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Abstract

In this paper, we propose a new multi-directional two-dimensional continuous

model for urban traffic. It is called the NEWS model, since it represents a system

of four partial differential equations (PDEs) that describe propagation of vehicle

density in cardinal direction layers: North, South, West and East. The NEWS

model can be applied to predict traffic evolution on a general urban network

of arbitrary size by knowing only its boundary flows, as well as its topology

and infrastructure parameters such as roads speed limits, number of lanes and

capacities. The flux direction is retrieved from turning ratios at intersections,

which is then aggregated in four direction layers using geometrical projection

matrices. We show its formal derivation step-by-step from the classical Cell

Transmission Model at one intersection. We then show that the NEWS model

is a hyperbolic PDE system that corresponds to a conservation law with bounded

densities. The model prediction performance is validated using synthetic data

from the microsimulator Aimsun. Finally, the model is also validated using real

data collected from a network of sensors installed in Grenoble (a city in France).
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1. Introduction

The development of traffic models based on the conservation principle has

been mostly influenced by the Lighthill-Whitham-Richards model (LWR) pro-

posed in the fifties by [1] and [2]. This model is the most simple and therefore

the most popular macroscopic model for traffic. The LWR model represents the

kinematic wave theory for traffic, i.e., it describes temporal evolution of vehicle

density ρ on a single highway road of infinite length as if it were a compressible

fluid. Mathematically, the LWR model is a first-order scalar hyperbolic partial

differential equation

∂tρ(x, t) + ∂xΦ(ρ) = 0, ∀(x, t) ∈ R× R+,

where Φ(ρ) is a concave flow-density relation. This relation represents an em-

pirically measured law known as the fundamental diagram (FD), which was

first formalized in [3]. Despite the appearance of more sophisticated and even

higher-order macroscopic models (see [4] for a review), the LWR model remains

the most popular one due to its simplicity and ability to reproduce the most

essential traffic phenomena such as wave formation and propagation.

Although being a simple model, the analysis of its solution is a tedious task.

In general, nonlinearity of FD introduces nonlinearities in the characteristic

fields of LWR PDE. Therefore, even with a smooth initial datum characteristic

lines may intersect, which leads to discontinuities at intersection points. When-

ever this happens, the conservation law solution is not defined in the classical

sense and needs to be considered in its weak formulation. This formulation

yields multiple solutions, among which the entropy solution [5] is recognized to

be the physically reasonable one. Properties of hyperbolic conservation laws

were extensively studied, see [6, 7, 8].

There is however a way to study kinematic waves of traffic without any need

to deal with solution shocks. In [9, 10, 11] Newell proposed an alternative way

to consider traffic on a macroscopic scale by numbering vehicles at a highway

entry and following the evolution of vehicle numbers at every location and time,
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i.e., traffic state can be described in terms of cumulative number of vehicles. Its

dynamics are governed by a Hamilton-Jacobi PDE, which represents an integral

form of the LWR PDE. Its solution is a Lipschitz continuous function that is

free of shocks and can obtained by solving a simple minimization problem.

A variational formulation of kinematic waves was studied in [12, 13], who

showed that every well-posed traffic problem with a concave flow-density relation

can be solved as a set of shortest paths. In general, the explicit solution of

Hamilton-Jacobi PDE can be obtained using the viability framework, which was

first shown for the case of convex conservation laws in [14, 15]. The viability

framework is based on Lax-Hopf formula that exploits the structure of a dynamic

programming problem, and the solution is obtained as the minimum of all valid

paths, see [16]. Several computational algorithms were developped to obtain

solutions of Hamilton-Jacobi PDE in the context of traffic, e.g., [17] computes

a solution for any piecewise affine initial condition. The Lax-Hopf algorithm

to compute a solution for any concave FD has been suggested by [18], and its

improved version with a lower computational time has been proposed in [19].

In some cases, the exact solution to LWR PDE can be obtained using the

wave-front tracking method [20, 21]. The solution of LWR PDE can also be

numerically approximated using computational methods such as the Godunov

scheme [22] or Lax-Friedrichs method [23]. These are both finite difference

methods. The Godunov scheme deals with Riemann problems at each cell, and

the Lax-Friedrichs method requires adding artificial viscosity.

A time-discrete approximation of the LWR equation was introduced in [24,

25], which is now known as the Cell Transmission Model (CTM). This model

can be viewed as a Godunov-type discretization of LWR, and it is based on

approximating links (roads) by cells. The amount of flux transmitted between

cells is based on their current occupancy (the demand-supply concept). Later,

[26] proposed the Link Transmission Model (LTM) based on the cumulative

number of vehicles, i.e., LTM can be seen as discretization of the variational

formulation of LWR. Both discrete models (CTM and LTM) are very popular

due to their simplicity and the ability of a straightforward extension to networks.
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In its original formulation, the LWR model is applicable only to single roads

of infinite length. Extension to urban networks required developing a method-

ology for intersection modeling within the LWR framework. This was first done

at the end of the last century by [27] who considered a network of uni-directional

roads. Later on, this formulation was refined to capture multi-directional traf-

fic, e.g. see [28]. The CTM has also been extended to networks in [25], who

considered networks as directed graphs consisting of links (roads) and nodes

(junctions). The general theory of traffic flow on networks is presented in [29].

Recently, the variational theory of traffic flow has also been extended to net-

works in [30]. However, although being quite accurate, network-based traffic

modeling might become a tedious task when it comes to large networks contain-

ing thousands of roads due to a high computational cost, which is determined

by the number of roads and junctions in a network [31]. Moreover, network-

based formulation of traffic requires considering thousands of equations (in case

of large networks), which exaggerates any explicit analysis of system properties

or control design.

Another way to describe the evolution of urban traffic, that is more suit-

able for explicit analysis, is to use dynamic two-dimensional continuum models.

These share a lot of features with pedestrian models [32] with the difference

that, unlike pedestrian crowds, vehicles are restricted to move on roads. In [33]

authors considered a model including a diffusion term and a drift term that

depends on the density. The direction of the drift vector is determined by the

shape of the network. Other works [34, 35, 36] define the flux function by solv-

ing Eikonal equations such that traffic flow takes the path of the lowest cost.

For a review of 2D continuum models the reader is referred to [37]. A recent

work [38] introduced a direct extension of LWR model in two dimensions:

∂ρ(x, y, t)

∂t
+∇ · ~Φ(x, y, ρ) = 0, ∀(x, y, t) ∈ R2 × R+.

Thereby, the flux function became a vector. Its direction is retrieved from the

geometry of the underlying urban network, while the flux magnitude depends

on network infrastructure parameters that are incorporated into the space-
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dependency of the fundamental diagram.

The aforementioned references however consider traffic flow that has only

one direction of motion. The first attempt to include multiple directions in 2D

continuum models was made only several years ago, when [39] took inspiration

from pedestrian modeling and deployed dynamic user-optimal principle for the

path choice. The drawback of this model is that the traffic density may become

unbounded (it is not based on a fundamental diagram). There exist also other

works [40, 41] proposing 2D multi-layer models with bounded densities. How-

ever, they do not include mixing between different direction layers, i.e., vehicles

can not change their direction of motion. These models are also not necessarily

hyperbolic, i.e., their PDE type varies with parameters, which exaggerates its

analysis and numerical simulation. Hyperbolicity for all parameters implies that

it can be analysed like many other conservation law based models for traffic.

Contribution. We fix both of these aspects (lack of PDE type and un-

bounded densities) and provide a formal derivation of a new 2D macroscopic

model describing traffic propagation in a general urban network of arbitrary

size. The resulting NEWS model is a conservation law that represents a hyper-

bolic PDE system with bounded densities in each layer. This model can be seen

as an extension of classical LWR to general urban networks. The main

novelty of our model compared to other PDE-based 2D traffic models is that

it includes mixing between different density layers, i.e., it allows cars to change

their original direction of movement (capturing the origin-destination concept).

Such a PDE model can then be used for explicit analysis or control design by

analysing a system that consists only of four equations. Also unlike [40], the

NEWS model can be applied to any kind of sparse urban networks, since it

treats densities in a 1D sense, and therefore does not rely on the assumption

that a urban network is dense enough to be approximated as a continuum. A

simple control for congested traffic with NEWS-governed dynamics has already

been presented in [42].

The structure of this paper is the following. In Section 2, we state the main

result of this paper, which is the NEWS model. Then, in Section 3 we review
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the CTM for one intersection, thereby introducing several important concepts

(e.g., partial flows and supply ratios) that complete the description of the multi-

directional nature of traffic. The NEWS formalism that introduces geometrical

projections of flows on roads into cardinal directions is presented in Section 4.

The NEWS model is derived from the CTM in Section 5, where we also show

how to obtain a PDE from an ODE (ordinary differential equation) using a new

continuation method presented in [43]. In Section 6, mathematical properties

of the NEWS model are analysed: the conservation law property, hyperbolic-

ity and boundedness of its state (four-dimensional density). In Section 7, we

provide a numerical example verifying the ability of the model to predict traffic

evolution in Grenoble downtown using synthetic and real sensor data. Finally,

the concluding remarks are given in Section 8.

2. Main result

This paper is devoted to a step-by-step derivation of the continuous PDE-

based model of a general traffic network in some urban area. In this section we

directly state the resulting model and then introduce the derivation workflow

that summarizes the rest of the paper devoted to the model derivation and

validation.

The full NEWS model is given by the following set of four partial differential

equations defined at each point (x, y) in some continuum urban area:

∂ρ̄N
∂t

=
1

L

(
φ̄inN − φ̄outN

)
− ∂(cos θN φ̄N )

∂x
− ∂(sin θN φ̄N )

∂y
,

∂ρ̄E
∂t

=
1

L

(
φ̄inE − φ̄outE

)
− ∂(cos θEφ̄E)

∂x
− ∂(sin θEφ̄E)

∂y
,

∂ρ̄W
∂t

=
1

L

(
φ̄inW − φ̄outW

)
− ∂(cos θW φ̄W )

∂x
− ∂(sin θW φ̄W )

∂y
,

∂ρ̄S
∂t

=
1

L

(
φ̄inS − φ̄outS

)
︸ ︷︷ ︸

mixing term

− ∂(cos θSφ̄S)

∂x
− ∂(sin θSφ̄S)

∂y︸ ︷︷ ︸
transportation term

.

