strategy is recalled in Appendix A
(see Algorithm 3). Some improvements were proposed: for example, Ménard (2019) proved that it is not
necessary to solve the optimization problem in every time step. Instead, they perform a single gradient step
in every round which enables them to prove a similar result while reducing the computational complexity
of their algorithm (see also Tirinzoni et al., 2020).

The Track-and-Stop algorithm is not only a theoretical contribution, it also proved to be numer-
ically efficient, far exceeding its competitors in a wide variety of settings. It was improved in different
directions (Degenne and Koolen, 2019; Degenne et al., 2019; Shang et al., 2020), and also provides a simple
template for extensions, for bandit problems with structure (Kocák and Garivier, 2020), as long as the
optimization problem (1) can be solved. Yet, Track-and-Stop suffers from certain shortcomings. First,
a close look into the proofs shows that the theoretical guarantees proved so far are really asymptotic in na-
ture. Second, the forced exploration appears very arbitrary, with a rate of

√
t that has no other justification

than lying somewhere between constant and linear functions. Third, the sampling strategy appears to be
pretty unstable, especially at the beginning: the target frequencies can vary significantly as the estimated
means fluctuate before stabilizing around their expectations. Fourth, Track-and-Stop does not present
the intuitively desirable behavior to sample uniformly in the beginning, until sufficient information has
been gathered for significant differences between the arms to emerge. This is in contrast with strategies
like Racing (Kaufmann and Kalyanakrishnan, 2013), which are sub-optimal but intuitively appealing. Al-
together, these issues lead for example to unpredictable and irregular conduct at the beginning of multiple
A/B testing cases with many arms very close to optimal.

Contributions The present paper addresses the issues of Track-and-Stop and proposes a new al-
gorithm that solves all of them. We focus on Gaussian bandits with known and equal variances. The
exploration is conducted very differently, in a statistically natural way that softens the fluctuations of
empirical means and avoids arbitrary parameters. It results in a stabilized sampling strategy, that is much
easier to follow and understand. We propose for this strategy a non-asymptotic analysis with finite risk
bounds. These results have required developing a careful analysis of the quantitative regularity of the
solution to the optimization problem (1). As a by-product, we obtain an accelerated algorithm for its
numerical resolution, allowing a significant speed-up for the Track-and-Stop or the Gradient Ascent
algorithms in the Gaussian case. Actually, the algorithms discussed here apply equally to sub-Gaussian
arms with a known upper bound on the variances (in these settings, the sample complexity bounds proved
in this paper apply but are not necessarily optimal).
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While the proven optimality of Track-and-Stop is purely asymptotic, a different approach is followed
in (Karnin et al., 2013; Jamieson et al., 2014; Chen et al., 2017) for moderate values of δ. The proposed
strategies are sub-optimal by a multiplicative constant, but are proved to satisfy explicit non-asymptotic
bounds. More recently, Degenne et al. (2019) obtained a general non-asymptotic bound, a remarkable
but hardly comparable result in particular settings. In this contribution, we try to make a link between
both approaches by introducing a strategy with a non-asymptotic bound that asymptotically matches the
sample complexity.

The paper is organized as follows. We present in Section 2 our new strategy with its main properties
and guarantees. We then turn in Section 3 to the analysis of the optimization problem (1) and to the
resulting new algorithm for its numerical resolution. Lastly, we illustrate the performance and behavior of
our strategy by numerical experiments in Section 4, and propose concluding remarks in Section 5.

2 The Exploration-Biased Sampling strategy

In this section, we introduce our new strategy called Exploration-Biased Sampling. Instead of Track-
and-Stop’s greedy choice of actions based on a plug-in estimate of µ, it relies on a specific estimator that
is biased toward uniform exploration.

For µ ∈ G, let ∆(µ) = (µ∗ − µa)a∈[K] ∈ [0, 1]K be its gap vector and a∗(µ) = {a ∈ [K] : ∆a(µ) = 0}
its set of optimal arms. When µ ∈ G∗, a∗(µ) has one element that we also denote by a∗(µ) and we recall
that the optimal weight vector w(µ) is the unique maximizer of optimization problem (1). Otherwise,
when µ ∈ G \ G∗ has at least two optimal arms, we define w(µ) = 1

card(a∗(µ)) (11∈a∗(µ), . . . ,1K∈a∗(µ))
T .

Since these quantities play a special role in the sequel, we set wmin(µ) = mina∈[K] wa(µ), ∆min(µ) =
mina∈[K]:∆a(µ)>0 ∆a(µ) (which is not defined when a∗(µ) = [K]) and ∆max(µ) = maxa∈[K] ∆a(µ).

Given a sampling strategy, let Na(t) =
∑
s∈[t] 1As=a be the random number of draws of arm a ∈ [K] up

to time t ∈ N∗, and if Na(t) ≥ 1, let µ̂a(t) = Na(t)−1
∑
s∈[t] Ys1As=a be the maximum likelihood estimate

of µa at time t. We use the vector notations N(t) = (Na(t))a∈[K] and µ̂(t) = (µ̂a(t))a∈[K].

In the rest of this section, we fix µ ∈ G.

2.1 Conservative Tracking

The main idea of the algorithm is to design a sampling policy of arms that naturally encourages exploration
without forcing it like Track-and-Stop does. To do so, the objective is to “wrap” the optimal weight
vector w(µ) “from above”, by ensuring that we never under-estimate its minimal value. Indeed, even an
arm with low mean needs to be sampled sufficiently often until one is very confident that it is suboptimal.
The idea is to construct a confidence region CRµ ⊂ [0, 1]K for µ on which one can efficiently find a bandit
µ̃ ∈ CRµ maximizing the minimal weight wmin:

µ̃ ∈ argmaxν∈CRµ
wmin(ν) . (2)

As long as µ belongs to the confidence region CRµ, choosing the target weights w(µ̃) guarantees that
every arm is explored sufficiently, as wmin(µ̃) ≥ wmin(µ). The exploration bias decreases with the number
of observations, as CRµ shrinks to {µ}, and in the end arms are sampled with frequencies close to the
optimal weight vector w(µ).

This approach to exploration requires two ingredients:

• the exploration-biased bandit µ̃ needs to be efficiently computable. It turns out to be the case if
the confidence region is a product of confidence intervals on each arm (a mild requirement since the
arms are independent). We propose Algorithm 1, an efficient procedure for computing µ̃. Intuitively,

Barrier, Garivier, Kocák 3
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Figure 1: List of bandits (µ̃test(a))a∈PotentialBest tried by Algorithm 1 for the example confidence region in
red with PotentialBest = {1, 2, 3}. From left to right: µ̃test(1), µ̃test(2) and µ̃test(3)

maximizing wmin over CR(µ) requires to increase and equalize all the positive gaps as much as
possible. The associated bandit will indeed be the one for which it is harder to identify the second
best arm and thus it will require to sample the worst arms more frequently. This gives a candidate
bandit for each potential best arm, and our algorithm compares those candidates. Figure 1 illustrates
on an example the principle of Algorithm 1, whose correctness is proved in Proposition 1. The
algorithm requires Optimal Weights (Algorithm 4 of Appendix C.3), an efficient procedure for
solving optimization problem (1) (see also Section 3.2).

• the regularity of the mapping ν 7→ w(ν) needs to be explicitly known. Indeed, the confidence
region will decrease with the number of observations, and µ̃ will come close to µ. The continuity
proved by Garivier and Kaufmann (2016) for the asymptotic optimality of Track-and-Stop is not
sufficient: the first quantitative bounds are given below in Section 3.4.

Algorithm 1: Exploration-Biased Weights

Input: confidence region CR =
∏
a∈[K][µa, µa]

Output: exploration-biased bandit µ̃ ∈ CR
exploration-biased optimal weight

vector w = w(µ̃)

maxLB← maxa∈[K] µa ; minUB← mina∈[K] µa
if minUB ≥ maxLB then

µ̃← (minUB, . . . ,minUB) ; w ← ( 1
K , . . . ,

1
K )

else
PotentialBest← {a ∈ [K] : µa > maxLB}
w ← (0, . . . , 0)
for a ∈ PotentialBest do

µ̃
test(a)
a ← µa

for b ∈ [K] \ {a} do

µ̃
test(a)
b ← max(µ

b
,minUB)

wtest(a) ← Optimal Weights(µ̃test(a))

if minb∈[K] w
test(a)
b > minb∈[K] wb then

w ← wtest(a) ; µ̃← µ̃test(a)

One can remark that as long as the confidence intervals have a non-empty intersection, which means
the observations do not permit to exclude that any of them is optimal, the exploration-biased weights

Barrier, Garivier, Kocák 4
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returned by Algorithm 1 are uniform and the arms are sampled in a round-robin way (as in a Racing or
Successive Elimination algorithm like in (Even-Dar et al., 2006)).

Proposition 1. Let CR =
∏
a∈[K][µa, µa] ⊂ [0, 1]K and (µ̃,w)← Exploration-Biased Weights(CR).

Then w = w(µ̃) and µ̃ satisfies Equation (2).

The proof of Proposition 1 is given in Appendix C.4 and relies on the results of Section 3.3.

2.2 The Strategy

We are now able to introduce our strategy called Exploration-Biased Sampling. Given a risk δ ∈ (0, 1)
and a threshold function β(t, δ), we compute at each time confidence intervals for each µa that will ensure
µ to belong to each associated confidence region with probability at least 1 − γ, where γ ∈ (0, 1) is a
fixed parameter. We can then ensure enough exploration by biasing the optimal weights w(µ) using
Algorithm 1.

Confidence regions Confidence regions are designed to satisfy two requirements. First we need prod-
ucts of confidence intervals in order to use Algorithm 1, and then we will require a time-uniform confidence
guarantee as a key ingredient for the non-asymptotic analysis of Exploration-Biased Sampling. For
γ ∈ (0, 1), we define for t ∈ JK, τδK

CRµ(t) =
∏
a∈[K]

[
µ̂a(t)± Cγ/K(Na(t))

]
, (3)

where Cγ(s) = 2
√

log(4s/γ)
s . The following Lemma, proved in Appendix B, states a time-uniform γ-

confidence guarantee for µ.

Lemma 2. For any µ ∈ G and γ ∈]0, 1[, we have

Pµ
(
∃t ∈ JK, τδK : µ /∈ CRµ(t)

)
≤ γ .

Stopping rule Following Garivier and Kaufmann (2016), our stopping rule relies on the statistic

Z(t) = max
a∈[K]

min
b6=a

Za,b(t) ,

where Za,b(t) is the Generalized Likelihood Ratio statistic (see Chernoff, 1959), equal in the Gaussian case
to

Za,b(t) =
1

2

Na(t)Nb(t)

Na(t) +Nb(t)
(µ̂a(t)− µ̂b(t))

∣∣µ̂a(t)− µ̂b(t)
∣∣ .

The Exploration-Biased Sampling strategy is summarized in Algorithm 2. As explained in Garivier
and Kaufmann (2016), one can either follow the exploration-biased weights directly (D-tracking) or their
cumulative sums (C-tracking). For the simplicity of the proofs, we use C-tracking in the analysis, but
we ran the experiments with both options, as D-tracking appears to perform slightly better (replace∑
s∈[t] w̃a(s) by tw̃a(t) in the description of Algorithm 2 for D-tracking).

It happens that the choice of confidence regions given by Equation (3) leads to a minimal exploration
rate for each arm of order

√
t. What is surprising is that this is exactly the arbitrary rate used by

Track-and-Stop for forced exploration, which appears here naturally.