The state of this model is given by the four-dimensional vector ρ̄ = ρ̄(x, y, t) =

(ρ̄N , ρ̄E , ρ̄W , ρ̄S), representing densities of the traffic flows in four cardinal di-

rections. Functions φ̄, φ̄in and φ̄out are defined via fundamental diagrams and
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are space- and state-dependent. Finally, L, cos θ and sin θ are space-dependent

(but not state-dependent or time-dependent) parameters which represent the

topology of the particular traffic network.

The right-hand side of the model consists of two parts: mixing term and

transportation term. The mixing term accounts for the coupling between traffic

flows in different direction layers. The transportation term consists of spatial

derivatives, and therefore describes the transportation of traffic density in the

same way as it is done in the original LWR model. Therefore, the NEWS model

can be seen as a continuous generalisation of LWR to a 2-dimensional

multi-directional urban traffic networks. This simple analytic representa-

tion of urban traffic can facilitate the analysis for explicit control design.

In the following sections we will formally derive this model starting from the

CTM on intersections. The workflow diagram explaining the derivation process

is presented in Fig. 1.

3. Traffic model for one intersection

LWR model in its original form (single highway roads) is the most simple

macroscopic model, which however reflects the most important traffic phenom-

ena such as wave formation and propagation. Therefore, we use the CTM

(discretized version of LWR) at one intersection as a starting point. Thereby,

we will define several important variables that will be later used to derive a

continuous PDE-based model for the whole network.

Let us consider an intersection located at (x1, y1) with two incoming and two

outgoing roads (as illustrated in Fig. 2), and show a step-by-step derivation of

the traffic model at this intersection. Then, the traffic model will be generalized

for an intersection with an arbitrary number of roads.

3.1. Demand-supply concept

One of the key assumptions in traffic modeling is that there is a concave

relation between traffic flow φ and vehicle density ρ. This relation is an empirical
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Demand-Supply

flow formulation

Definition of

partial flows

Computation of

supply ratios

One intersection in

the road formulation

Section 3
Projection of flows to

cardinal directions

Projection of turning

and supply ratios

Density of cars in

cardinal directions

Projection of FD

parameters

One intersection in

the NEWS formulation

Section 4

ODE for density dy-

namics on one road

Continuation: ODE

is replaced by PDE

PDE for density dy-

namics on one road

Projection of road’s

length and direction

PDE for cardinal

density dynamics

Parameter interpola-

tion over the domain

Derivation of the dy-

namical NEWS model

Section 5

Figure 1: Workflow diagram of the derivation of the NEWS model.

law known as the fundamental diagram (FD) [3]. Mathematically, FD Φ(ρ) :

[0, ρmax] → R+ is a concave function with a unique maximum φmax (road

capacity) achieved at the critical density ρc, while the minimum is achieved at

Φ(0) = Φ(ρmax) = 0, i.e., for zero and maximal density ρmax (also called the

traffic jam density). If traffic density is below its critical value ρc, then vehicles

move in a free-flow regime with a positive kinematic wave speed v, otherwise

they move in a congested regime characterized by a negative kinematic wave

speed ω. Notice that the fundamental diagram parameters such as speed limits,

capacities and maximal densities might vary from road to road.

Consider a road divided into two cells as illustrated in Fig. 3. In accordance
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φin2

φin1

ρout2

ρout1

φout2

φout1

(x1, y1)

(x2, y2)

(x3, y3)

Figure 2: Example of a small traffic network consisting of 3 intersections. We consider the

intersection filled in blue.

1

D(ρ)

2

S(ρ)

Figure 3: Schematic illustration of demand-supply concept.

with the demand-supply concept introduced in [24, 25], the amount of flux

transmitted between cells is determined by the minimum between demand D(ρ)

of cell 1 and supply S(ρ) of section 2:

φ(ρ) = min {D(ρ), S(ρ)} , ∀t ∈ R+, (1)

where D(ρ) and S(ρ) are defined as

D(ρ) =

Φ(ρ), if 0 ≤ ρ ≤ ρc,

φmax, if ρc < ρ ≤ ρmax
(2)
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and

S(ρ) =

φmax, if 0 ≤ ρ ≤ ρc,

Φ(ρ), if ρc < ρ ≤ ρmax.
(3)

The demand-supply concept represents the key element of Cell Transmission

Model that is a time-discrete approximation of kinematic wave model (LWR).

3.2. Flows at intersections: example

We use the demand-supply concept to derive a traffic flow model for the in-

tersection at (x1, y1) as illustrated in Fig. 2. In particular, we need to determine

inflows φin(t) and outflows φout(t) for this intersection, which stay in balance

φin1 + φin2 = φout1 + φout2 .

Note that throughout this paper, we use a subscript to number roads, and

a superscript is used to indicate whether this particular road is incoming or

outgoing, e.g., φinmax,1 is the capacity of incoming road number 1.

Let us now assume that the fundamental diagram has a triangular shape as

in [24]. In this case, the demand and supply functions from (2) and (3) become:

D(ρ) = min {vρ, φmax} , S(ρ) = min {ω(ρmax − ρ), φmax} . (4)

Thereby, the values of traffic jam ρmax and critical densities ρc are the same for

every road, and they depend only on the minimal headway distance between

vehicles, which is a function of cultural driving habits and the average vehicle

length. In contrast, the values of the kinematic wave speeds v and ω vary form

one road to another, since these are related to the speed limits, the ratio of

green to red traffic signals and the presence of bottlenecks.

Remark 1. Notice that, in general, the derivation of the model relies only on the

demand-supply concept, which is applicable also for a more general FD shape

(not only triangular) as long as it is a concave function of density. We assumed

the triangular shape only to gain more clarity during the upcoming step-by-step

model derivation.
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Each incoming road has its own flow demand to enter the intersection (il-

lustrated in Fig. 2) that reads with (4):

D1 = min
{
vin1 ρ

in
1 , φ

in
max,1

}
, D2 = min

{
vin2 ρ

in
2 , φ

in
max,2

}
. (5)

A part of the flow entering the intersection goes to the first outgoing road and

the other part goes to the second outgoing road. These flows are split according

to the turning ratios (TR) αij ∈ [0, 1], where i is the index of the incoming

road and j is the index of the outgoing road. For instance, if α11 = 0.6 and

α12 = 0.4, then 60% of vehicles from the first incoming road turn to the first

outgoing road, and 40% turn to the second outgoing road. Note also that the

sum of turning ratios for each incoming road must be 1, i.e.,

α11 + α12 = 1, α21 + α22 = 1.

The concept of TR was discussed, for example, in [25] for the case of diverging

intersections. Notice that turning ratios can be measured by collecting data of

origin and destination of vehicles.

Let us now introduce the concept of partial demands. A partial demand

refers to demand flow of an incoming road to enter a particular outgoing road.

These are equal to the overall demands (5) multiplied by corresponding TR:

D11 = min
{
α11v

in
1 ρ

in
1 , α11φ

in
max,1

}
, D12 = min

{
α12v

in
1 ρ

in
1 , α12φ

in
max,1

}
,

D21 = min
{
α21v

in
2 ρ

in
2 , α21φ

in
max,2

}
, D22 = min

{
α22v

in
2 ρ

in
2 , α22φ

in
max,2

}
,

where the first number in the subscript of D is related to the incoming road,

and the second number is related to the outgoing road.

In accordance with [25], each outgoing road provides supply for the flow

coming from an intersection, which in case of triangular FD (4) reads:

S1 = min
{
ωout1 (ρoutmax,1 − ρout1 ), φoutmax,1

}
,

S2 = min
{
ωout2 (ρoutmax,2 − ρout2 ), φoutmax,2

}
.

(6)

Let us also assume that each outgoing road has a particular supply for each

incoming road, e.g., S1 is split into S11 and S21 (recall that the first number
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is referred to an incoming road). In order to define these partial supplies, we

introduce supply ratios (SR) βij ∈ [0, 1] used to denote the proportion of

supply of an outgoing road j that it provides for the maximal flow coming from

a particular incoming road i relative to the overall supply it provides for all

incoming roads. The supply ratio βij is thus defined as

βij =
αijφ

in
max,i∑nin

k=1 αkjφ
in
max,k

, (7)

where nin is the number of incoming roads, in this case (Fig. 2) nin = 2. Notice

that for each outgoing road the sum of its SR must be 1, i.e.,

β11 + β21 = 1, β12 + β22 = 1.

With the definition of supply ratios (7), we are now ready to formulate par-

tial supplies as the overall (intersection-related) supply given by (6) multiplied

by the corresponding SR:

Sij = βijSj = min
{
βijω

out
j (ρoutmax,j − ρoutj ), βijφ

out
max,j

}
.

Under the assumption of SR, we can also define partial flows as the min-

imum between partial demand and partial supply, i.e., φ11 = min {D11, S11}

yields:

φ11 = min
{
α11v

in
1 ρ

in
1 , β11ω

out
1 (ρoutmax,1 − ρout1 ), α11φ

in
max,1, β11φ

out
max,1

}
,

Finally, the intersection-related flows from incoming and to outgoing roads

are expressed as sums of the corresponding partial flows, i.e.,

φin1 = φ11 + φ12, φin2 = φ21 + φ22,

φout1 = φ11 + φ21, φout2 = φ12 + φ22.

Thus, we have established a traffic flow model at one particular intersection

from Fig. 2 by explicitly deriving expressions for its inflows and outflows that

stay in balance.
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3.3. Flows at intersections: generalization

We can generalize the calculations from the previous subsection to any in-

tersection with nin incoming roads with densities ρini and flows φini for i ∈

{1, . . . , nin}, and nout outgoing roads with densities ρoutj and flows φoutj for

j ∈ {1, . . . , nout}.

Every incoming road i has its own flow demand Di to enter its source inter-

section:

Di = min
{
vini ρ

in
i , φ

in
max,i

}
.

Then, we define partial demand from road i to road j as

Dij = αijDi = min
{
αijv

in
i ρ

in
i , αijφ

in
max,i

}
.

Supply Sj of the outgoing road j is simply given by

Sj = min
{
ωoutj (ρoutmax,j − ρoutj ), φoutmax,j

}
,

which can be multiplied by the supply ratio βij to obtain a partial supply of

road j for traffic from road i. Partial flow φij from incoming road i towards

outgoing road j is then given by

φij = min {Dij , Sij} =

= min
{
αijv

in
i ρ

in
i , βijω

out
j (ρoutmax,j − ρoutj ), αijφ

in
max,i, βijφ

out
max,j

}
.

(8)

Finally, the flow from incoming road φini is the sum over all the flows exiting

this road, and the flow into outgoing road φoutj is the sum over all the flows

coming into this road:

φini =

nout∑
j=1

φij , φoutj =

nin∑
i=1

φij . (9)

For a better overview, we have summarized all the notations introduced in

this section in Appendix A.1.

4. NEWS formulation

We seek to develop a model capable of predicting the evolution of multi-

directional traffic in a general urban network that may also consist of thousands
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2in

1in

EW

N

Road formulation:

S

θout1

2out

1out

φ̄outE

φ̄inW

φ̄outNφ̄inS

φ̄inNφ̄outS

φ̄inE

φ̄outW

NEWS formulation:

Figure 4: Idea of NEWS framework: map road original directions into North, East, West and

South directions, and then traffic flow can be described in terms of 4 direction layers.

of intersections. The main challenge thereby is that roads at every intersection

may be oriented arbitrarily. Hence, we would like to obtain a model in terms

of flows that are parallel to the cardinal directions: North (N), East (E), West

(W) and South (S). This will enable us to formulate the model in macroscopic

terms, if every intersection will be described in a unified way. Let us call it

the NEWS model. Its state variables should be denoted by bars, and they

represent 4-dimensional vectors, e.g., φ̄in = (φ̄inN , φ̄
in
E , φ̄

in
W , φ̄

in
S )T .

Notice that the resulting model is intended to describe the evolution of

densities in four direction layers, although an urban area can in general be

represented as a 2D plane (x and y). The reason to consider traffic evolution in

opposite directions (e.g., North and South) independently is related to the idea

to preserve flow values positive, since we want to keep information about the

number of vehicles moving in each direction.

4.1. Projection from roads to NEWS

In order to formulate a traffic model in terms of NEWS, we will use only

the geometric properties of the network, such as angles of road orientations with
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respect to the East direction counter-clockwise denoted by θ that ranges from 0

to 2π, see Fig. 4. Thereby, roads 1in and 2out are oriented towards North-East,

and roads 2in and 1out are oriented towards South-East.

Let us consider projection of flows into the North. We calculate the flow

to the North as a weighted sum of all flows on the roads which have angles

less than π/2 with respect to the North direction, i.e., these are roads 1in and

2out in Fig. 4. This also means that, in general, angle of road’s direction with

non-zero projection to the North is bounded to the range θ ∈ (0, π), while for

non-zero projections to the South, West and East the angle must be θ ∈ (π, 2π),

θ ∈ (π/2, 3π/2) and θ ∈ (0, π2 ) ∪ ( 3π
2 , 2π), respectively. Then, outflows in the

NEWS formulation can be found from the road formulation by applying the

following projection:

φ̄outN = pNθout1
φout1 + pNθout2

φout2 , φ̄outE = pEθout1
φout1 + pEθout2

φout2 ,

φ̄outW = pWθout1
φout1 + pWθout2

φout2 , φ̄outS = pSθout1
φout1 + pSθout2

φout2 ,

where pθ ∈ [0, 1] are projection coefficients that should satisfy the following

properties:

1. If a road goes exactly to the North, then pNθ = 1.

2. If a road has an angle equal to or greater than π/2 with the North direc-

tion, then pNθ = 0.

3. The sum pNθ + pEθ + pWθ + pSθ = 1 to ensure the conservation of flows.

Notice that these properties are defined for the North direction, while the same

holds also for other directions. The simplest choice for the coefficients pθ, sat-
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isfying all these properties, is

pNθ =


sin(θ)

| cos(θ)|+ | sin(θ)|
, θ ∈ (0, π),

0, elsewhere,

pEθ =


cos(θ)

| cos(θ)|+ | sin(θ)|
, θ ∈ (0,

π

2
) ∪ (

3π

2
, 2π),

0, elsewhere.

pWθ =


− cos(θ)

| cos(θ)|+ | sin(θ)|
, θ ∈ (

π

2
,

3π

2
),

0, elsewhere,

pSθ =


− sin(θ)

| cos(θ)|+ | sin(θ)|
, θ ∈ (π, 2π),

0, elsewhere,

(10)

Notice that, in general, each road can have non-zero weights with at most two

directions. For example, in Fig. 4 flow along the first outgoing road 1out has

non-zero weights with South and East direction, i.e., pSθout1
> 0 and pEθout1

> 0.

4.2. Flows in NEWS formulation

Flows at each intersection in NEWS formulation should be given by 4D

vectors φ̄in = (φ̄inN , φ̄
in
E , φ̄

in
W , φ̄

in
S )T and φ̄out = (φ̄outN , φ̄outE , φ̄outW , φ̄outS )T . This

allows us to establish the following relation with flows from the original road

formulation given by (9) (for the case of Fig. 2):

φ̄in =



φ̄inN

φ̄inE

φ̄inW

φ̄inS


=



pN
θin1

pN
θin2

pE
θin1

pE
θin2

pW
θin1

pW
θin2

pS
θin1

pS
θin2



 φin1

φin2
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φ̄outE

φ̄inW

φ̄outNφ̄inS

φ̄inNφ̄outS

φ̄inE

φ̄outW

φ̄NE

φ̄SW

Figure 5: Schemeatic explanation of flow directions in NEWS formulation.

and

φ̄out =



φ̄outN

φ̄outE

φ̄outW

φ̄outS


=



pNθout1
pNθout2

pEθout1
pEθout2

pWθout1
pWθout2

pSθout1
pSθout2



 φout1

φout2

 .

For a general case of nin incoming and nout outgoing roads, we introduce

matrices Pin ∈ R4×nin and Pout ∈ R4×nout consisting of coefficients pθini and

pθoutj
, respectively. Flows are transformed into the NEWS formulation as follows:

φ̄in = Pinφ
in, φ̄out = Poutφ

out. (11)

In general, φ̄inN is the flow on incoming roads going to the North direction

before the intersection, and φ̄outN is the flow on outgoing roads going to the North

after the intersection, see Fig. 5 for the illustration of this concept. They can

also be represented by the sums over partial flows in the NEWS formulation:

φ̄inN = φ̄NN + φ̄NE + φ̄NW + φ̄NS , (12)

and

φ̄outN = φ̄NN + φ̄EN + φ̄WN + φ̄SN , (13)
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where, for example, φ̄NE is the flow consisting of vehicles going to the North

before the intersection and to the East after they have passed the intersection,

see Fig. 5. Thus, φ̄inN (12) is composed of all such flows that were going to the

North before the intersection and then continued their way either to the North

or changed to the South, West or East after passing the intersection.

In the NEWS formulation, partial flows are defined from the road formula-

tion as:

φ̄EN =

nin∑
i=1

nout∑
j=1

pEθini
pNθoutj

φij , (14)

where pθ are the projection coefficients from (10). Notice that the correctness

of this definition of partial flows can be verified by inserting (14) into (13):

φ̄outN =

nout∑
j=1

pNθoutj

[
nin∑
i=1

(
pNθini

+ pEθini
+ pWθini

+ pSθini

)
φij

]
=

nout∑
j=1

pNθoutj

nin∑
i=1

φij =

nout∑
j=1

pNθoutj
φoutj ,

whereby we have used the fact that the sum of projection coefficients over all

cardinal direction is 1 (see property 3 in the definition of pθ and (9)).

To gain more insight into the concept of partial flows, let us consider an

example of an intersection that has one incoming and one outgoing road, as

shown in Fig. 6. First, we define the incoming flow in NEWS formulation from

Fig. 6:

φ̄in =



φ̄inN

φ̄inE

φ̄inW

φ̄inS


=



0

φ̄EN + φ̄EE

0

φ̄SN + φ̄SE


.

Thereby, we see that φ̄inN = φ̄inW = 0, since the incoming road has a zero weight

with respect to both North and West direction, while it has non-zero weights

with the South and East directions.
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1in

E

S

1out

E

N

Figure 6: Sketch of an intersection with one incoming road 1in and one outgoing road 1out.

In a similar way, we analyse flow on the outgoing road that yields:

φ̄out =



φ̄outN

φ̄outE

φ̄outW

φ̄outS


=



φ̄SN + φ̄EN

φ̄SE + φ̄EE

0

0


.

Also note that in Fig. 6 there is no flow in the West direction, therefore all

the flows containing at least one “W” are zero, e.g., φ̄NW = φ̄SW = 0, etc.

4.3. Turning and supply ratios in NEWS formulation

Similar to the traffic model in road formulation given by (9) and (8), we

would like to define partial flows in the NEWS formulation using the demand-

supply concept (1). For this we will need to define turning ᾱ and supply ratios β̄

in the NEWS formulation. Moreover, we will also have to define FD parameters

v̄, ω̄, ρ̄max in NEWS formulation to be able to derive the complete model.

Demand D̄ ∈ R4×1 and supply S̄ ∈ R4×1 functions from (4) can be formu-

lated in terms of NEWS using projection coefficient matrices Pin, Pout as in

(11):

D̄ = Pin min
{
vinρin, φinmax

}
,

S̄ = Pout min
{
ωout(ρoutmax − ρout), φoutmax

}
.

(15)

Now, without loss of generality, let us consider the partial flow from East to

North φ̄EN , which we would like to express using demand and supply as in (8):

φ̄EN = min
{
ᾱEN D̄E , β̄EN S̄N

}
, (16)
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where ᾱEN is the turning ratio from East to North, and β̄EN is the supply ratio

provided by the North for vehicles arriving from the East, i.e., the same as βij

from (7) but in the NEWS formulation.