Lemma 3. For any choice of parameters and µ ∈ G, Exploration-Biased Sampling satisfies

∀t ∈ J0, τδK,∀a ∈ [K], Na(t) ≥ 2

K

√
t−K .

Barrier, Garivier, Kocák 5
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Algorithm 2: Exploration-Biased Sampling

Input: confidence level δ
threshold function β(t, δ)
confidence parameter γ

Output: stopping time τδ
estimated best arm âτδ

Observe each arm once ; t← K
for s = 0 to K − 1 do

w̃(s)← (1/K, . . . , 1/K)
while Z(t) ≤ β(t, δ) do
CRµ(t)←

∏
a∈[K][µ̂a(t)± Cγ/K(Na(t))]

(µ̃(t), w̃(t))← Exploration-Biased Weights(CRµ(t))
Choose At+1 ∈ argmina∈[K]Na(t)−

∑
s∈[t]

w̃a(s)

Observe YAt+1
and increase t by 1

τδ ← t ; âτδ ← argmaxa∈[K] µ̂a(t)

The proof of this lemma can be found in Appendix F.1.

The practical advantages of Exploration-Biased Sampling over Track-and-Stop are discussed
in Section 4. On the theoretical level, we now show that (contrary to Track-and-Stop) this exploration
strategy is adequate for obtaining non-asymptotic bounds.

2.3 Theoretical Results

A δ-correct strategy The δ-correctness of our strategy, which relies on the same stopping rule as
Track-and-Stop, is a simple consequence of Garivier and Kaufmann (2016, Proposition 12).

Proposition 4. For any δ, γ ∈ (0, 1) and α > 1, there exists a constant R = R(K,α) such that
Exploration-Biased Sampling with parameters δ, γ and threshold

β(t, δ) = log
(Rtα

δ

)
(4)

is δ-correct.

Our main result is to obtain high probability bounds for τδ in finite horizon for Exploration-Biased
Sampling, which is summarized in the following theorem.

Theorem 5 (Non-asymptotic bound). Fix γ ∈ (0, 1), α ∈ [1, 2], η ∈ (0, 1] and let µ ∈ G∗. There exists an
event E of probability at least 1− γ and δ0 = δ0(µ,K, γ, η, α) > 0 such that for any 0 < δ ≤ δ0, algorithm
Exploration-Biased Sampling with the threshold of Equation (4) satisfies

Pµ
(
τδ > t ∩ E

)
≤ 2Kt exp

(
− twmin(µ)

4T (µ)
2

1

log
2
3 (1/δ)

)
(5)

for any t > (1 + η)T (µ) log(1/δ), and

Eµ[τδ1E ] ≤ (1 + η)T (µ) log(1/δ) +
27KT (µ)

4

wmin(µ)
2 exp

(
−wmin(µ)

4T (µ)
log

1
3 (1/δ)

)
log2(1/δ) . (6)

Barrier, Garivier, Kocák 6
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Note that:

• using the results of Section 3, one can show that wmin(µ) ≥ ∆min(µ)
2K for any µ ∈ G∗ (see Lemma 28

in Appendix F.1),

• the proof of Theorem 5 provides an explicit expression for δ0,

• the second term of Bound (6) tends to 0 when δ decreases to 0, and hence negligible with respect to
the first term: the sample complexity is therefore arbitrarily close to the lower bound.

We additionally prove that, from an asymptotic point of view, the Exploration-Biased Sampling
algorithm presents the same guarantees as Track-and-Stop (see also Theorem 30 in Appendix F.2):

Theorem 6 (Asymptotic optimality in expectation). Fix γ ∈ (0, 1), α ∈ (1, e/2] and let µ ∈ G∗. Algorithm
Exploration-Biased Sampling with the threshold of Equation (4) satisfies

lim supδ→0
Eµ[τδ]

log(1/δ) ≤ αT (µ) .

Appendix D will be devoted to the proof of Theorem 5 while the proof of Theorem 6 can be found in
Appendix F.3.

It is worth mentioning that the guarantees of Exploration-Biased Sampling presented in this
section hold true not only for Gaussian arms, but more generally for 1-sub-Gaussian arms with means
in [0, 1] (in which case, of course, a better lower bound might hold); indeed, these proofs only rely on
sub-Gaussian deviation bounds.

3 About the sample complexity optimization problem

We now introduce a new method for solving the sample complexity optimization problem (1). It comes
with a new analysis that yields various bounds for the bandits characteristic constants together with
monotonicity and regularity results. Detailed discussions and proofs are deferred to Appendix C.

In this section, letters a, b, c always refer to arm indices, that is elements of [K]. In subindices for sums
and infima, we sometimes omit to explicitly mention [K] for simplicity: for example, given a fixed arm b,∑
a 6=b denotes the sum over arms a ∈ [K] \ {b}.

For any bandit µ ∈ G and v ∈ ΣK , we define:

g(µ,v) = inf
λ∈Alt(µ)

∑
a∈[K]

va
(µa − λa)2

2
(7)

=
1

2
min
a6=a∗

va∗va
va∗ + va

∆a(µ)2 . (8)

The easy proof of the second equality can be found in Appendix C.1. Function g is twice useful, as the
solution to the inner optimization problem (1), and for the expression of the statistic Z(t):

T (µ)−1 = g(µ,w(µ)) , (9)

and Z(t) = t g
(
µ̂(t),

N(t)

t

)
(10)

with the convention T (µ) = +∞ when µ ∈ G \ G∗.

Let in this section µ ∈ G∗ be a fixed bandit parameter. For the simplicity of the presentation, let
a∗ = a∗(µ), ∆ = ∆(µ), w = w(µ), wmin = wmin(µ) and T = T (µ).

Barrier, Garivier, Kocák 7
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3.1 Solving the Optimization Problem

We define

φµ : r ∈
( 1

∆2
min

,+∞
)
7−→

∑
a6=a∗

1

(r∆2
a − 1)2

− 1 . (11)

Lemma 7. φµ is convex and strictly decreasing on (1/∆2
min,+∞), and thus has a unique root.

The following proposition shows that solving φµ(r) = 0 directly gives a solution to Problem (1).

Proposition 8. Let r = r(µ) be the solution of φµ(r) = 0. Then

wa∗ =
1

1 +
∑
a6=a∗

1
r∆2

a−1

, (12)

∀a 6= a∗, wa =
wa∗

r∆2
a − 1

, (13)

and T = 2
r

wa∗
. (14)

Besides,

wa∗ =

√∑
a 6=a∗

wa2 . (15)

Recall that in the case of 2 arms, w(µ) = (0.5, 0.5). Besides, the monotonicity of the optimal weights
with respect to the gaps follows from Equation (13).

Corollary 9. Assume that K ≥ 3. Then

∀a, b ∈ [K], µa > µb =⇒ wa > wb .

Equation (13) also implies that

∀a, b 6= a∗,
wa
wb

=
∆2
b − 1/r

∆2
a − 1/r

.

Intuitively, it requires about ∆2
a samplings of arms a∗ and a before being able to distinguish them, so that

one could expect wa
wb

to be
∆2
b

∆2
a

. This would be the case if the comparisons between arms were independent.

In our problem, sampling the best arm benefits the comparison with all arms, so that it is worth sampling
the optimal arm a little more than any single comparison would require, and hence each sub-optimal arm
a little less. As a result, the ratio wa

wb
is closer to 1, and the factor can be seen as a “discount” on each

squared gap for sharing the comparisons. We now derive other important consequences of Proposition 8.

3.2 Bounds and Computation of the Problem Characteristics

By Proposition 8, it suffices to compute r to obtain the values of both T and w. As φµ is a strictly convex
and strictly decreasing function, Newton’s iterates initialized with a value r0 < r converge to r from below
at quadratic speed. The procedure is summarized in Algorithm 4 of Appendix C.3. The number of correct
digits roughly doubles at every step, which implies that a few iterations are sufficient to guarantee machine
precision. The cost of the algorithm can hence be considered proportional to that of evaluating φµ(r),
which is linear in the number of arms.

It remains to show that it is possible to find r0 < r, and possibly close to r. The next proposition offers
such a lower bound as simple functions of the gaps. This also yields tight bounds on the optimal weight
vector w and the characteristic time T .

Barrier, Garivier, Kocák 8
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Proposition 10. Denoting by ∆2 = 1
K−1

∑
a 6=a∗ ∆2

a the average squared gap,

max

(
2

∆2
min

,
1 +
√
K − 1

∆2

)
≤ r ≤ 1 +

√
K − 1

∆2
min

, (16)

1

1 +
√
K − 1

≤ wmax ≤
1

2
, (17)

max

(
8

∆2
min

, 4
1 +
√
K − 1

∆2

)
≤ T ≤ 2

(
1 +
√
K − 1

)2
∆2

min

. (18)

Note that all of these inequalities can be reached for certain parameters µ, as discussed in Appendix C.2
after the proof of Proposition 10.

3.3 Monotonicity of the min-max Problem

We now show monotonicity results of the mappings ν 7→ T (ν) and ν 7→ w(ν) when moving arm(s). When
K = 2, the optimization problem is simple and leads to w(µ) = (0.5, 0.5) and T (µ) = 8∆2

2, so that we
assume in the remaining of this section that K ≥ 3.

Let µ′ ∈ G∗ be another bandit problem sharing the same unique optimal arm a∗ as µ and define ∆′,
w′, w′min, T ′ and r′ similarly to problem µ. The three following lemmas, which are the key ingredients to
prove Proposition 1, are shown in Appendix C.4.

Lemma 11. Assume that ∆′b > ∆b for a fixed b 6= a∗ while ∆′a = ∆a for all a 6= b. Then

1. w′b < wb,

2. w′a > wa for any a /∈ {a∗, b},
3. T ′ < T .

Lemma 12. Assume that ∆′a = ∆a + d for every a 6= a∗ and some d > 0. Then w′min ≥ wmin, with strict
inequality whenever ∆a 6= ∆b for some a, b 6= a∗.

Lemma 13. Let B = argmina∈[K] µa (resp. B′ = argmina∈[K] µ
′
a) be the set of the worst arms of µ (resp.

µ′) and assume that B ⊂ B′ and ∆′max < ∆max, while ∆′a = ∆a for all a /∈ B′. Then w′min ≥ wmin.

3.4 Regularity of w, T and g

Lastly, we show explicit bounds on the regularity of ν 7→ w(ν) and ν 7→ T (ν). We keep the notations of
the last section.

Theorem 14. Assume that (1− ε)∆2
a ≤ ∆′a

2 ≤ (1 + ε)∆2
a for all a 6= a∗ and some ε ∈ [0, 1/7]. Then

(1− 3ε)T ≤ T ′ ≤ (1 + 6ε)T ,

∀a ∈ [K], (1− 10ε)wa ≤ w′a ≤ (1 + 10ε)wa .

Independently, we show the following property of g.

Proposition 15. Let v ∈ ΣK . Then:

g(µ′,v) ≥ (1− η)2

1 + η

(
g(µ,w(µ))− ε/2

)
where ε = ‖µ− µ′‖∞ and η = maxa∈[K]

|wa(µ)−va|
wa(µ) .

These results will prove to be essential to the proof of the non-asymptotic bounds of Theorem 5.
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4 Numerical experiments

In this section, we discuss the behavior and performance of Exploration-Biased Sampling for prac-
tical values of confidence δ. We propose a comparison with Track-and-Stop, Chernoff-Racing and
LUCB++, and begin with a reminder on those strategies.

Track-and-Stop The strategy tracks the optimal weights w(µ) by estimating it by w(µ̂(t)). Some
exploration rate is forced to ensure that bad initial observations does not lead to an under-sampling of
some arms (the strategy ensures that each Na(t) growths at least in

√
t). The stopping rule is the same

as the one presented for Exploration-Biased Sampling.