The coefficients ᾱEN and β̄EN need to be determined, which can be done

using (14), in which we substitute (8) that yields

φ̄EN =

nin∑
i=1

nout∑
j=1

pEθini
pNθoutj

min
{
αijv

in
i ρ

in
i , βijω

out
j (ρoutmax,j − ρoutj ), αijφ

in
max,i, βijφ

out
max,j

}
.

This expression is a sum over minimum functions, which is tedious to handle. We

make the following approximation: change the order of taking the minimum and

the summations. This leads to the minimum function over just four arguments

as in the demand-supply concept (8):

φ̄EN ≈ min

{
nout∑
j=1

pNθoutj

nin∑
i=1

pEθini
αijv

in
i ρ

in
i ,

nout∑
j=1

pNθoutj

nin∑
i=1

pEθini
βijω

out
j (ρoutmax,j − ρoutj ), . . .

}
.

Notice that the difference between putting minimum inside and outside the

summation is decreasing as the level of the homogeneity in the congestion of

links increases. This approximation is exact if all roads in the network are in

the same traffic regime, i.e., either all roads are in free-flow or congested.

We set the latter expression equal to (16) for φ = φmax, and get the coeffi-

cients ᾱEN and β̄EN that read

ᾱEN =

nout∑
j=1

[
pNθoutj

nin∑
i=1

αijp
E
θini
φinmax,i

]
nin∑
i=1

pE
θini
φinmax,i

, (17)

and

β̄EN =

nin∑
i=1

[
pE
θini

nout∑
j=1

βijp
N
θoutj

φoutmax,j

]
nout∑
j=1

pN
θoutj

φoutmax,j

. (18)

4.4. FD parameters and densities in NEWS formulation

Consider demand and supply functions in the NEWS formulation. From one

side, we can calculate them using the projection matrices Pin and Pout as in

(15). From the other side, we would like to be able to calculate demand and
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supply using fundamental diagram, which should enable us to describe traffic

flow in a unified way for any intersection. Recall that FD parameters are space-

dependent, i.e., they depend on a specific road, since different roads might have

different speed limits or capacity.

Hence, we are going to define a unified FD in NEWS formulation such that

the FD is defined for each direction separately. This equivalently means that

the parameters of FD will all become 4-dimensional vectors or 4 × 4 diagonal

matrices. Let us consider the FD for the North direction, while similar steps

should be done for other directions. That is, for D̄N and S̄N we would like to

find kinematic wave speeds v̄inN and ω̄outN and density transformations ρ̄inN and

ρ̄outN such that the following relations would hold:

D̄N =

nin∑
i=1

pNi min {viρi, φmax,i} ≈ min
{
v̄inN ρ̄

in
N , φ̄

in
max,N

}
,

S̄N =

nout∑
j=1

pNj min {ωj(ρmax,j − ρj), φmax,j} ≈ min
{
ω̄outN (ρ̄max,N − ρ̄outN ), φ̄outmax,N

}
.

Note that in the case when an intersection has much more than 4 roads, we can

use only approximations of the fundamental diagram.

By approximating sum of minimum functions as a minimum of sums and

writing the conditions on maximal flows together, we get the system

nin∑
i=1

pNi viρc,i = v̄inN ρ̄
in
c,N ,

nout∑
j=1

pNj ωj(ρmax,j − ρc,j) = ω̄outN (ρ̄outmax,N − ρ̄outc,N ).

(19)

System (19) is undetermined since it consists of two equations that have five

unknowns (v̄inN , ω̄
out
N , ρ̄inc,N , ρ̄

out
c,N , ρ̄

out
max,N ).

In general, we get the coordinates of each road, its number of lanes and speed

limits as network data. Speed limits are directly related to the kinematic wave

speeds vj , while the maximal density ρmax,j on each road j (either incoming

or outgoing) is determined by its number of lanes and the minimal car-to-car

distance (we assume it to be 6 m). Knowing ρmax,j for every road, we can easily
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obtain the critical density ρc,j from the shape of the fundamental diagram (that

is commonly an experimentally established function). Negative kinematic wave

speeds ωj can be obtained from the speed limits vj and critical density ρc,j as

ωj =
ρc,jvj

ρmax,j − ρc,j
.

Both incoming and outgoing roads contribute to the vehicle density in some

intersection’s neighbourhood. Moreover, since we want to have a general model,

which is symmetric with respect to incoming and outgoing roads, and in order

to define each parameter only once, we assume symmetry ρ̄inN = ρ̄outN = ρ̄N ,

v̄inN = v̄outN = v̄N and ω̄inN = ω̄outN = ω̄N .

Assume further that densities are transformed into NEWS formulation in

the same way as it is done for the flows (11), i.e.:

ρ̄N =

nin∑
i=1

pNi ρi +

nout∑
j=1

pNj ρj , (20)

which then also holds for maximal ρ̄max,N and critical ρ̄c,N densities. After we

have defined all the densities, using symmetry assumption we can express the

velocities from (19) as

v̄N =

nin∑
i=1

pNi viρc,i +
nout∑
j=1

pNj vjρc,j

ρ̄c,N
,

ω̄N =

nin∑
i=1

pNi ωi(ρmax,i − ρc,i) +
nout∑
j=1

pNj ωj(ρmax,j − ρc,j)

ρ̄max,N − ρ̄c,N
.

Recall that all these calculations are not limited to the particular triangular

shape of FD, and thus can be performed in the same way for any type of FD

as long as it is a concave function of density as it is also assumed in the LWR

model (see Remark 1). The only thing that would have changed for different FD

shapes are formulas for its parameters (19), since each FD can have a different

set of parameters.

For a better overview, we have summarized all the NEWS-related notations

introduced in this and next sections in Appendix A.2.
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5. Derivation of the NEWS model

Our main goal is to derive the macroscopic NEWS model for multi-directional

traffic that can describe the dynamic evolution of traffic state similar to LWR

model as stated in Section 2. For the moment, we can already describe traffic

flow for any intersection in the unified way, which became possible due to the

concept of partial flows in the NEWS formulation given by (16) with (17) and

(18). The dynamic NEWS model in terms of density will be derived by consid-

ering an intersection and its outgoing roads that should be viewed as incoming

roads for the neighbouring intersections. In the end, we will be able to describe

the whole urban area due to a unified description of the traffic behaviour at any

intersection. This unified description will be obtained using the continuation

method that has just been introduced in [43].

5.1. Continuation

Previously, we considered inflows φin and outflows φout with respect to some

intersection. However, for the derivation of the macroscopic continuum model,

we consider inflows and outflows with respect to roads that will be denoted by

ψin and ψout as in Fig. 7.

Recall that θ is an angle between the road orientation and the East direction.

Denote the flow in the direction θ as ψθ. Essentially, there are two flows with

direction θ: inflow ψinθ which is a sum of all flows incoming in a road with

orientation θ, and outflow ψoutθ which is a sum of all flows outgoing from this

road. Notice that, in the following, we will deal only with outgoing roads. Thus,

we skip the superscript in the notation of angle, i.e., θoutj = θj .

Now consider some road j of length lj that is an outgoing road for the

intersection located at (x1, y1), see Fig. 7. The density evolution on road j that

is connecting the intersection at (x1, y1) and the intersection at (x2, y2) is

∂ρj
∂t

=
1

lj

(
ψinθj (x1, y1)− ψoutθj (x2, y2)

)
,

where θj = atan[(y2− y1)/(x2− x1)] as in Fig. 7. Notice that there are no bars

here in the notations, since we again refer to the road formulation.
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(x1, y1)

(x2, y2)

lj
ψinθj

ψoutθj

θj

x2 − x1

y2 − y1

Figure 7: Illustration of notations used for derivation of the NEWS model.

The equation written above depends on two different space points (x1, y1)

and (x2, y2). However, we would like to obtain an equation that is given for a

unique point of space. In order to achieve that, we can perform continuation at

the beginning of the road (x1, y1). In its simplest form, the continuation method

corresponds to the first-order term of Taylor expansion in spatial coordinates,

which reads:

ψoutθj (x2, y2) ≈ ψoutθj (x1, y1) + (x2 − x1)
∂ψoutθj

∂x
+ (y2 − y1)

∂ψoutθj

∂y
,

and assuming this approximation to be an equality, we get the following model

∂ρj
∂t

=
1

lj

(
ψinθj (x1, y1)− ψoutθj (x1, y1)− (x2 − x1)

∂ψoutθj

∂x
− (y2 − y1)

∂ψoutθj

∂y

)
,

or simply

∂ρj
∂t

=
1

lj

(
ψinθj (x1, y1)− ψoutθj (x1, y1)

)
− cos θj

∂ψoutθj

∂x
− sin θj

∂ψoutθj

∂y
.

At the same time, by performing continuation at the end of the road (x2, y2)

we arrive at

∂ρj
∂t

=
1

lj

(
ψinθj (x2, y2)− ψoutθj (x2, y2)

)
− cos θj

∂ψinθj
∂x
− sin θj

∂ψinθj
∂y

.

Since the density along the road is assumed to be constant, both continuous

models can be used to represent the original one. The first model is defined in

terms of the beginning of the road (x1, y1) and contains spatial derivatives of
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ψoutθj
, whereas the second model is defined in terms of the end of the road (x2, y2)

and contains spatial derivatives of ψinθj . However, performing continuation not

at the end points but somewhere in between can result into a more general form

that unifies these two models.

Let us perform continuation of the model for some arbitrary point along the

road (x, y) whose coordinates lie between two endpoints (x1, y1) and (x2, y2):

x = x1γ + x2(1− γ), y = y1γ + y2(1− γ),

where γ ∈ [0, 1]. Thus, by performing continuation at (x, y), we arrive at

∂ρj
∂t

=
1

lj

(
ψinθj (x, y)− ψoutθj (x, y)

)
− cos θj

∂((1− γ)ψinθj + γψoutθj
)

∂x

− sin θj
∂((1− γ)ψinθj + γψoutθj

)

∂y
.

(21)

Now let the vector-flow on road j be

~Ψθj = ψθj

cos θj

sin θj

 , where ψθj = (1− γ)ψinθj + γψoutθj .