Chernoff-Racing The strategy is divided into rounds during which the arms of a currently active set
are sampled once. At the end of each round, a decision is made to keep or eliminate the current worst arm
from the active set. Several decision rules are possible, we will use the Chernoff rule presented in (Garivier
and Kaufmann, 2016), which eliminates arm b at the end of round r if Zâr,b(t) = r

4 (µ̂âr (t)−µ̂b(t))2 > β(t, δ)
where âr (resp. t) is the best arm (resp. the time) at the end of round r.

LUCB++ The strategy (Simchowitz et al., 2017) (see also Kalyanakrishnan1 et al., 2012; Howard et al.,
2021) samples two arms at each round: the one with the current best estimate and the one in the remaining
arms with the highest optimistic indice Ua(t) which is an upper confidence bound:

Ua(t) = µ̂a(t) +

√
3

Na(t)
log
( log(Na(t))× 2K

δ

)
(constant

√
3 appeared to be empirically optimal). For the fairness of the comparison we will take the

same stopping condition as Track-and-Stop and Exploration-Biased Sampling.

Exploration-Biased Sampling We ran our experiments with confidence lengths Cγ(s) =
√

log(s/γ)
s ,

and for all strategies we used the same threshold

β(t, δ) = log((log(t) + 1)/δ) .

These choices are more aggressive than what the theoretical analysis suggests: yet, empirically, they
appears to guarantee the desired failure rate. Using the larger intervals of Section 2 would have increased
the number of rounds with uniform exploration, and using larger thresholds unnecessarily delays the
stopping for all strategies.

We now discuss the numerical pros and cons of Exploration-Biased Sampling.

Improving the Stability of Track-and-Stop In Section 1, we highlighted the weaknesses of Track-
and-Stop, especially the forced exploration parameter and the non-interpretable and unstable sampling
strategy during the first rounds. On Figures 2 and 3 we see the improvements of Exploration-Biased
Sampling concerning those behaviours. During the first rounds, as for a racing algorithm, a uniform
sampling is observed as the learner has not collected enough information (the confidence intervals on all
arms are not separated), which is the expected behavior. Then the best arms are sampled more and more
often, but still in a more cautious way than Track-and-Stop. We observe on Figure 3 the stability
of the sampling strategies comparing to Track-and-Stop during the first rounds: the targeted weights
of Exploration-Biased Sampling are stable and separate from each other cautiously (note that the
three last arms still have the same weight at time 1200) whereas for Track-and-Stop, we observe an
important variation of the targeted weights with time. As a matter of facts, there is a clear discontinuity
each time the estimated best arm changes, as we can see with the red and green arms. We also remark
that Track-and-Stop uses forced exploration at regular rounds (giving the yellow and blue peaks),
which is unnecessary for Exploration-Biased Sampling as a natural exploration is always performed
(Lemma 3).
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Figure 2: Evolution of the Sampling Frequencies N(t)/t on a Simulation of Exploration-Biased
Sampling and Track-and-Stop. (δ = 0.01, γ = 0.2, and µ = (0.9, 0.8, 0.6, 0.4, 0.4); the values of
w(µ) = (0.477, 0.476, 0.028, 0.010, 0.010) are dotted)

Figure 3: Evolution of the Targeted Weights w̃(t) (resp. w(µ̂(t))) During the First 1200 Rounds on a
Simulation of Exploration-Biased Sampling (resp. Track-and-Stop). (δ = 0.01, γ = 0.2, µ =
(0.9, 0.8, 0.6, 0.4, 0.4))

Comparisons of the Strategies The cost of the the cautiousness of the algorithm (the exploration-
biased weights) is that it takes a little longer for the proportions of draws of Exploration-Biased Sam-
pling to converge to the optimal weights. This results in a slightly larger stopping time than Track-and-
Stop that occurs for every bandit parameter1. This can be observed on Table 1, where we present the per-
formances of Exploration-Biased Sampling, Track-and-Stop, Chernoff-Racing and LUCB++
with two scenarios and a set of parameters. Exploration-Biased Sampling globally performs correctly
but we see that the other strategies are always a little more efficient. Note that when increasing γ, the
confidence intervals reduces so that the targeted weights are closer to w, improving the performance of
the algorithm. For similar reasons the initial cautiousness of the strategy disappears at long-term, thus
when δ is very small the relative performance of Track-and-Stop and Exploration-Biased Sampling
gets closer. Of course, Exploration-Biased Sampling overperforms Chernoff-Racing in the long
run when the optimal weights are far from the sampling proportions of Chernoff-Racing (e.g. when
w1 � w2).

Chernoff-Racing shows great performance with both µ(1) and µ(2). This strategy samples the two
last arms of the race equally often, thus can be optimal only when w(µ) has its two highest components
of similar value, e.g. when the two best arms are well separated from the others : this is the case of bandit
µ(1). For µ(2) any strategy performs well as the problem is easy. However, Chernoff-Racing (whose
theoretical analysis remains to be written) leads to a few more misidentifications in our experiments
that might be linked to the stopping rule we chose here; for fairness reasons, it was taken identical to
that of the other algorithms. LUCB++ presents similar performance with Chernoff-Racing, which

1Note that the cautiousness of our strategy is required to obtain the non-asymptotic bounds of Theorem 5.
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Table 1: Empirical Expected Number of Draws Eµ[τδ], Averaged over 1000 Experiments: µ(1) =
(0.9, 0.8, 0.6, 0.4, 0.4), w(µ(1)) = (0.477, 0.476, 0.028, 0.010, 0.010); µ(2) = (0.9, 0.5, 0.45, 0.4), w(µ(2)) =
(0.375, 0.286, 0.195, 0.144)

Bandit δ γ T kl(δ, 1− δ) EBS C TaS C EBS D TaS D Racing LUCB++

µ(1) 0.1 0.05 1476 4727 3597 4191 3477 3124 3353

µ(1) 0.01 0.05 3782 7363 5664 6330 5584 5419 5549

µ(1) 0.01 0.2 3782 7090 5664 6136 5584 5419 5372

µ(1) 10−5 0.2 9669 13801 12181 12376 11439 11557 11644

µ(2) 0.1 0.05 135 476 367 470 322 405 365

µ(2) 0.01 0.05 347 708 588 699 485 542 565

can be explained by the similar behaviour of the strategies: LUCB++ samples half time the best arm
asymptotically, and the worst arms are eliminated one by one once their indice fall under the two best
estimates.

Finally, note that D-tracking shows better performance than C-tracking, either for Exploration-
Biased Sampling and Track-and-Stop. D-tracking indeed benefits directly of the current estimate
of µ (thus the empirical proportions of draws converge faster to the optimal weight), while the impact is
diluted in time with C-tracking. However we did not prove theoretical guarantees for D-tracking.

Additional experiments showing and interpreting the dependence on parameter δ of Exploration-
Biased Sampling are postponed to Appendix G.

5 Conclusion

We introduced Exploration-Biased Sampling, a new strategy for the problem of best arm identification
with fixed confidence. In addition to asymptotic optimal results, we proved non-asymptotic bounds for
this strategy in the case of (sub-)Gaussian bandits. Those finite risk bounds were made possible by a
new analysis of the sample complexity optimization problem, and by the design of our strategy which
tackles the shortcomings of Track-and-Stop: the procedure ensures exploration in an unforced way and
stabilizes the sampling strategy, observing uniformly before having a high certainty that one arm is better
than another.

It would be interesting but it remains out of reach to generalize this approach to non-Gaussian models:
this requires to extend our results on the sample-complexity optimization problem, technically challenging
task for which the simple and clean arguments developed here are likely to be replaced by much more
involved derivations, if this is possible. In addition, it will be necessary to modify the confidence intervals on
the arm means in a way that ensures exploration. Another direction of improvement will be to investigate
if similar analysis and strategies are possible for the problem of ε-best arm identification.
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Appendix outline

The appendix is organized as follows:

A. Precise description of the Track-and-Stop strategy

B. Proof of the time-uniform confidence regions guarantees for µ (Lemma 2)

C. Proofs of the results on the sample complexity for Gaussian arms (Section 3)

D. Proof of the non-asymptotic result (Theorem 5)

E. Technical results associated to the proof of Theorem 5 (complements to Appendix D)

F. Asymptotic analysis of Exploration-Biased Sampling (Theorems 6 and 30)

G. Additional experiments to see the dependency of Exploration-Biased Sampling in δ

Without loss of generality (see Garivier et al., 2019), we assume that for any a ∈ [K], (Xa,n)n≥1 is a
sequence of random variables independent and identically distributed with distribution N (µa, 1), we set
µ̂a,n = 1

n

∑
p∈[n]Xa,p for all n ≥ 1 and assume that

∀t ≥ K, µ̂a(t) = µ̂a,Na(t) . (19)

A The Track-and-Stop strategy

We recall the description of the Track-and-Stop strategy in Algorithm 3. We use the notations of
Section 2 and algorithm Optimal Weights (Algorithm 4 of Appendix C.3) which efficiently computes
the solution of optimization problem (1).

Algorithm 3: Track-and-Stop

Input: confidence level δ
threshold function β(t, δ)

Output: stopping time τδ
estimated best arm âτδ

Observe each arm once ; t← K
for s = 0 to K − 1 do

w̃(s)← (1/K, . . . , 1/K)
while Z(t) ≤ β(t, δ) do

if Ut = {a ∈ [K] : Na(t) <
√
t−K/2} 6= ∅ then

Choose At+1 ∈ argmina∈Ut Na(t) /* forced exploration */

else
w̃(t)← Optimal Weights(µ̂(t))
Choose At+1 ∈ argmina∈[K]Na(t)−

∑
s∈[t] w̃a(s) /* C-tracking */

Observe YAt+1
and increase t by 1

τδ ← t ; âτδ ← argmaxa∈[K] µ̂a(t)

The presented algorithm uses C-tracking (the cumulative sums of the weights are tracked), but one
can consider D-tracking for a direct track of the current weight (by replacing

∑
s∈[t] w̃a(s) by tw̃a(t)).
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B Proof of Lemma 2

By union bound we only have to show that for any γ ∈ (0, 1) and a ∈ [K]:

Pµ
(
∃t ≥ K : |µ̂a(t)− µa| ≥ Cγ(Na(t))

)
≤ γ .

Fix γ ∈ (0, 1) and a ∈ [K]. Note that as all arms are observed once at the beginning (see Algorithm 2),
we have Na(K) = 1. Thus using Equation (19):

Pµ
(
∃t ≥ K : |µ̂a(t)− µa| ≥ Cγ(Na(t))

)
= Pµ

(
∃t ≥ K :

∣∣µ̂a,Na(t) − µa
∣∣ ≥ Cγ(Na(t))

)
= Pµ

(
∃n ∈ N∗ : |µ̂a,n − µa| ≥ Cγ(n)

)
.

Then we use a peeling trick (see for instance Boucheron et al., 2013):

Pµ
(
∃n ∈ N∗ : |µ̂a,n − µa| ≥ Cγ(n)

)
≤
∑
k≥0

P
(
∃n ∈ [2k, 2k+1] :

∣∣∣1
p

∑
p∈[n]

(Xa,p − µa)
∣∣∣ ≥ Cγ(n)

)
=
∑
k≥0

P
(
∃n ∈ [2k, 2k+1] :

∣∣∣ ∑
p∈[n]

Xa,p − µa
∣∣∣ ≥ nCγ(n)

)
(a)

≤
∑
k≥0

P
(
∃n ∈ [0, 2k+1] :

∣∣∣ ∑
p∈[n]

Xa,p − µa
∣∣∣ ≥ 2kCγ(2k)

)
(b)

≤ 2
∑
k≥0

exp
(
− (2kCγ(2k))2

2× 2k+1

)
= 2

∑
k≥0

exp
(
− log(2k+2/γ)

)
= 2γ

∑
k≥0

1

2k+2

= γ .

(a) is obtained using the fact that n 7→ nCγ(n) is non-decreasing and (b) is a well-known inequality for
the sum of sub-Gaussian variables, see for instance Lattimore and Szepesvári (2020, Theorem 9.2).

C Proofs of results presented in Section 3

In this appendix, we first prove Proposition 8, then we focus on the consequences developed in Section 3.

For the sake of simplicity, we assume that a∗ = 1, except in the last section where there is
no uniqueness assumption on the best arm of the bandits.

C.1 Solving the Optimization Problem

Proof of Equation (8). Let v ∈ ΣK . One has:

g(µ,v) = inf
λ∈Alt(µ)

∑
a∈[K]

va
(µa − λa)2

2
=

1

2
min
a6=1

inf
λ1<λa

v1(µ1 − λ1)2 + va(µa − λa)2

=
1

2
min
a 6=1

inf
µ1≤λ≤µa

v1(µ1 − λ)2 + va(µa − λ)2 =
1

2
min
a6=1

v1va
v1 + va

(µ1 − µa)2
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since the minimum is reached at λ = v1µ1+vaµa
v1+va

.

Proof of Proposition 8. Let us define, for some v1 ∈ [0, 1]:

C(v1) = max
v2:K : v∈ΣK

min
a6=1

v1va
v1 + va

∆2
a (20)

so that

T−1 = max
v∈ΣK

g(µ,v) =
1

2
max
v1∈[0,1]

C(v1) . (21)

Fix v1 ∈ [0, 1]. The maximum in Equation (20) is reached for v2:K such that all the ( v1va
v1+va

∆2
a)a6=1 are

equal, which happens when the (va)a6=1 equalize those costs: C is such that

∀a 6= 1, C =
v1va
v1 + va

∆2
a

and hence:

∀a 6= 1, va =
v1C

v1∆2
a − C

. (22)

The fact that v ∈ ΣK yields:

Φ(v1, C) := v1 +
∑
a6=1

v1C

v1∆2
a − C

− 1 = 0 . (23)

By the implicit function theorem, there exists a mapping C(v1) such that Φ(v1, C(v1)) = 0 and

C ′(v1) = −
∂Φ
∂v1

(
v1, C(v1)

)
∂Φ
∂C

(
v1, C(v1)

) = −
1 +

∑
a6=1

C(v1)(v1∆2
a−C(v1))−v1C(v1)∆2

a

(v1∆2
a−C(v1))2

v2
1

∑
a6=1

∆2
a

(v1∆2
a−C(v1))2

= −
1−

∑
a 6=1

1
(v1∆2

a/C(v1)−1)2

v2
1

∑
a 6=1

∆2
a

(v1∆2
a−C(v1))2

.

Hence C(v1) is a smooth non-negative function with a continuous derivative. By Equation (21), it vanishes
when v1 → 0 and v1 → 1, and hence its maximum is reached at a point w1 where C ′(w1) = 0. Define
r = w1/C(w1) by the relation

C ′(w1) = 0 ⇐⇒ 1−
∑
a6=1

1(
w1

C(w1)∆2
a − 1

)2 = 0

r is the unique solution of φµ(r) = 0.

Equations (12), (13) and (14) can be respectively derived from (23), (22) and (21). It remains to obtain
Equation (15) by combining Equation (13) and the characterization φµ(r) = 0:∑

a6=1

w2
a = w2

1

∑
a 6=1

1

(r∆2
a − 1)2

= w2
1(φµ(r) + 1) = w2

1 .

Proof of Corollary 9. When a, b are suboptimal, the result is a direct consequence of Equation (13) of
Proposition 8. It remains to see that w1 > maxa6=1 wa, which is a direct consequence of Equation (15) and
the fact that all weights are positive.
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C.2 Proof of Proposition 10

Defining qa = 1
r∆2

a−1 for a 6= 1, we will use that, as φµ(r) = 0, the (q2
a)a 6=1 are positive and sum to 1,

hence for any a 6= 1 one has qa ≤ 1 (with strict inequality when K ≥ 3).

Let us begin with Equation (17). As we assume a∗ = 1, wmax = w1 by Corollary 9. Using Equation (12)
of Proposition 8 one has:

• on the one hand

w1 =
(

1 +
∑
a6=1

1

r∆2
a − 1

)−1

by Equation (12) of Proposition 8

≤
(

1 +
∑
a6=1

1

(r∆2
a − 1)2

)−1

as qa ≤ 1

=
1

2
as φµ(r) = 0

giving the upper bound ;

• on the other hand, by the Cauchy-Schwarz inequality:

w1 ≥

(
1 +

√
(K − 1)

∑
a 6=1

1

(r∆2
a − 1)2

)−1

=
1

1 +
√
K − 1

.

We now prove Inequalities (16) :

• since qa ≤ 1 or equivalently r∆2
a ≥ 2 for every a 6= 1,

r ≥ 2

∆2
min

.

• since ∆2 = 1
K−1

∑
a6=1 ∆2

a, by convexity of x 7→ 1
(rx−1)2 :

1

K − 1

∑
a 6=1

1(
1+
√
K−1

∆2
∆2
a − 1

)2 ≥ 1(
1+
√
K−1

∆2
∆2 − 1

)2 =
1

K − 1

and hence φµ( 1+
√
K−1

∆2
) ≥ 0, which by decreasing of φµ (Lemma 7) gives r ≥ 1+

√
K−1

∆2
.

• one can also check that

φµ

(1 +
√
K − 1

∆2
min

)
=
∑
a6=1

1(
1+
√
K−1

∆2
min

∆2
a − 1

)2 − 1 ≤ 0

so that r ≤ 1+
√
K−1

∆2
min

.

Finally, combining the obtained inequalities with Equation (14) yields Equation (18).

To conclude this section, we discuss about the tightness of the proven inequalities.

• First note that when K = 2, lower and upper bounds match in Inequalities (16), (17) and (18). In
that case the problem is easy as we always have w = (0.5, 0.5).
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• In fact, equalities r = 2/∆2
min, w1 = 1/2 and T = 8/∆2

min occur if and only if K = 2. This is because
the (qa)a6=1 are positive and sum to 1 (thus q2 = 1 only when K = 2). The presence of other arms
thus increases r and T while decreases w1.

• If there is at least 3 arms, then the remaining equalities w1 = (1+
√
K − 1)−1, r = (1+

√
K − 1)/∆2,

r = (1 +
√
K − 1)/∆2

min and T = 2
(
1 +
√
K − 1

)2
/∆2

min are reached if and only if ∆min = ∆max,
or in other words ∆2 = · · · = ∆K . Indeed, the condition can be obtained by studying the equality
cases in the proof above, using the equality case of the Cauchy-Schwarz inequality for w1, the strict
convexity of x 7→ 1

(rx−1)2 and the decreasing of φµ for r and finally the link T = 2r/w1 for T . Note

that in that case, T grows linearly with K.

C.3 Computing r

At the sight of Proposition 8, it suffices to compute r to obtain the values of both the optimal weight
vector and the sample complexity.

The function φµ is convex and strictly decreasing on (1/∆2
min,+∞) (Lemma 7). Hence, when initialized

with a value r0 < r, the iterates of a Newton procedure remain smaller than r. The lower bound of
Inequalities (16) of Proposition 10 permits such an initialization. The convergence is quadratic (the
number of correct digits roughly doubles at every step), which implies that a few iterations are sufficient
to guarantee machine precision. The cost of the algorithm can hence be considered proportional to that
of evaluating φµ(r), which is linear in the number of arms. See Algorithm 4 for details.

Algorithm 4: Optimal Weights

Input: bandit µ ∈ G∗ with best arm 1
tolerance parameter tol (typically 10−10)

Output: optimal weight vector w
characteristic time T

for a = 2 to K do
∆a ← µ1 − µa

φµ(r)←
∑
a 6=1

1

(r∆2
a − 1)2

− 1 ; φ′µ(r)← −2
∑
a6=1

∆2
a

(r∆2
a − 1)3

r ← max
( 2

∆2
min

,
1 +
√
K − 1

∆2

)
while |φµ(r)| ≥ tol do

r ← r − φµ(r)

φ′µ(r)

w1 ←
(

1 +
∑
a6=1

1

r∆2
a − 1

)−1

for a = 2 to K do

wa ←
w1

r∆2
a − 1

T ← 2 r
w1

C.4 On the monotonicity of the min-max problem

In this section we prove Lemmas 11, 12 and 13, and then use those Lemmas to prove Proposition 1. We
recall that we assume K ≥ 3 in this section (note that Proposition 1 is trivial when K = 2).

Barrier, Garivier, Kocák 19



A Non-asymptotic Approach to Best-Arm Identification for Gaussian Bandits

Proof of Lemma 11.

1. Since ∑
a6=1

1

(r∆′a
2 − 1)2

<
∑
a6=1

1

(r∆2
a − 1)2

= 1 ,

it holds that r′ < r. It implies that for a /∈ {1, b} one has:

1

r′∆′a
2 − 1

>
1

r∆2
a − 1

.

As K ≥ 3, such an arm a exists and hence as φµ(r) = 0 = φµ′(r
′):

1

r′∆′b
2 − 1

<
1

r∆2
b − 1

or equivalently r′∆′b
2 − 1 > r∆2

b − 1.

Combining those inequalities with Equation (13) of Proposition 8, we have for all a /∈ {1, b}:

w′a
w′b

=
r′∆′b

2 − 1

r′∆′a
2 − 1

>
r∆2

b − 1

r∆2
a − 1

=
wa
wb

.

Besides, w′1/w
′
b = r′∆′b

2 − 1 > r∆2
b − 1 = w1/wb. Hence,

1− w′b
w′b

=
∑
a 6=b

w′a
w′b

>
∑
a6=b

wa
wb

=
1− wb
wb

and thus w′b < wb.

2. For any ν ∈ G∗ with best arm 1, one can see w(ν) or its components as a function of ∆2(ν). Fix
a /∈ {1, b} and define Fa(∆2(ν)) as

Fa(∆2(ν)) =
1

wa(ν)
=
r(ν)∆a(ν)2 − 1

w1(ν)
= (r(ν)∆2

a − 1) +
∑
c 6=1

r(ν)∆2
a − 1

r(ν)∆2
c − 1

where the right-inequalities are derived from Equations (12) and (13) of Proposition 8. Recall that
r(ν) also depends uniquely on the gaps, as the unique solution of φν = 0. In the following calculations
we write r for r(ν) but the dependency with respect to the gaps is crucial.

Fix d1 = 0 and da = ∆2
a for c 6= {1, b}. We want to see the change of Fa with respect to db = ∆2

b .
We can take the partial derivative:

∂Fa
∂db

=
∂r

∂db
da +

∑
c6=1

[
∂r
∂db

da

rdc − 1
− rda − 1

(rdc − 1)2

(
∂r

∂db
dc

)]
− rda − 1

(rdb − 1)2
r

=
∂r

∂db
da

(
1 +

∑
c6=1

1

rdc − 1
− rdc

(rdc − 1)2

)
+

∂r

∂db

∑
c6=1

dc
(rdc − 1)2

− rda − 1

(rdb − 1)2
r

=
∂r

∂db
da
∑
c6=1

1 + (rdc − 1)− rdc
(rdc − 1)2︸ ︷︷ ︸

=0

+
∂r

∂db

∑
c6=1

dc
(rdc − 1)2

− rda − 1

(rdb − 1)2
r

=
∂r

∂db

∑
c6=1

dc
(rdc − 1)2

− rda − 1

(rdb − 1)2
r
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(to obtain the third equality, we used that
∑
c6=1

1
(rdc−1)2 = 1 by definition of r).