Then, the model (21) can be rewritten as

∂ρj
∂t

=
1

lj

(
ψinθj (x, y)− ψoutθj (x, y)

)
−∇ · ~Ψθj (x, y), (22)

where ∇ is a nabla operator defined as ∇ = ( ∂
∂x ,

∂
∂y ).

This model (22) predicts the dynamics of vehicle density at some outgoing

road j with direction θj . Equation (22) has the same form for any intersection

located at (xk, yk), where k ∈ {1, . . . ,K} is an index used to label intersections

in the domain of interest. Notice that parameter γ was introduced only for the

derivation purposes, it will not explicitly appear in the final model, see details

below.

5.2. The NEWS model

We would like to translate the model given in road formulation (22) into

NEWS formulation. Recall that densities in every direction layer are trans-

formed as in (20). Let us again consider the North direction for simplicity,

while the same steps should be performed for all other directions.
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Thus, multiplying the equation (22) by pNθj and taking the summation, we get

the model that predicts the evolution of vehicle density in the North direction

on outgoing roads of an intersection located at (xk, yk) that reads

∂ρ̄N
∂t

=

nout∑
j=1

pNθj
1

lj

(
ψinθj − ψ

out
θj

)
−∇ ·

nout∑
j=1

pNθj
~Ψθj

 . (23)

We cannot further simplify the equation (23) towards the NEWS formula-

tion, since the summations contain additional index-dependent coefficients such

as 1/lj , sin θj and cos θj (embedded in ~Ψθj ). Let us then approximate the sys-

tem (23) by averaging road lengths lj such that the mean length of outgoing

roads conserves the maximum number of cars:

L =

nout∑
j=1

ρmax,j lj

nout∑
j=1

ρmax,j

.

Further, we also approximate sine and cosine in (23) as

cos θN =

nout∑
j=1

pNθj cos θjφmax,j

nout∑
j=1

pNθjφmax,j

, sin θN =

nout∑
j=1

pNθj sin θjφmax,j

nout∑
j=1

pNθjφmax,j

.

Substituting these approximations into (23), we get

∂ρ̄N
∂t

=
1

L

nout∑
j=1

pNθj

(
ψinθj − ψ

out
θj

)

−∇ ·

nout∑
j=1

cos θN

sin θN

 pNθj

(
(1− γ)ψinθj + γψoutθj

) ,

or simply

∂ρ̄N
∂t

=
1

L

(
ψ̄inN − ψoutN

)
−∇ ·

cos θN

sin θN

((1− γ)ψ̄inN + γψ̄outN

〈
)

 , (24)

where we can further define ψ̄N = (1− γ)ψ̄inN + γψ̄outN .

Notice that (24) is already very close to the macroscopic NEWS model (see

Sec. 2), since it does not depend on road index j any more. In some sense,
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the model (24) is defined for any particular space point in the vicinity of an

intersection. Therefore, it makes no more sense to have separate notations for

flows related to intersections φ̄ and roads ψ̄. For convenience and consistency

with other parts of this paper, we will again use the notation φ̄ for flows.

The model (24) can be further simplified in order to get rid of spatial deriva-

tives over multi-directional flows, since otherwise the PDE can lose hyperbolicity

and, moreover, we want to eliminate the parameter γ.

5.3. Model simplification

The term under the space derivative in (24) is φ̄N = (1 − γ)φ̄inN + γφ̄outN .

Recall that by (12) and (13) we can express inflows and outflows at any point

as sums over partial flows:

φ̄inN = φ̄NN + φ̄EN + φ̄WN + φ̄SN ,

φ̄outN = φ̄NN + φ̄NE + φ̄NW + φ̄NS .

Therefore, we can insert this definition into φ̄N and get

φ̄N = φ̄NN +
[
(1− γ)φ̄EN + γφ̄NE

]
+

+
[
(1− γ)φ̄WN + γφ̄NW

]
+
[
(1− γ)φ̄SN + γφ̄NS

]
.

(25)

This means that (24) requires taking spatial derivatives over multi-directional

flows. However, the model (24) would be considerably simplified if each term

under the spatial derivative could be written only as a function of demand and

supply of the corresponding direction, i.e.,

φ̄N = min{D̄N , S̄N}. (26)

Now we make an assumption that the network is well-designed in terms of

maximal flows, that is

ᾱNEφ̄max,N = β̄NEφ̄max,E . (27)

Physically, this assumption means that if vehicles move at maximal possible flow

before an intersection, they continue to use roads’ transportation capacities at

maximum after the intersection.
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The proof that (26) holds under the assumption of a well-designed network

(27), being rather technical, is shifted to Appendix Appendix B, where we

show that there exists parameter γ such that (26) holds. Thus, the transported

term under the derivative in (24) can be approximated by a standard flow in

the demand-supply formulation that depends only on the density of the same

direction. Hence, the full system of equations can be written as

∂ρ̄N
∂t

=
1

L

(
φ̄inN − φ̄outN

)
− ∂(cos θN φ̄N )

∂x
− ∂(sin θN φ̄N )

∂y
,

∂ρ̄E
∂t

=
1

L

(
φ̄inE − φ̄outE

)
− ∂(cos θEφ̄E)

∂x
− ∂(sin θEφ̄E)

∂y
,

∂ρ̄W
∂t

=
1

L

(
φ̄inW − φ̄outW

)
− ∂(cos θW φ̄W )

∂x
− ∂(sin θW φ̄W )

∂y
,

∂ρ̄S
∂t

=
1

L

(
φ̄inS − φ̄outS

)
− ∂(cos θSφ̄S)

∂x
− ∂(sin θSφ̄S)

∂y
,

(28)

where the term φ̄in − φ̄out is given by
φ̄inN − φ̄outN

φ̄inE − φ̄outE

φ̄inW − φ̄outW

φ̄inS − φ̄outS

 =


φ̄EN + φ̄WN + φ̄SN − φ̄NE − φ̄NW − φ̄NS
φ̄NE + φ̄WE + φ̄SE − φ̄EN − φ̄EW − φ̄ES
φ̄NW + φ̄EW + φ̄SW − φ̄WN − φ̄WE − φ̄WS

φ̄NS + φ̄ES + φ̄WS − φ̄SN − φ̄SE − φ̄SW

 .

This system of equations describes the density evolution in the vicinity of one

intersection, and it coincides with the goal stated in Sec. 2. Thus, the density

ρ̄(x, y, t) and the flow φ̄(x, y, t) are space- and time-dependent functions, whereas

all the parameters are still constant (ᾱ, β̄, L, v̄, ω̄, ρ̄max, cos θ, sin θ).

Notice that the term φ̄in − φ̄out is responsible for mixing between different

density layers, e.g., φ̄inN = φ̄SN + φ̄WN + φ̄EN accounts for vehicles that were

moving to the South, West and East, and then turned to the North.

System (28) together with a 4-dimensional fundamental diagram that can

be any concave Lipschitz continuous vector function) represents the NEWS

model, which is one of the main results of this paper. It models the evolution

of vehicle density on outgoing roads of an intersection in all cardinal directions:

North, East, West and South.

The last step that needs to be taken is to obtain a continuous PDE system

describing traffic flow propagation in the whole network. This can be done by

28



approximating the entire parameters of system (28) over the whole continuum

domain. First, we calculate ᾱ, β̄, L, v̄, ω̄, ρ̄max, cos θ, sin θ for all K intersections

in the network. Then, we are looking for functions that approximate all these

parameters over a continuum plane, e.g., the value of an average road length

can be defined ∀(x, y) ∈ R2

L(x, y) =

K∑
k=1

L(xk, yk)e−η
√

(x−xk)2+(y−yk)2

K∑
k=1

e−η
√

(x−xk)2+(y−yk)2
, (29)

where η is a weighting parameter used to denote the sensitivity of the estimated

variables to the distance from the intersections. This approximation method is

called Inverse Distance Weighting, where we chose an exponential function to

give larger weights to close intersections, see also [38].

Thus, we define all the geometrical and FD parameters ∀(x, y), and obtain a

continuous PDE system that looks like (28) with time- and space-dependent den-

sity ρ̄(x, y, t) and flow φ̄(x, y, ρ̄), while all parameters become space-dependent

(but time- and state-independent) functions due to (29), i.e., ᾱ(x, y), β̄(x, y),

v̄(x, y), etc. As a result we obtain the NEWS model as stated in Sec. 2. See

also Fig. 1 for the summary of all the steps required for the model derivation.

Remark 2. The obtained model has a structure of a PDE system, and its main

advantage is its simplicity of formulation. That is, it describes traffic state

in the whole area under consideration using only four equations, i.e., it has

a convenient form for explicit analysis and control design. Being used as a

prediction tool in a simulation, the model should be discretized, and thus a

trade-off between computational time and the number of cells appears. As a

general rule of thumb, one should take cells small enough such that the density

profile inside can be assumed homogeneous (as in LWR).

5.4. Extended model with source and sink terms

In an urban network of finite size there exist roads, through which cars can

enter or exit the domain. Such roads are called sources and sinks, respectively.
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The upstream and downstream boundary conditions for the PDE system (28)

are directly determined by these sources and sinks, respectively. It appears that

they can be trivially captured by the NEWS model. Let us now show how

sources are implemented into the model (28), while the implementation of sinks

can be done in the same way.

We consider some road j through which exterior vehicles enter at flow ψsourceθj

(we use again ψ for flow, since it is here formulated in terms of roads). We take

this additional flow of vehicles into account by adding it into equation (22) for

road j, which yields

∂ρj
∂t

=
1

lj

(
ψinθj − ψ

out
θj

)
−∇ · ~Ψθj +

1

lj
ψsourceθj . (30)

In general, we have to deal with the demand-supply problem also in order to

specify inflow for some road, i.e., we can only propose it as a demand function.

Then, the amount of flow entering this road depends also on its supply, which

is in turn determined by the state:

ψsourceθj = min
{
Dsource
θj , Sθj (ρj)

}
.