It remains to see that ∂r
∂db

is nonpositive, that is that r is nondecreasing when ∆b increases. In fact,

we already noticed that by showing that r′ < r in the first part of the proof of Lemma 11. Note that
one can also use the implicit function theorem to obtain

∂r

∂db
= − r(rdb − 1)−3∑

c6=1 dc(rdc − 1)−3
< 0 .

Hence ∂Fa
∂db

< 0, so that as ∆b
′ > ∆b:

1

wa
= Fa(∆2) > Fa(∆′

2
) =

1

w′a
giving w′a > wa .

3. Using Equations (9) and (8):

T ′
−1

=
1

2
min
a6=1

w′1w
′
a

w′1 + w′a
∆′a

2 ≥ 1

2
min
a 6=1

w′1w
′
a

w′1 + w′a
∆2
a >

1

2
min
a6=1

w1wa
w1 + wa

∆2
a = T−1 ,

the first inequality comes from the assumption on µ and µ′, and the second is a consequence of the
uniqueness of the optimal weight vector w and the fact that w 6= w′, as previously obtained.

Before proving Lemmas 12 and 13, we show the following result.

Lemma 16. Assume that there exists κ > 0 such that ∆′a = κ∆a for any a 6= 1. Then w′ = w.

Proof of Lemma 16. As r is the unique solution of φµ(r) = 0, one has:

0 = φµ(r) =
∑
a6=1

1

(r∆2
a − 1)2

− 1 =
∑
a 6=1

1

( r
κ2 (κ∆a)2 − 1)2

− 1 =
∑
a6=1

1

( r
κ2 ∆′a

2 − 1)2
− 1 = φµ′

( r
κ2

)
and thus r′ = r/κ2.

This implies r∆2
a = r′∆′a

2
for any a 6= 1, hence w′ = w by Equations (12) and (13) of Proposition 8.

Proof of Lemma 12. Let us rescale the gaps of µ′ to obtain the same maximal gap, by multiplying by
constant κ = ∆max

∆max+d . Denoting by µ′′ the obtained bandit, with ∆′′ = ∆(µ′′) = κ∆′ and w′′ = w(µ′′),
we have w′′ = w′ by Lemma 16. Let a be (one of) the worst arm of µ, such that ∆a = ∆max. Then

∆′′max = ∆′′a = κ∆′a =
∆a

∆a + d
(∆a + d) = ∆a = ∆max

and for any b 6= 1, one has ∆b ≤ ∆a so that the nondecreasing of x 7→ x
x+d leads to:

∆′′b = κ∆′b =
∆a

∆a + d
(∆b + d) ≥ ∆b

∆b + d
(∆b + d) = ∆b .

Now we can apply Lemma 11 to every arm b /∈ {1, a} to go from µ to µ′′, and by Point 2 we know that
those transformations can only increase wa, so that by Corollary 9

w′min = w′a = w′′a ≥ wa = wmin .

If in addition there exists an arm b for which ∆b < ∆a, then strict inequality ∆b < ∆′′b occurs in the above
inequality and hence Lemma 11 gives a strict increasing of wmin.
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Figure 4: Transformations in the proof of Proposition 1, for some instance bandit ν. From left to right:
ν, ν(1), ν(2), ν(3) = µ̃test(2)

Proof of Lemma 13. Using scaling argument from Lemma 16, like in the proof of Lemma 12, we can scale
µ′ to keep gap between arm 1 and arms of B unchanged. That would increase the gaps of all the other arms
which in consequence, using Point 2 of Lemma 11, would mean that corresponding wmin increases.

Finally we can prove that Algorithm 1 correctly computes the optimistic bandit.

Proof of Proposition 1. We stick to the notation of Algorithm 1, and first observe that w = w(µ̃). When
minUB ≥ maxLB the algorithm returns a constant bandit and w = (1/K, . . . , 1/K) which is its optimal
weight vector by convention. As all weight vectors belong to ΣK , the result is clear.

Now assume that minUB < maxLB and fix ν ∈ CR. If ν as several optimal arms, then wmin(ν) = 0 so
that trivially wmin(ν) ≤ wmin(µ̃). Assume now that ν has a unique optimal arm denoted by a. Note that
a ∈ PotentialBest, so that we will show that wmin(ν) ≤ wmin(µ̃test(a)) by transforming ν to µ̃test(a) with
changes that will only increase the quantity of interest wmin. Remark that the value of wmin is the vector
value associated to any of the worst arms of a bandit due to Corollary 9. The procedure, illustrated in
Figure 4, is the following:

1. Transform ν into ν(1) by increasing arm a so that ν
(1)
a = µa. Using Lemma 12, one has wmin(ν(1)) ≥

wmin(ν).

2. Transform ν(1) into ν(2) by decreasing, for each arm b 6= a, µb to max(µ
b
,νmin). By several appli-

cations of Lemma 11, one has wmin(ν(2)) ≥ wmin(ν(1)) (remark that imposing to stay above νmin

ensures that the associated worst arm stays one of the worst arms at each modification).

3. Transform ν(2) into ν(3) by increasing all the worst arms to minUB. By Lemma 13, one has
wmin(ν(3)) ≥ wmin(ν(2)).

We now have ν(3) = µ̃test(a) so that wmin(ν) ≤ wmin(µ̃test(a)). We thus showed that

max
ν∈CR

wmin(ν) = max
a∈PotentialBest

wmin(µ̃test(a)) = wmin(µ̃) ,

where the last inequality comes from the procedure defining µ̃.

C.5 Proof of Theorem 14

We have that

φµ′
( r

1 + ε

)
=
∑
a6=1

1(
r

1+ε∆′a
2 − 1

)2 − 1 ≥
∑
a 6=1

1(
r

1+ε∆2
a(1 + ε)− 1

)2 − 1 = φµ(r) = 0
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and

φµ′
( r

1− ε

)
=
∑
a 6=1

1(
r

1−ε∆′a
2 − 1

)2 − 1 ≤
∑
a 6=1

1(
r

1−ε∆2
a(1− ε)− 1

)2 − 1 = φµ(r) = 0

hence by monotonicity of φµ′ and definition of r′:

r

1 + ε
≤ r′ ≤ r

1− ε
.

Consequently, for every a 6= 1, r′∆′a
2 ≤ (1 + η)r∆2

a for 1 + η = (1 + ε)/(1− ε), and

1

r′∆′a
2 − 1

≥ 1(
r∆2

a − 1
)(

1 +
ηr∆2

a

r∆2
a−1

) ≥ 1

r∆2
a − 1

(
1− ηr∆2

a

r∆2
a − 1

)
=

1

r∆2
a − 1

− η 1

r∆2
a − 1

− η 1

(r∆2
a − 1)2

so that

(w′1)−1 = 1 +
∑
a6=1

1

r′∆′a
2 − 1

≥ 1 + (1− η)
∑
a6=1

1

r∆2
a − 1

− η
∑
a6=1

1

(r∆2
a − 1)2︸ ︷︷ ︸

=1

= (1− η)w−1
1 =

1− 3ε

1− ε
w−1

1 ≥ (1− 3ε)w−1
1 .

Furthermore, r∆2
a ≥ 2 (see the lower bound in Inequalities (16) of Proposition 10), hence

r∆2
a

r∆2
a−1 ≤ 2 by

decreasing of x 7→ x
x−1 on (2,+∞). Thus, for every η ≤ 1/4, u = η

r∆2
a

r∆2
a−1 ≤ 1/2 and 1

1−u ≤ 1 + 2u. One

has r′∆′a
2 ≥ (1− η)r∆2

a for 1− η = (1− ε)/(1 + ε), and one checks that η ≤ 1/4 for ε ≤ 1/7, hence

1

r′∆′a
2 − 1

≤ 1(
r∆2

a − 1
) (

1− ηr∆2
a

r∆2
a−1

) ≤ 1

r∆2
a − 1

(
1 + 2

ηr∆2
a

r∆2
a − 1

)
=

1

r∆2
a − 1

+ 2η
1

r∆2
a − 1

+ 2η
1

(r∆2
a − 1)2

Consequently,

(w′1)−1 = 1 +
∑
a 6=1

1

r′∆′a
2 − 1

≤ 1 + (1 + 2η)
∑
a6=1

1

r∆2
a − 1

+ 2η
∑
a 6=1

1

(r∆2
a − 1)2︸ ︷︷ ︸

=1

= (1 + 2η)w−1
1 =

1 + 5ε

1 + ε
w−1

1 ≤ (1 + 5ε)w−1
1 .

To summarize, for ε ≤ 1/7, by Equation (14) of Proposition 8, on the one hand:

T ′ = 2r′w′1
−1 ≥ 2× r

1 + ε
× 1− 3ε

1− ε
w1
−1 =

1− 3ε

1 + ε2
× T ≥ (1− 3ε)T

and on the other hand

T ′ = 2r′(w′1)−1 ≤ 2× r

1− ε
× 1 + 5ε

1 + ε
w−1

1 =
1 + 5ε

1− ε2
× T ≤ (1 + 6ε)T

as 1 + 5ε ≤ (1 + 6ε)(1− ε2).
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We also have
(1− 5ε)w1 ≤

w1

1 + 5ε
≤ w′1 ≤

w1

1− 3ε
≤ (1 + 6ε)w1

which yields by Equation (13) of Proposition 8, for any a 6= 1:

(1− 10ε)wa ≤
w1/(1 + 5ε)

(r∆2
a − 1)(1 + 2ε

1+ε )
≤ w′a =

w′1
r′∆′a

2 − 1

≤ w1/(1− 3ε)

(r∆2
a − 1)(1− 2 2ε

1+ε )
=

1 + ε

(1− 3ε)2
wa ≤ (1 + 10ε)wa .

C.6 Proof of Proposition 15

We will prove Proposition 15 by combining two Lemmas. Note that in this section µ and µ′ are general
bandits, with possibly more than one best arm.

Lemma 17. Let µ,µ′ ∈ G and v ∈ ΣK be any optimal vector. Then:

g(µ′,v) ≥ g(µ,v)− ε/2

where ε = ‖µ− µ′‖∞.

Proof.

• Assume first that µ and µ′ have a common best arm. Without loss of generality we assume that
this arm is 1. Then:

g(µ′,v)− g(µ,v) =
1

2
min
a6=1

v1va
v1 + va

∆′a
2 − 1

2
min
b6=1

v1vb
v1 + vb

∆2
b by Equation (8)

=
1

2
min
a6=1

max
b 6=1

v1va
v1 + va

∆′a
2 − v1vb

v1 + vb
∆2
b

≥ 1

2
min
a6=1

v1va
v1 + va

(
∆′a

2 −∆2
a

)
taking b = a .

Then for any a 6= 1, one has:

|∆a −∆′a| = |(µ1 − µ′1)− (µa − µ′a)| ≤ |µ1 − µ′1|+ |µa − µ′a| ≤ 2ε

from which we obtain, using that the gaps are in [0, 1] in G∣∣∣∆2
a −∆′a

2
∣∣∣ = |∆a −∆′a| (∆a + ∆′a) ≤ 4ε .

As v is an optimal vector, we have 0 ≤ va ≤ v1 ≤ 1
2 using Equation (17), so that:

v1va
v1 + va

≤ 1

2

va
v1 + va

≤ 1

2

va
2va

=
1

4

hence
v1va
v1 + va

(∆′a
2 −∆2

a) ≥ −ε .

• In case µ and µ′ do not share a best arm, define the family of bandits (µ(t))t∈[0,1] by

∀t ∈ [0, 1],∀a ∈ [K], µ(t)
a = (1− t)µa + tµ′a .

One can check that
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– µ = µ(0),

– µ′ = µ(1),

–
∥∥µ(t1) − µ(t2)

∥∥
∞ ≤ |t1 − t2| ε for every t1, t2 ∈ [0, 1].

Select the subdivision 0 = t0 < t1 < · · · < tN = 1 of times at which the optimal arms of µ(t) are
modified. Note that N ≥ 2 as µ and µ′ do not have a common best arm. Note that by continuity:

– for any n ∈ J1, N − 1K, µ(tn) has at least two best arms so that g(µ(tn),v) = 0,

– µ(1) and µ have a common best arm,

– µ(N−1) and µ′ have a common best arm.

Thus

g(µ′,v)− g(µ,v) = g(µ′,v)− g(µ(1),v) + g(µ(N−1),v)− g(µ,v)

≥ −
∥∥µ− µ(1)

∥∥
∞ +

∥∥µ(N−1) − µ′
∥∥
∞

2

≥ − (t1 + (1− tN−1))ε

2
≥ −ε

2
.

Lemma 18. Let µ′ ∈ G be a Gaussian bandit and u,v ∈ ΣK be such that

max
a∈ [K]

|ua − va|
ua

≤ η

for a fixed 0 ≤ η ≤ 1. Then:

g(µ′,v) ≥ (1− η)2

1 + η
g(µ′,u) .

Proof. Without loss of generality, assume that arm 1 is one of the best arms of µ′. Note that the condition
of the lemma can be rewritten as

∀a ∈ [K], (1− η)ua ≤ va ≤ (1 + η)ua .

Then for every a 6= 1:
v1va
v1 + va

≥ (1− η)2u1ua
(1 + η)(u1 + ua)

.

Thus:

g(µ′,v) = min
a6=1

v1va
v1 + va

∆′a
2 ≥ (1− η)2

1 + η
min
a 6=1

u1ua
u1 + ua

∆′a
2

=
(1− η)2

1 + η
g(µ′,u) .

Proof of Proposition 15. The result follows directly by applying Lemmas 18 and 17 with u = w(µ):

g(µ′,v) ≥ (1− η)2

1 + η
g(µ′,w(µ)) ≥ (1− η)2

1 + η

(
g(µ,w(µ))− ε/2

)
.
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D Proof of the main result

The aim of this section is to prove Theorem 5. Let γ ∈ (0, 1) and µ ∈ G∗. We assume, without loss of
generality, that a∗(µ) = 1. We also write for simplicity ∆ = ∆(µ), w = w(µ) and T = T (µ).

Recall that the confidence regions are defined, for t ∈ JK, τδK, by

CRµ(t) =
∏
a∈[K]

[
µ̂a(t)± `a(t)

]
,

where `a(t) = Cγ/K(Na(t)) = 2
√

log(4KNa(t)/γ)
Na(t) .

Let E denotes an event such that µ belongs to all confidence regions:

E =

τδ⋂
t=K

(
µ ∈ CRµ(t)

)
and recall that the confidence regions defined by Equation (3) are chosen so as to ensure that Pµ(E) ≥ 1−γ
(see Lemma 2). Furthermore, when E occurs, Exploration-Biased Sampling has been designed so that
arms are observed with some minimal linear rate, specified by Lemma 19 and proved in Appendix E.1.

Lemma 19. On event E one has:

∀t ∈ N∗, min
a∈[K]

Na(t) ≥ twmin −K .

This inequality directly implies the following lower bound:

∀t ≥ 2K

wmin
, min

a∈[K]
Na(t) ≥ twmin

2
. (24)

Proof outline

The proof is organized in 3 steps:

1. We first show that, on event E , the optimal vector w and the sampling frequency vector N(t)/t are
very close for any t ≥ T1, where T1 is a (problem-dependent) constant. To do so, we will make use
of the regularity results of Section 3.4 and the fact that the confidence regions shrink with time.

2. Then, we control the event (τδ > t) ∩ E for t > T log(1/δ) by another event for which we can easily
bound the probability using Hoeffding’s inequality. This inclusion relies once again on the regularity
results of Section 3.4 and on conditions on δ, in particular we will require to have T log(1/δ) ≥ T1

with T1 obtained at Step 1.

3. Finally, we derive the two bounds of the theorem from Hoeffding’s inequality and elementary calcu-
lations.

The proof uses some technical lemmas introduced and shown in Appendix E.

Step 1: controlling the difference between vectors w and N (t)/t

In this step we assume that event E occurs.
Let t ≥ 2K

wmin
. Equation (24) implies that

∀a ∈ [K], `a(t) = 2

√
log(4Na(t)K/γ)

Na(t)
≤

√
8

log(4tK/γ)

twmin
=: L(t) .
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L(t) is an arm-independent bound on the half-length of the confidence interval of each µa. In other words,
‖µ̃(t)− µ‖∞ ≤ L(t) as we are on event E . Note that L(t) is deterministic and goes to 0 as t goes to +∞.
This control of ‖µ̃(t)− µ‖∞ together with Theorem 14 allows to control the difference between w and
w̃(t) for t large enough, as the following Lemma claims.

Lemma 20. Let

T0 = max

(
2242

∆2
minwmin

log
(2× 2242eK

∆2
minwminγ

)
,

2K

wmin

)
. (25)

Then for every t ≥ T0, one has, introducing εt = 80L(t)
∆min

:

∀a ∈ [K], wa(1− εt) ≤ w̃a(t) ≤ wa(1 + εt) . (26)

Proof. Let t ≥ 2K
wmin

and assume that t is such that 4L(t) < ∆min. On event E , one has µ ∈ CRµ(t) =∏
a∈[K][µa(t), µa(t)], hence for any a 6= 1:

µ
1
(t)− µa(t) ≥ µ1 − 2L(t)− (µa + 2L(t)) ≥ ∆a − 4L(t) > 0

so that the confidence interval for µ1 is strictly above all other confidence intervals. Hence µ̃(t) has a
unique optimal arm which is arm 1.

For each arm a 6= 1, define ∆̃a(t) = ∆a(µ̃(t)) = µ̃1(t)− µ̃a(t). Then

∆̃a(t)2 ≤ (∆a + 2L(t))2 = ∆2
a

(
1 +

4L(t)

∆a
+

4L(t)2

∆2
a

)
≤ ∆2

a

(
1 +

8L(t)

∆min

)
and ∆̃a(t)2 ≥ (∆a − 2L(t))2 = ∆2

a

(
1− 4L(t)

∆a
+

4L(t)2

∆2
a

)
≥ ∆2

a

(
1− 8L(t)

∆min

)
.

If t is such that 8L(t)
∆min

≤ 1/7 (this condition is stronger than 4L(t) < ∆min), we can apply Theorem 14
which gives

∀a ∈ [K], wa(1− εt) ≤ w̃a(t) ≤ wa(1 + εt) .

It remains to understand when the condition 8L(t)
∆min

≤ 1/7 holds. We have:

8L(t)

∆min
≤ 1/7 ⇐⇒ log(4tK/γ)

t
≤ ∆2

minwmin

(7× 8)2 × 8
=

∆2
minwmin

2× 1122

and this inequality is satisfied, by Lemma 26, for

t ≥ 2242

∆2
minwmin

log
(2× 2242eK

∆2
minwminγ

)
.

Combining with the initial condition t ≥ 2K
wmin

leads to the definition of T0.

As each Na(t)/t is nearly the Cesaro sum of the (w̃a(s))0≤s≤t−1 (see Lemma 25), and as εt →t→+∞ 0,
we are able to control the difference between w and N(t)/t after a deterministic time T1.

Lemma 21. Fix η ∈ (0, 1) and let

T1 =
max(6402, 8K)

η2∆2
minw

2
min

log
( 2× 6402eK

η2∆2
minwminγ

)
. (27)

Then for any t ≥ T1 one has:

∀a ∈ [K], wa(1− η) ≤ Na(t)

t
≤ wa(1 + η) . (28)
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Proof. Let T0 be defined by Equation (25). Let t > T0 and a ∈ [K]. Equation (26) of Lemma 20 gives:∣∣∣∣∣
t−1∑
s=0

w̃a(s)− twa

∣∣∣∣∣ ≤
T0−1∑
s=0

|w̃a(s)− wa|+
t−1∑
s=T0

|w̃a(s)− wa| ≤ T0 + wa

t−1∑
s=T0

εs .

By definition of εt one has:

t−1∑
s=T0

εs =
80
√

8

∆min
√
wmin

t−1∑
s=T0

√
log(4sK/γ)

s
≤

80
√

8
√

log(4tK/γ)

∆min
√
wmin

t−1∑
s=T0

1√
s
≤

80
√

8
√
t log(4tK/γ)

∆min
√
wmin

so that we have, using Lemma 25:∣∣∣∣Na(t)

t
− wa

∣∣∣∣ ≤ 1

t

[∣∣∣Na(t)−
t−1∑
s=0

w̃a(s)
∣∣∣+
∣∣∣ t−1∑
s=0

w̃a(s)− wa
∣∣∣]

≤ K + T0

t
+ wa

80
√

8
√

log(4tK/γ)

∆min

√
wmint

≤ wa

(
K + T0

twmin
+

80
√

8
√

log(4tK/γ)

∆min

√
wmint

)
.

Thus the conclusion of the Lemma holds when:

max
(K + T0

twmin
,

80
√

8
√

log(4tK/γ)

∆min

√
wmint

)
≤ η

2

and this inequality is satisfied, using Lemma 26, when:

t ≥ max
(2

η

K + T0

wmin
,

6402

η2∆2
minwmin

log
( 2× 6402eK

η2∆2
minwminγ

))
.

The definition of T0 implies K + T0 ≤ 4 max(1122,K)
∆2

minwmin
log
(

2×2242eK
∆2

minwminγ

)
, hence the inequality still holds for

t ≥ max
(8 max(1122,K)

η∆2
minw

2
min

log
(2× 2242eK

∆2
minwminγ

)
,

6402

η2∆2
minwmin

log
( 2× 6402eK

η2∆2
minwminγ

))
and T1 is greater than this lower bound.

Step 2: a useful inclusion of events

We want to control the event (τδ > t) ∩ E for t > T log(1/δ). For δ small enough, we have the following
inclusion of events.

Lemma 22. Fix η ∈ (0, 0.15] and let δ be such that

T log(1/δ) ≥ T1 (C1)

where T1 is defined by Equation (27) and

log(1/δ) >
4

η
log
(8eTR1/2

η

)
. (C2)

Then for any C ∈ (0, 1]:

∀t ≥ (1 + C)
(1 + η)2

(1− η)2
T log(1/δ),

(
τδ > t

)
∩ E ⊆

(
‖µ− µ̂(t)‖∞ ≥

C

T

)
∩ E .
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Remark 23. Latter, we will use this Lemma with C = 1

log
1
3 (1/δ)

.