We can rewrite (30) in NEWS formulation by performing the transformations

described in Sec. 5.2, which leads us to the extended NEWS model (with sinks

also included):

∂ρ̄N
∂t

=
1

L

(
φ̄inN − φ̄outN + φ̄sourceN − φ̄sinkN

)
− ∂(cos θN φ̄N )

∂x
− ∂(sin θN φ̄N )

∂y
,

∂ρ̄E
∂t

=
1

L

(
φ̄inE − φ̄outE + φ̄sourceE − φ̄sinkE

)
− ∂(cos θEφ̄E)

∂x
− ∂(sin θEφ̄E)

∂y
,

∂ρ̄W
∂t

=
1

L

(
φ̄inW − φ̄outW + φ̄sourceW − φ̄sinkW

)
− ∂(cos θW φ̄W )

∂x
− ∂(sin θW φ̄W )

∂y
,

∂ρ̄S
∂t

=
1

L

(
φ̄inS − φ̄outS + φ̄sourceS − φ̄sinkS

)
− ∂(cos θSφ̄S)

∂x
− ∂(sin θSφ̄S)

∂y
,

(31)

where, e.g., φ̄sourceN (x, y, t) and φ̄sinkN (x, y, t) are space- and time dependent

boundary flows given by a demand-supply problem

φ̄sourceN = min{D̄source
N , S̄N}, φ̄sinkN = min{D̄N , S̄

sink
N },

with

D̄source
N =

nout∑
j=1

pNθjD
source
θj , S̄sinkN =

nout∑
j=1

pNθjS
sink
θj .
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Further, one needs to approximate D̄source
N and S̄sinkN in the whole domain,

since originally we specify it in terms of roads of the network. In contrast to all

other variables obtained by (29), the overall number of incoming cars should be

conserved. Thus, we choose Gaussian kernel for the approximation of demand

and supply functions:

D̄source
N (x, y) =

K∑
k=1

D̄source
N (xk, yk)Gσ(x− xk, y − yk),

where Gσ(x, y) is a two-dimensional symmetric Gaussian kernel with σ being

its standard deviation:

Gσ(x, y) =
1

2πσ2
e−

1
2σ2

(x2+y2).

Parameter σ can be tuned to change the radius of influence of demand and

supply functions around the intersection. Note that such a choice of Gσ(x, y)

provides that its integral over the whole domain equals 1, therefore the overall

incoming demand in (31) is the same as in the original network model (30) (road

formulation).

6. Mathematical properties of NEWS model

Let us now investigate the properties of the NEWS model. For its explicit

analysis, we take system (28) that does not include any source terms. In this

section we will check whether our system represents a conservation law, then

we will discuss the boundedness of its state ρ̄, and, finally, we will show that

NEWS model represents a hyperbolic PDE system.

6.1. Conservation law

The overall density in the network is the sum over densities in all four di-

rection layers, that is

ρ̄ = ρ̄N + ρ̄E + ρ̄W + ρ̄S .

By taking its time derivative we get

∂ρ̄

∂t
=
∂ρ̄N
∂t

+
∂ρ̄E
∂t

+
∂ρ̄W
∂t

+
∂ρ̄S
∂t

,
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and for each of these terms we can substitute the corresponding PDE from our

model (28). It appears that all the mixing terms (φ̄in− φ̄out) cancel each other,

and we simply get:
∂ρ̄

∂t
= −∇ · Φ̄, (32)

where

Φ̄ =

cos θN

sin θN

 φ̄N +

cos θE

sin θE

 φ̄E +

cos θW

sin θW

 φ̄W +

cos θS

sin θS

 φ̄S ,

which has a form of a conservation law, where the conserved quantity is the

overall density in the network.

6.2. Boundedness of the state

The boundedness of the density ρ̄ ∈ [0, ρ̄max] is not violated in our model

(28), since the terms under the derivatives are resolved using the standard Go-

dunov scheme, i.e., traffic flow in each direction is determined by the minimum

between demand and supply, as in LWR formalism. For example, consider the

North direction, then the term under the spatial derivative in (28) is just

φ̄N = min
{
D̄N , S̄N

}
.

Mixing terms with a positive sign (these are φ̄EN , φ̄WN and φ̄SN in the

equation for ρ̄N ) depend on the supply of N , e.g.,

φ̄EN = min
{
ᾱEN D̄E , β̄EN S̄N

}
.

If ρ̄N = ρ̄max,N , then

S̄N = 0⇒ φ̄EN = 0⇒ ∂ρ̄N
∂t
≤ 0,

which means that positive terms can not contribute to the increase of density

when it has reached ρ̄max,N .

Let us now consider negative mixing terms. These depend on the demand

of the North direction layer, e.g.,

φ̄NE = min
{
ᾱNED̄N , β̄NES̄E

}
,
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which in case of ρ̄N = 0⇒ DN = 0 yields:

φ̄NE = 0⇒ ∂ρ̄N
∂t
≥ 0.

This implies that negative terms do not contribute to the decrease of density

when it is already zero.

6.3. Hyperbolicity

Let us now investigate whether the model (28) is a hyperbolic PDE (as it is

the case for the classical LWR but not the general case for multi-directional 2D

LWR [40]). Hyperbolicity is a fundamental property determining the behaviour

of solutions, which also plays an important role in the choice of the corresponding

numerical scheme. For example, if we show that the model is a hyperbolic PDE,

then we can apply the Godunov scheme for numerical simulation.

In contrast to other PDE types, in a hyperbolic PDE any disturbance made

in the initial data will travels along the characteristics of the equation with a

finite propagation speed. Although the definition of hyperbolicity is fundamen-

tally a qualitative one, there are precise criteria using which we can classify a

partial differential equation as hyperbolic. In this section, we will apply this

criteria to determine hyperbolicity of our model (28). Equation (28) can be

written in a following general form:

∂tρ̄+ ∂x
[
F x(ρ̄, x, y)

]
+ ∂y

[
F y(ρ̄, x, y)

]
= g(ρ̄, x, y), (33)

where F x and F y are the flow matrices defined from (28) as

F x =


cos θN φ̄N 0 0 0

0 cos θEφ̄E 0 0

0 0 cos θW φ̄W 0

0 0 0 cos θSφ̄S

 ,

and

F y =


sin θN φ̄N 0 0 0

0 sin θEφ̄E 0 0

0 0 sin θW φ̄W 0

0 0 0 sin θSφ̄S

 .
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The right-hand side term g(ρ̄, x, y) from (33) corresponds to the vector con-

taining all the mixing terms from (28):

g(ρ̄, x, y) =
1

L


φ̄EN + φ̄WN + φ̄SN − φ̄NE − φ̄NW − φ̄NS
φ̄NE + φ̄WE + φ̄SE − φ̄EN − φ̄EW − φ̄ES
φ̄NW + φ̄EW + φ̄SW − φ̄WN − φ̄WE − φ̄WS

φ̄NS + φ̄ES + φ̄WS − φ̄SN − φ̄SE − φ̄SW

 .

The spatial derivatives of flow matrices from (33) can be written as a chain

rule

∂x
[
F x(ρ̄, x, y)

]
= ∂ρ̄F

x(ρ̄, x, y) · ∂xρ̄+ ∂xF
x(ρ̄, x, y), and

∂y
[
F y(ρ̄, x, y)

]
= ∂ρ̄F

y(ρ̄, x, y) · ∂yρ̄+ ∂yF
y(ρ̄, x, y),

which is further inserted into equation (33) that yields

∂tρ̄+ ∂ρ̄F
x(ρ̄, x, y) · ∂xρ̄+ ∂ρ̄F

y(ρ̄, x, y) · ∂yρ̄ = b(ρ̄, x, y), (34)

where b(ρ̄, x, y) = g(ρ̄, x, y)−∂xF x(ρ̄, x, y)−∂yF y(ρ̄, x, y). According to Section

3.1 of [44], the right-hand side part of (34) b(ρ̄, x, y) does not play any significant

role for the analysis. Thus, we simply omit it by setting b(ρ̄) = 0.

Let us further rewrite (34) as

∂tρ̄+Ax∂xρ̄+Ay∂yρ̄ = 0, (35)

where Ax = ∂F x/∂ρ̄ and Ay = ∂F y/∂ρ̄ represent matrices of flow derivatives:

Ax =


cos θN

∂φ̄N
∂ρ̄ 0 0 0

0 cos θE
∂φ̄E
∂ρ̄ 0 0

0 0 cos θW
∂φ̄W
∂ρ̄ 0

0 0 0 cos θS
∂φ̄S
∂ρ̄

 ,

and

Ay =


sin θN

∂φ̄N
∂ρ̄ 0 0 0

0 sin θE
∂φ̄E
∂ρ̄ 0 0

0 0 sin θW
∂φ̄W
∂ρ̄ 0

0 0 0 sin θS
∂φ̄S
∂ρ̄

 .
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The system (35) is symmetrisable hyperbolic, since matrices Ax and Ay are

both symmetric. This implies that the system (35) is hyperbolic [44], which

equivalently means that the NEWS model (28) is a hyperbolic PDE system.

7. Validation of NEWS model

This section is devoted to validation of the NEWS model that has been

previously derived and analyzed. First, we will discuss the numerical method

used to simulate traffic with NEWS model. Then, the similarity measure will

be introduced to enable a quantitative comparison of two density distributions.

Further, we will compare the density predicted by the numerical simulation of

NEWS model (28) with the results predicted by commercial software Aimsun.

Finally, we will compare the prediction results with the data obtained from

real-life measurements in Grenoble city center.

(a) Google satellite view (b) Network in Aimsun

Figure 8: Selected area in Grenoble downtown.

7.1. Numerical scheme

As a network we take an area located in Grenoble downtown (France) with

a total surface of around 1.4 × 1 km2, see Fig.8a) for the Google satellite view

and Fig.8b) for the network model in Aimsun of this area.

For the numerical simulation of (28), we use the Godunov scheme [22] in

two dimensions. We introduce Ω ∈ R2 to be a rectangular continuum domain
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capturing the urban network, and Ω : [xmin, xmax]× [ymin, ymax]. We start by

defining a numerical grid in Ω× R+ by setting

� nx to be number of cells to discretize x dimension,

� ny to be number of cells to discretize y dimension,

� ∆x = (xmax − xmin)/nx to be the space cell size in x dimension,

� ∆y = (ymax − ymin)/ny to be the space cell size in y dimension,

� ∆t to be the time cell size,

� (i∆x, j∆y, k∆t) for i ∈ {1, . . . , nx}, j ∈ {1, . . . , ny} and k ∈ Z+ to be the

grid point.

For the simulation of traffic on this area of Grenoble, we set nx = 60

and ny = 60, i.e., the 2D plane is divided into nx × ny = 3600 cells. The

mesh sizes ∆x and ∆y and time step ∆t are chosen such that they satisfy

the Courant-Friedrichs-Lewy condition [45]. The discrete density vector is then

ρ̄k(i, j) =
(
ρ̄kN (i, j), ρ̄kE(i, j), ρ̄kW (i, j), ρ̄kS(i, j)

)T
. The density in each direction

q = {N,E,W, S} is updated for every grid point ∀(i, j, k) ∈ {1, . . . , nx} ×

{1, . . . , ny} × Z+ as

ρ̄k+1
q (i, j) =ρ̄kq (i, j) + ∆t

[
Ekq (i, j) + F kx,q(i, j) + F ky,q(i, j) +Hk

q (i, j)
]
,

where Ekq (i, j) corresponds to the mixing term between direction layers

Ekq (i, j) =
1

L(i, j)

4∑
r=1
r 6=q

(
min

{
ᾱrq(i, j)D̄

k
r (i, j), β̄rq(i, j)S̄

k
q (i, j)

}
−min

{
ᾱqr(i, j)D̄

k
q (i, j), β̄qr(i, j)S̄

k
r (i, j)

})
,

and F kx,q(i, j), F
k
y,q(i, j) are the derivative terms computed as

F kx,q(i, j) =
cos θq(i, j) + cos θq(i− 1, j)

2∆x
min

{
D̄k
q (i− 1, j), S̄kq (i, j)

}
− cos θq(i, j) + cos θq(i+ 1, j)

2∆x
min

{
D̄k
q (i, j), S̄kq (i+ 1, j)

}
,
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F ky,q(i, j) =
sin θq(i, j) + sin θq(i, j − 1)

2∆y
min

{
D̄k
q (i, j − 1), S̄kq (i, j)

}
− sin θq(i, j) + sin θq(i, j + 1)

2∆y
min

{
D̄k
q (i, j), S̄kq (i, j + 1)

}
.

Notice that F kx,q(i, j), F
k
y,q(i, j) are obtained using the upwind scheme [46] for

cos θq(i, j) > 0, sin θq(i, j) > 0. The upwind scheme is used to guarantee the

correct direction of information propagation in a flow field, which needs to be

reversed if cos θq(i, j) < 0 for F kx,q(i, j) and sin θq(i, j) < 0 for F ky,q(i, j).

Finally, Hk
q (i, j) includes source and sink terms, thus it is computed as

Hk
q (i, j) =

1

L(i, j)

(
min

{
D̄source,k
q (i, j), S̄kq (i, j)

}
−min

{
D̄k
q (i, j), S̄sink,kq (i, j)

})
.

Remark 3. Notice that one the computational time of one simulation step de-

pends linearly on the number of cells nx × ny, i.e., O(nxny).

7.2. Structural similarity measure

In order to enable a quantitative comparison between two density distri-

butions, we use the structural similarity measure (SSIM) [47]. This should

be understood as an index used to measure the similarity between two im-

ages. Thereby, three different image properties are compared: luminance,

contrast and structure. In general, the SSIM between two density distribu-

tions ρ̄1(i, j) (NEWS prediction) and ρ̄2(i, j) (reference distribution) ∀(i, j) ∈

{1, . . . , nx} × {1, . . . , ny} can be calculated as:

SSIM(ρ̄1, ρ̄2) =
(2µ1µ2 + c) (2σ12 + c)

(µ2
1 + µ2

2 + c) (σ2
1 + σ2

2 + c)
, (36)

where µ1 and µ2 are the mean values of distributions ρ̄1 and ρ̄2 over the domain

that are computed as:

µ(ρ̄) =
1

nx

1

ny

S∑
q=N

nx∑
i=1

ny∑
j=1

ρ̄q(i, j). (37)

This term is used to compare luminance of two images. Then, σ1 and σ2 in (36)

are the standard deviations of density distributions used to compare the signal

contrasts:

σ(ρ̄) =

√√√√√ 1

nx

1

ny

nx∑
i=1

ny∑
j=1

 S∑
q=N

ρ̄q(i, j)− µ(ρ̄)

2

,
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and σ12 is the correlation coefficient of two density distributions used to measure

the similarity of their structures:

σ(ρ̄1, ρ̄2) =
1

nx

1

ny

nx∑
i=1

ny∑
j=1

 S∑
q=N

ρ̄q,1(i, j)− µ1

 S∑
q=N

ρ̄q,2(i, j)− µ2

 .

Finally, c > 0 in (36) is a constant that needs to be small, e.g., we take c =

1 · 10−13 for the computation. This constant prevents instability, when the

denominator is close to zero. The range of SSIM is [−1, 1], where 1 is achieved

if two images are identical, whereas −1 means that one image is the inverse of

the second image.

The main advantage of using SSIM is that it is a perception-based metric

used to detect structural changes in the image, while, for example, the mean

square error evaluates only the absolute error rather than differences in conges-

tion patterns. Thus, even if two density distributions are characterized to have

the same number of cars, the SSIM is still able to detect whether congested

zones have different shapes.

7.3. Model validation with Aimsun

We run a scenario of congestion formation in the selected area of Grenoble

downtown (see Fig. 8). For this, we use microsimulator Aimsun and perform

also a numerical simulation of traffic density governed by the NEWS model

(31). For the numerical simulation we deploy the 2D Godunov scheme (see Sec.

7.1), and then obtained steady states are compared. Aimsun takes network,

turning ratios and inflows as input, and produces microsimulations of vehicle

trajectories. We then reconstruct the density distribution from vehicle positions

predicted by Aimsun and compare it to the state predicted by NEWS model.

In general, we have access to the following network data: (x, y) coordinates of

all intersections and its corresponding roads, as well as speed limits and number

of lanes for each road. Using these data, we compute the parameters of the

fundamental diagram v̄, ω̄, ρ̄max and the intersection parameters ᾱ, β̄, L, cos θ,

sin θ in the NEWS framework for all the intersections as follows. For each road
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j in the selected Grenoble area, we read the free-flow velocity vj from its speed

limit data. The maximal density ρmax,j is computed by placing a car every

6 m at every road, and then the Kernel Density Estimation method (KDE) is

applied. This method is used to estimate densities from vehicle positions. It

is assumed that every car represents the center of a Gaussian kernel, and it

contributes to the total density within the radius set by the standard deviation

of the Gaussian function (here we assume it to be 70 m). Further, we also assume

ρc,j = ρmax,j/3 since it approximately corresponds to the estimated value from

the measurement data for this area of Grenoble [48]. This in turn allows us to

calculate the negative kinematic wave speed ωj and road capacities φmax,j from

the triangular FD shape. Then, these parameters are translated into NEWS

formulation using the network geometry, see Sec. 4.4 for more details.

In order to determine the traffic flow direction, we use turning ratios αij for

each road i towards road j that are estimated as

αij =
φmax,j∑nout
q=1 φmax,q

.

Then, supply ratios βij are calculated using (7). Both ratios α and β are

translated into NEWS formulation as in (17) and (18). Further, coordinates of

road’s both ends are used to determine its length lj and orientation angle θj ,

from which we then obtain L, cos θ, sin θ in NEWS formulation as described in

Sec. 5.2.

Then all these intersection and FD parameters are approximated for every

grid point (i, j) ∈ {1, . . . , nx} × {1, . . . , ny} using Inverse Distance Weighting

method as described in Sec. 5.3. In general, low values of weighting parameter

η from (29) imply that only the global trend of the density propagation is

reproduced, while high values of η imply that the location of real roads is more

emphasized (see [38] for more details). For the results presented in this section,

we chose η = 20, which is a relatively low value.

First of all, we load the Grenoble network to Aimsun (see Fig.8b)), and let

vehicles enter through its boundaries by specifying inflows. We choose inflows

such that the main stream of vehicles comes from the South of the area. The
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microsimulations evolve for 2.5 min, and then the state is saved and later used

as an initial condition for both Aimsun and numerical simulation of the NEWS

model. Afterwards, we continue the microsimulation on Aimsun until we do

not perceive any structural changes in the state, which indicates that a steady

state has been achieved. The results are saved as vehicle positions at all time

instants. We use the density reconstruction procedure to be able to transform

the standard Aimsun data into a density distribution (KDE, see the details

above and also [38]). KDE in 1D is also used to smooth inflows such that they

enter the domain in a continuous line rather than at discrete points of space. We

set constant inflows at network boundaries in order to let the system converge

to a steady state, since steady states are easier to compare. We then perform

a numerical simulation of the NEWS model as described in Sec. 7.1 using the

initial conditions from Aimsun.

The results are depicted in Figure 9, where the comparison of both density

distributions is shown for t ∈ [0, 50] min. We see that in both cases the distri-

butions look quite similar but not identical, which might be caused by several

things. In Aimsun, vehicles are restricted to move only on real physical roads,

while more freedom of movement is perceived in a PDE-driven system. More-

over, in Aimsun, turning ratios indicate the probability with which a car turns

to one or another road, whenever it reaches an intersection at some time instant.

Thus, turning ratios in Aimsun should be understood as mathematical expec-

tation rather than deterministic values. Hence, it often appears that scenarios

in Aimsun, although having the same initial condition and inflows, converge to

different density distributions. Vehicles might get stuck in different parts of the

city, while this is unlikely to happen during the numerical simulation of NEWS

density, where cars move on a continuum domain. However, on a global scale

traffic regimes seem to be reproduced correctly in most parts of the city.