Proof. Assume in the following that T log(1/δ) ≥ T1 and let t ≥ T log(1/δ). By definition of T1 and
Lemma 21, one has

max
a∈[K]

∣∣∣∣wa −Na(t)/t

wa

∣∣∣∣ ≤ η . (29)

Then using Proposition 15 and Equation (9):(
τδ > t

)
∩ E ⊆

(
Z(t) = tg(µ̂(t),N(t)/t) ≤ β(t, δ)

)
∩ E

⊆
(
t
(1− η)2

1 + η

(
g(µ,w)−

‖µ− µ̂(t)‖∞
2

)
≤ β(t, δ)

)
∩ E

⊆
(‖µ− µ̂(t)‖∞

2
≥ 1

T
− 1 + η

(1− η)2

β(t, δ)

t

)
∩ E .

Consider now

f(t) =
1 + η

(1− η)2

β(t, δ)

t
=

1 + η

(1− η)2

log
(
Rtα

δ

)
t

.

As α ≤ 2, one can check that f is decreasing on (4,+∞). Let us show that

∀C ∈ (0, 1], f
(

(1 + C)
(1 + η)2

(1− η)2
T log(1/δ)

)
≤ 1

(1 + C)T
. (30)

Fix C ∈ (0, 1]. As α ≤ 2 and as η ≤ 0.15 is such that (1+η)2

(1−η)2 ≤ 2, we have:

f
(

(1 + C)
(1 + η)2

(1− η)2
T log(1/δ)

)
≤ 1 + η

(1− η)2

log
(
R(4T log(1/δ))2

δ

)
(1 + C) (1+η)2

(1−η)2T log(1/δ)

≤ 1

(1 + C)T

1

1 + η

(
1 + 2

log
(
4R1/2T log(1/δ)

)
log(1/δ)

)
.

hence Inequality (30) is satisfied if

log
(
4R1/2T log(1/δ)

)
≤ η

2
log(1/δ)

which is the case, by Lemma 26, when:

log(1/δ) >
4

η
log
(8eTR1/2

η

)
.

Finally when Inequality (30) holds we have for t ≥ (1 + C) (1+η)2

(1−η)2T log(1/δ):

(
τδ > t

)
∩ E ⊆

(
‖µ− µ̂(t)‖∞ ≥

2

T
− 2

(1 + C)T

)
∩ E

⊆
(
‖µ− µ̂(t)‖∞ ≥

C

T

)
∩ E

where we use C ≤ 1 in the last inclusion.
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Step 3: bounding Pµ

(
τδ > t ∩ E

)
and Eµ[τδ1E ].

Fix η ∈ (0, 1] and assume in the following that conditions (C1) and (C2) of Lemma 22 are satisfied with

η′ = η/7 ≤ 0.15. We set ζ = (1+η′)2

(1−η′)2 . Let C ∈ (0, 1], t > (1 + C)ζT log(1/δ) and define

Et =
(
‖µ− µ̂(t)‖∞ ≥

C

T

) ⋂
E .

Lemmas 22 and 27 – a consequence of Hoeffding’s inequality – (note that Condition (C1) ensures that
t ≥ 2K

wmin
) give the bound:

Pµ
(
τδ > t ∩ E

)
≤ Pµ(Et) ≤ 2Kt exp

(
− twmin

4T 2
C2
)
. (31)

By taking C = 1

log
1
3 (1/δ)

, we obtained so far that

∀t >
(

1 +
1

log
1
3 (1/δ)

)
ζT log(1/δ), Pµ

(
τδ > t ∩ E

)
≤ 2Kt exp

(
− twmin

4T 2

1

log
2
3 (1/δ)

)
giving Bound (5) as long as

(
1 + 1

log
1
3 (1/δ)

)
ζ ≤ 1 + η. Note that ζ ≤ 1 + 6η′ as η′ ≤ 0.15 so that when

1

log
1
3 (1/δ)

≤ η′

2
⇐⇒ log(1/δ) ≥ 8× 73

η3
(C3)

the condition holds as (
1 +

1

log
1
3 (1/δ)

)
ζ ≤

(
1 +

η′

2

)
(1 + 6η′) ≤ 1 + 6.6η′ ≤ 1 + η.

It remains to focus on the bound of Eµ[τδ1E ]. Using Equation (31) we have:

Eµ[τδ1E ] =

b(1+C)ζT log(1/δ)c∑
t=0

Pµ
(
τδ > t ∩ E

)
+

∑
t>(1+C)ζT log(1/δ)

Pµ
(
τδ > t ∩ E

)
≤ (1 + C)ζT log(1/δ) + 1 + 2K

∑
t>(1+C)ζT log(1/δ)

t exp
(
− twmin

4T 2
C2
)
.

Define

S(C) =
∑

t>CζT log(1/δ)

t exp
(
− twmin

4T 2
C2
)
.

With some technical calculations (see Appendix E.4), one can obtain that:

Lemma 24. One has

S(C) ≤ 32T 4

w2
min

exp
(
− wmin

4T
C2 log(1/δ)

)( log(1/δ)

C2
+

1

C4

)
.

Once again, taking C = 1

log
1
3 (1/δ)

leads to

S(C) ≤ 32T 4

w2
min

exp
(
− wmin

4T
log

1
3 (1/δ)

)(
log

5
3 (1/δ) + log

4
3 (1/δ)

)
≤ 64T 4

w2
min

exp
(
− wmin

4T
log

1
3 (1/δ)

)
log2(1/δ)
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thus

Eµ[τδ1E ] ≤ ζ
(

1 +
1

log
1
3 (1/δ)

)
T log(1/δ) + 1 +

27KT 4

w2
min

exp
(
− wmin

4T
log

1
3 (1/δ)

)
log2(1/δ) .

Under Condition (C3) we get

ζ
(

1 +
1

log
1
3 (1/δ)

)
T log(1/δ) + 1 ≤ (1 + 6.6η′)T log(1/δ) + 1 ≤ (1 + η)T log(1/δ)

and obtain the Bound (6) claimed in the theorem. Combining conditions (C1), (C2) and (C3) together,
one can define δ0 satisfying:

log(1/δ0) ≥ 73 ×max(2× 1602,K)

η3∆minw2
min

log
(72 × 2× 6402eKR1/2

η2∆2
minwminγ

)
,

with some simplifications allowed by Equation (18) of Proposition 10.

E Technical details for the proof of Appendix D

E.1 Proof of Lemma 19

We will use the following deterministic Lemma:

Lemma 25. One has:

∀t > 0, max
1≤a≤K

∣∣∣Na(t)−
t−1∑
s=0

w̃a(s)
∣∣∣ ≤ K − 1 .

Proof. Apply Garivier and Kaufmann (2016, Lemma 15) with p(s) = w̃(s).

The claim is true for t ∈ J0,KK as Equation (17) of Proposition 10 gives

wminK −K ≤
K

2
−K ≤ 0 .

Otherwise, fix t ∈ JK + 1, τδK and a ∈ [K]. For any s ∈ J0,K − 1K, one has w̃a(s) = 1
K by convention

(as all arms are drawn once during the K first rounds, the only request is
∑K−1
s=0 w̃a(s) = 1), and thus

w̃a(s) ≥ wmin (w ∈ ΣK implies wmin ≤ 1
K ). For any s ∈ JK, τδ − 1K, one has by Proposition 1 :

w̃a(s) ≥ w̃min(s) = max
ν∈CRµ(s)

wmin(ν) ≥ wmin

as µ ∈ CRµ(s) on event E . Hence by Lemma 25

Na(t) ≥
t−1∑
s=0

w̃a(s)− (K − 1) ≥ twmin − (K − 1) ≥ twmin −K .

E.2 A technical lemma

Lemma 26. For any c1, c2 > 0,

x =
2

c1
log
(c2e
c1

)
is such that c1x ≥ log(c2x).

This is a direct consequence of Garivier and Kaufmann (2016, Lemma 18).
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E.3 Deviation bound

We prove the following simple consequence of Hoeffding’s inequality.

Lemma 27. For any t ≥ 2K
wmin

and x > 0, one has

P
(

max
a∈[K]

|µ̂a(t)− µa| > x ∩ E
)
≤ 2Kt exp

(
− twmin

4
x2
)
.

Proof. Fix t ≥ 2K
wmin

and x > 0. For any a ∈ [K], one has with T = twmin

2 :

P
(
|µ̂a(t)− µa| > x ∩ E

)
=

t∑
s=T

P
(
|µ̂a(t)− µa| > x ∩ E ∩ Na(t) = s

)
by Equation (24)

≤
t∑

s=T

P
(
|µ̂a,s − µa| > x

)
by Equation (19)

≤
t∑

s=T

2 exp
(
− s

2
x2
)

by Hoeffding’s inequality

≤ 2t exp
(
− T

2
x2
)

giving the desired bound by union bound.

E.4 Proof of Lemma 24

We have

S(C) =
∑

t>(1+C)ζT log(1/δ)

t exp
(
− twmin

4T 2
C2
)

=
∑
t>B

f(t)

where f : t 7→ t exp(−At), A = wmin

4T 2 C
2 and B = (1 + C)ζT log(1/δ). f is increasing until 1/A and then

decreasing. Let n0 =
⌊

1
A

⌋
. We will show that S(C) ≤ 2

∫ +∞
B

f(t) dt.

• If B > n0 then f is decreasing on [B,+∞[ and one has S(C) ≤
∫ +∞
B

f(t) dt.

• Otherwise, one has:

S(C) =

n0−1∑
t=dBe

f(t) + f(n0) + f(n0 + 1) +
∑

t>n0+1

f(t)

≤
n0−1∑
t=dBe

∫ t+1

t

f(t) dt+ f(n0) + f(n0 + 1) +
∑

t>n0+1

∫ t

t−1

f(t) dt

≤
∫ +∞

dBe
f(t) dt+ f(n0) + f(n0 + 1)

where in the second inequality, we use the increasing of f on [B,n0] and its decreasing on [n0+1,+∞].
The result will be true if

f(n0) + f(n0 + 1) ≤
∫ +∞

B

f(t) dt .
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We have:

f(n0) + f(n0 + 1) =

⌊
1

A

⌋
e−Ab

1
Ac +

⌈
1

A

⌉
e−Ad

1
Ae

≤
(⌊ 1

A

⌋
+

⌈
1

A

⌉)
e−Ab

1
Ac

≤
(⌊ 1

A

⌋
1

A
+

1

A2

)
e−Ab

1
Ac as A <

1

2

=

∫ +∞

b 1
Ac

f(t) dt ≤
∫ +∞

B

f(t) dt as B ≤
⌊

1

A

⌋
= n0 .

where in the last inequality, we used the simple calculation∫ +∞

Y

t exp(−tX)dt = exp(−Y X)
(Y
X

+
1

X2

)
for X,Y > 0.

In both cases we have:

S(C) ≤ 2

∫ ∞
(1+C)ζT log(1/δ)

t exp
(
− twmin

4T 2
C2
)

dt

and using the same calculation as before

S(C) ≤ 2 exp
(
− ζwmin

4T
(1 + C)C2 log(1/δ)

)(4(1 + C)ζT 3

wmin

log(1/δ)

C2
+

16T 4

w2
min

1

C4

)
.

Bounding C ∈ (0, 1] and ζ ∈ [1, 2] (remind that ζ ≤ 1 + 6η′):

S(C) ≤ 2 exp
(
− wmin

4T
C2 log(1/δ)

)(16T 3

wmin

log(1/δ)

C2
+

16T 4

w2
min

1

C4

)
≤ 32T 4

w2
min

exp
(
− wmin

4T
C2 log(1/δ)

)( log(1/δ)

C2
+

1

C4

)
.

F Proof of asymptotic results

F.1 Proof of Lemma 3

We will need the two following lemmas. The first gives a lower bound of wmin(µ) and the second provides
a lower bound on the minimal gap of the optimistic bandit computed by Algorithm 1.

Lemma 28. For any µ ∈ G∗ one hase wmin(µ) ≥ ∆min(µ)
2K .

Proof. Let w = w(µ), wmin = wmin(µ) and ∆ = ∆(µ). We have

wmin =
wmax

r∆max − 1
by Equation (13) of Proposition 8

≥ 1√
K − 1 + 1

× 1
√
K−1+1
∆min

∆max − 1
by Inequalities (16) and (17)

≥ ∆min

(
√
K − 1 + 1)2

as ∆max(t) ≤ 1

≥ ∆min

2K
.

Barrier, Garivier, Kocák 33



A Non-asymptotic Approach to Best-Arm Identification for Gaussian Bandits

Lemma 29. Let CR =
∏
a∈[K][µa, µa] be a confidence region such that µ

a
< µa for a ∈ [K] and

maxa∈[K] µa = maxLB > minUB = mina∈[K] µa, and (µ̃,v)← OptimisticWeights(CR). Then

∆min(µ̃) ≥ min
a∈[K]

µa − µa .

Proof. We proceed by contradiction: let us assume that µ̃ is such that

∆min(µ̃) < min
a∈[K]

µa − µa .

By the two hypothesis and the algorithm’s procedure, it is clear that µ̃ has a unique best arm. Without
loss of generality let us arrange the arms so that µ̃1 > µ̃2 ≥ µ̃3 ≥ · · · ≥ µ̃K . Note that ∆min(µ̃) = µ̃1− µ̃2.

As 1 is the best arm, once again the algorithm’s procedure ensures that µ̃1 = µ1. In addition, our
assumption implies ∆min(µ̃) < µ1 − µ1

, giving µ̃2 > µ
1
. Recall that µ̃2 = max(µ

2
,minUB), so that we

split our analysis to the two possible cases:

• if µ̃2 = µ
2
, then we cannot have µ2 ≤ µ1 = µ̃1 otherwise ∆min(µ̃) > µ2 − µ2

, which is impossible.

Then µ2 > µ1. By defining ν = (µ̃2, µ2, µ̃3, . . . , µ̃K), one has ν ∈ CR and wmin(ν) > wmin(µ̃) by
Lemma 12. Thus µ̃ cannot maximize wmin over CR which is in contradiction with Proposition 1.

• if µ̃2 = minUB, then µ̃2 = µ̃3 = · · · = µ̃K and thus all confidence intervals share a common point
equal to µ̃2 (recall that µ̃2 ∈ [µ

1
, µ1]), which is a contradiction with maxLB > minUB.

We can now prove Lemma 3. Let t ∈ J0, τδ − 1K. We want to lower bound w̃min(t).

• If at time t one has w̃(t) = (1/K, . . . , 1/K) then w̃min(t) = 1
K .

• Otherwise, by construction of Algorithms 1 and 2 we know that t ≥ K and the confidence region
CR(t) is such that at least two confidence intervals are separated. In that case, the optimistic bandit
µ̃(t) has a unique optimal arm and Lemma 28 gives

w̃min(t) ≥ ∆̃min(t)

2K
.

One can use Lemma 29 and note that as t ≥ K, all arms have already been pulled at least once,
hence

∆̃
(t)
min ≥ min

a∈[K]
2`a(t) ≥ 4 min

a∈[K]

√
log(4Na(t)K/γ)

Na(t)
≥ 4

√
log(4K/γ)

t
≥ 4

√
log 8

t
≥ 4√

t
.

Putting everything together one can obtain

w̃min(t) ≥ 2

K

1√
t
.

In both cases we obtained:

w̃min(t) ≥ min
( 2

K

1√
t
,

1

K

)
≥ 1

K

1√
t

hence for any a ∈ [K] and t ∈ N, we have using Lemma 25:

Na(t) ≥
t−1∑
s=0

w̃a(s)− (K − 1) ≥
t−1∑
s=2

w̃min(s)−K ≥ 1

K

t−1∑
s=2

1√
s
−K ≥ 1

K

∫ t

1

1√
s

ds−K ≥ 2

K

√
t−K .
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F.2 Almost sure asymptotic bound

Theorem 30 (Almost sure asymptotic bound). Fix γ ∈ (0, 1), α ∈ [1, e/2]. For any µ ∈ G∗, Algorithm
Exploration-Biased Sampling with the threshold of Equation (4) satisfies

lim sup
δ→0

τδ
log(1/δ)

≤ αT (µ) Pµ-a.s. .

The result was obtained by Garivier and Kaufmann (2016, Proposition 13). The adaptation to
Exploration-Biased Sampling is straightforward, as soon as we prove the following result.

Proposition 31. For any choice of parameters and µ ∈ G∗, the sampling rule of Exploration-Biased
Sampling satisfies:

lim
t→+∞

µ̂(t) = µ Pµ-a.s. and lim
t→+∞

N(t)

t
= w(µ) Pµ-a.s. .

Proof. Lemma 3 implies that Na(t)→t→+∞ +∞ for all a ∈ [K], so that the law of large number gives

lim
t→+∞

µ̂(t) = µ Pµ-a.s. .

Remark that for a ∈ [K] one has

|µ̃a(t)− µ̂a(t)| ≤ Cγ/K(Na(t)) = 2

√
log(4Na(t)K/γ)

Na(t)
−→t→+∞ 0

so that we also have
lim

t→+∞
µ̃(t) = µ Pµ-a.s.

and thus by continuity of function w in µ (as µ has a unique optimal arm):

lim
t→+∞

w̃(t) = w(µ) Pµ-a.s. .

Now for all t ∈ N∗ and a ∈ [K] we have:∣∣∣∣Na(t)

t
− wa(µ)

∣∣∣∣ ≤ 1

t

∣∣∣∣∣Na(t)−
t−1∑
s=0

w̃a(s)

∣∣∣∣∣+

∣∣∣∣∣1t
t−1∑
s=0

(w̃a(s)− wa(µ))

∣∣∣∣∣
≤ K − 1

t
+

∣∣∣∣∣1t
t−1∑
s=0

(w̃a(s)− wa(µ))

∣∣∣∣∣ by Lemma 25

→t→+∞ 0

(using the Cesaro Lemma for the second term).

F.3 Proof of Theorem 6

Once again this is a direct adaptation of Garivier and Kaufmann (2016, Theorem 14). Indeed, we can
follow the proof as long as the two lemmas shown in this section are satisfied.

Let us recall the notations of Garivier and Kaufmann (2016). We assume that 1 is the best arm of µ.
Fix ε > 0. By continuity of w in µ, let ξ ≤ ∆min(µ)/4 be such that

max
µ′∈Iε

‖w(µ′)−w(µ)‖∞ ≤ ε where Iε =
∏
a∈[K]

[µa ± ξ] .
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Let T ∈ N and define h(T ) = T 1/4 and the event

ET =

T⋂
t=h(T )

(µ̂(t) ∈ Iε) .

Lemma 32. There exist two positive constants B,C (that depend on µ and ε) such that

Pµ(EcT ) ≤ BT exp(−CT 1/8) .

Proof. We have by union bound

Pµ(EcT ) ≤
T∑

t=h(T )

∑
a∈[K]

Pµ(|µ̂a(t)− µa| > ξ) .

Then

Pµ(|µ̂a(t)− µa| > ξ) =

t∑
s= 2

K

√
t−K

Pµ(|µ̂a(t)− µa| > ξ ∩ Na(t) = s) by Lemma 3

≤
t∑

s= 2
K

√
t−K

P(|µ̂a,s − µa| > ξ) by Equation (19)

≤ 2

t∑
s= 2

K

√
t−K

exp
(
− sξ

2

2

)
by Hoeffding’s inequality

≤ 2
exp(−( 2

K

√
t−K)ξ2/2)

1− exp(−ξ2/2)
.

With

B = 2K
exp(Kξ2/2)

1− exp(−ξ2/2)
and C =

ξ2

K
,

one has

Pµ(EcT ) ≤
T∑

t=h(T )

B exp(−
√
tC) ≤ BT exp(−

√
h(T )C) ≤ BT exp(−CT 1/8) .

Lemma 33. There exists a constant Tε such that for T ≥ Tε, il holds that on ET

∀t ≥
√
T , max

a∈[K]

∣∣∣Na(t)

t
− wa(µ)

∣∣∣ ≤ 3ε .

Proof. For any t ≥
√
T = h(T )2 and a ∈ [K] we have:∣∣∣∣Na(t)

t
− wa(µ)

∣∣∣∣ ≤ 1

t

∣∣∣∣∣Na(t)−
t−1∑
s=0

w̃a(s)

∣∣∣∣∣+

∣∣∣∣∣1t
t−1∑
s=0

(w̃a(s)− wa(µ))

∣∣∣∣∣
≤ K − 1

t
+
h(T )

t
+

∣∣∣∣∣∣1t
t−1∑

s=h(T )

(w̃a(s)− wa(µ))

∣∣∣∣∣∣ by Lemma 25

≤ K − 1

T 1/2
+

1

T 1/4
+ ε by definition of ET

≤ K

T 1/4
+ ε ≤ 3ε

whenever T ≥ (K/2ε)4 = Tε.
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G Additional experiments

In this section we present numerical experiments to compare the dependence on parameter δ of three
strategies, namely Exploration-Biased Sampling, Track-and-Stop and Uniform Sampling (that
samples arms uniformly).

On Figure 5, we plot for each strategy and several bandit parameters the estimate of Eµ[τδ] for different
values of δ (using the same threshold β as in the experiments of Section 4 and γ = 0.1 for Exploration-
Biased Sampling). We also plot in black the lower bound of Garivier and Kaufmann (2016) (∼δ→0

T (µ) log(1/δ)).

In term of performance, we observe that Exploration-Biased Sampling is always between Uniform
Sampling and Track-and-Stop (which is always quite close to the lower bound). More precisely there
are different behaviours:

• when the problem is difficult (with small gaps), Exploration-Biased Sampling behaves almost
like Track-and-Stop. Indeed for those parameters the uniform sampling phase of Exploration-
Biased Sampling is relatively small comparing to the required number of samples so that Exploration-
Biased Sampling has time to shrink its confidence regions close to parameter µ and thus behaves
like Track-and-Stop (see bandit µ(1)),

• when the problem is easier (with large gaps), Exploration-Biased Sampling behaves like Uni-
form Sampling, as in almost all simulations the strategy does not have enough confidence to leave
the uniform sampling phase before the stopping condition is satisfied (see bandits µ(2) and µ(3)).
When δ decreases, there is a separation between Exploration-Biased Sampling and Uniform
Sampling as more and more simulations reach the non-uniform sampling phase of our strategy. If
we continue to check for smaller values of δ, one can expect that Exploration-Biased Sampling
will come closer to Track-and-Stop than Uniform Sampling, for the same reasons as before: the
confidence regions of Exploration-Biased Sampling have more time to shrink. This is what we
observe we bandit µ(4), for which Exploration-Biased Sampling has the behaviour of Uniform
Sampling for moderate values of δ and then the behaviour of Track-and-Stop for small values
of δ.
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Figure 5: Empirical Expected Number of Draws Eµ[τδ], Averaged over 500 Experiments. Top left: µ(1) =
(0.9, 0.8, 0.6, 0.4, 0.4). Top Right: µ(2) = (0.9, 0.5, 0.45, 0.4). Bottom Left: µ(3) = (0.9, 0.8, 0.75, 0.7).
Bottom Right: µ(4) = (0.9, 0.8, 0.7, 0.6)
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