Let us now compute the structural similarity measure (36) to compare two

density distributions from Fig. 9. For that the domain is divided into 9 windows

of equal size, as drawn in Fig. 10a). We do this in order to be able to compare

density distributions zone-by-zone. Zones are numbered from top left to bottom
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Figure 9: Congestion formation in Grenoble downtown for t ∈ [0, 50] min: numerical simu-

lation of density governed by NEWS model (left plots) and Aimsun (right plots). Weighting

parameter η = 20. Blue dots denote vehicle positions in Aimsun. Black dashed lines separate

Grenoble in zones used for the calculation of SSIM.
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right, as shown in Fig. 10a). The SSIM of the whole domain is then calculated

as the mean value over all zones:

SSIM(ρ̄1, ρ̄2) =

Nzones∑
l=1

SSIMl µl(ρ̄2)

Nzones∑
l=1

µl(ρ̄2)

, (38)

where Nzones = 9 is the total number of zones in the domain, SSIMl is referred

to zone l each given by (36), and µl(ρ̄2) is the corresponding weight of the zone

based on its occupancy level in the reference distribution (here ρ̄2 is the total

density in Aimsun). Thus, the fewer cars a zone has, the smaller is its weight.

The weights are assigned in order to avoid giving too much importance to zones

that are currently almost empty. Notice that µl(ρ̄2(t)) is a time-dependent

parameter.

In its original formulation, SSIM values range from −1 to 1. In order to

facilitate the interpretation of this index in the context of density comparison, we

make its range to be SSIM ∈ [0, 1] by doing (SSIM + 1)/2. Thus, SSIM = 1

implies that two distributions are identical, and SSIM = 0 means that one

distribution is completely the opposite of the second one (inverted image).

The SSIM of corresponding zones in both distributions is depicted as a func-

tion of time in Fig. 10b). It seems that the most problematic zones are the

most empty ones that are concentrated in the upper part of the domain (zones

2 and 3), while the best captured zones are the most congested ones (zones 4

and 9). This can be explained by the fact that the main stream of vehicles

enters the domain from the South (as prescribed by the boundary conditions in

our scenario), where they build the most congested areas. Thus, cars might not

have reached the upper part in Aimsun, since they got stuck in the Southern

part of the area.

Finally, in order to unable a quantitative comparison of the density in the

whole Grenoble area, the SSIM is averaged over all zones by using (38), and

we obtain the result depicted in Fig.11. Thereby, we can see that the overall

SSIM is approximately equal to 0.9 (≈ 90% accuracy), which indicates that the
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Figure 10: a) Zone numbering in Grenoble network, b) structural similarity zone-by-zone:

SSIMl with l = {1, . . . , 9}.

congested steady state is close to be reproduced correctly by the NEWS model

(28).

7.4. Model validation with real data

For the model validation with real data, we make use of Grenoble Traffic Lab

for Urban Networks known as GTL Ville, see http://gtlville.inrialpes.

fr/. This is an experimental platform for real-time collection of traffic data com-

ing from a network of stationary flow sensors installed in Grenoble downtown,

see Fig. 12. This platform also provides real-time traffic indicators oriented to-

wards the users of the city, traffic operators and researchers [49]. The collected

data and computed indicators are available for download at the GTL website.

Note that the real data is referred to density values estimated from measured

flows rather then ground true traffic density (see below for more details).

The maximal densities at every road ρmax,j , capacities φmax,j , road lengths

lj and orientations θj are the same as described above, since these parameters

are defined by the network topology, which remains the same for the real-life

experiment. However, the free-flow speed data are now taken from floating car

data reported from several vehicles that are equipped with devices such as a

GPS navigator. The free-flow speed is estimated as the maximal speed of a

vehicle in the absence of other cars, and it starts decreasing as the density of
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Figure 11: Mean value over zones of SSIM computed by (38) between densities obtained

with Aimsun and numerical simulation of NEWS as a function of time.

(a) Fixed sensors (b) Bluetooth devices

Figure 12: Sensor location in Grenoble downtown: (a) fixed flow sensors: R denote radars

and L denote induction loops; (b) automatic vehicle identifiers using Bluetooth installed at 12

intersections of Grenoble during a measurement campaign lasting for one week. These figures

are taken from [48].
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surrounding cars increases. It is worth noting that, in general, the free-flow

speed is lower than the corresponding speed limit value, since in reality cars

lose their average velocity, e.g., by stopping at traffic lights.

Now let us explain how do we get turning ratios αij . These data are obtained

from automatic vehicle identifiers using Bluetooth devices that were installed

at adjacent incoming and outgoing roads of 12 intersections in total, see their

location in Fig.12b). These identifiers are able to detect vehicles equipped with

another Bluetooth device, which enables to assign origin and destination road

of individual vehicles. For the estimation of the remaining turning ratios (since

there are more than 12 intersections in total), the information on road impor-

tance is used (historical data), and then the optimization problem minimizing

the deviation of predicted and actual flows is solved.

Finally, we also get the estimated density values for every road ρj for ev-

ery minute of the 8th of January 2021 from 6 am to 9 pm, as well as inflows

and outflows at domain boundaries. Notice that in this scenario inflows are

time-dependent functions. Estimation of free-flow speed, turning ratios, vehicle

density and boundary flows is described in more details in [50].

In Fig. 12a) the sensors marked in blue are those giving boundary inflows

and red sensors give boundary outflows. Sensors marked in green were used for

the validation of state estimation procedure. Notice that the state estimation

procedure is not free of error and it does not reconstruct the state exactly, since

there are only a limited number of sensors due to economical cost.

In order to get density values all over the continuum plane, i.e., at every

point in Grenoble downtown (not only at roads), we divide each road into 10

parts, and at the boundary between each part we virtually place a group of

vehicles. We then assume that all these cars contribute to the global density

around 70 m from its positions KDE method. We also use KDE for the inflow

values, as it was done in the previous example.

The results are depicted in Fig. 13, where the comparison of two density

distributions is shown. We again see that in both cases the distributions look

quite similar. The first possible reason for these distributions to be non-identical
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Figure 13: Evolution of traffic density in Grenoble downtown on 8th of January 2021 from

t = 6 am to t = 9 pm: numerical simulation of NEWS model (left plots) and density estimated

from sensor data (right plots). Weighting parameter η = 20.

is the probabilistic nature of turning ratios in reality opposed to deterministic

nature in numerical simulation. Another reason is that the NEWS model does

not include traffic lights, as well as it is not able to capture accidents or the

effect of pedestrians crossing a road. Moreover, the NEWS model does not

take into account parking lots. Thus, in reality parking vehicles are seen as

stationary objects that do not contribute to the traffic flow any more, while in

NEWS-driven system these vehicles stay in the domain and create congestions,

since NEWS model is a conservation law.

Another source of mismatch could be induced by data on inflows and out-

flows. The problem is that the data represent measured flows in the city that we

can not enforce in our system, since there is always a demand-supply problem
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that needs to be solved, i.e.,

φsource = min {Dext, S(ρ)} , φsink = min {D(ρ), Sext} ,

where ext is used in the subscript to highlight that these functions depend on

what happens outside the domain. Thus, the available data are not related

to demand and supply at domain boundaries but to actual inflow φ̂source and

outflow φ̂sink of the system (hats are used to denote the measurement data).

To understand which problems can be provoked by these issues, let us con-

sider some measured outflow φ̂sink, which in turn is also just a result of solving

the minimum between demand and supply, i.e.,:

φ̂sink = min {D(ρ̂), Sext} , (39)

where demand D(ρ̂) depends on the measured density, which might be different

from the one we get from the numerical simulation of NEWS-driven density.

For the numerical simulation, the best thing we can do with the measured

outflow data φ̂sink is to use it as a supply of the external area:

φsink = min
{
D(ρ), φ̂sink

}
. (40)

However, it follows from (39) that φ̂sink ≤ Sext, where the equality holds in

case of congested traffic. If the traffic is not congested, then setting our external

supply to be equal to measured outflow might lead to blocking vehicles at domain

exit instead of letting them come out.

Two distributions are again compared by using the weighted SSIM averaged

over 9 zones as in the previous case using (38) and (36). The result is depicted

in Fig. 14a), while Fig. 14b) is referred to SSIM for each zone computed using

(36). Notice that the zone numbering here is the same as in Fig. 10a). The

worst captured zones are 1 and 2 located in the upper part of the city, and the

best results are achieved for zones 5, 4 and 8. A possible reason might be the

fact that vehicles get stuck at the bottom of the city in the real experiment,

while they more freely in a PDE-governed system. In general, notice that the

best results are achieved for the time when the congestion level is the highest,
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Figure 14: a) Mean SSIM (38) between the density ρ1 predicted by numerical simulation of

NEWS model and the density ρ2 estimated from real data as a function of time, b) similarity

zone-by-zone: SSIMl with l = {1, . . . , 9}.

as we can see from Fig. 14a). This is related to the weighting parameters used

for calculation of SSIM (38). Weights tend to introduce more noisiness into

computation, when there are only a few cars in the city. Finally, recall that

the real-life data are also an approximation, since these densities are obtained

by the estimation procedure that is not error-free due to the lack of sensors at

every road. On average, the total SSIM is almost 0.8 (80% accuracy), which

indicates that two density distributions are still quite close.

It is worth noting that the source code used for model validation is an

open source project that you can find here: https://github.com/Lyurlik/

multidirectional-traffic-model, see also Appendix for more details.

8. Conclusions

To summarize, we have derived a macroscopic continuous model for urban

traffic that consists of 4 PDEs, which makes it suitable for explicit analysis. It

is scalable and does not change its form as the size of urban network grows.

This model can be used to predict traffic evolution on urban networks of arbi-

trary size, although we have demonstrated its performance on a relatively small
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network of Grenoble downtown. The derivation was done analytically using

the demand-supply concept at one intersection, which lets us conclude that the

obtained model can be seen as extension of the kinematic wave theory (LWR)

for general multi-directional networks. During the derivation, we had to make

two assumptions on network structure: it is especially well-suitable 1) for net-

works that are well-designed in terms of maximal flows (27), and 2) if network

roads are in the same traffic regime. These assumptions were needed to obtain a

PDE-based model out of the ODE network model. Therefore, the NEWS model

might be less exact than the network-based model, which represents its main

limitation.

The propagation of traffic flow in each direction is driven by the demand-

supply concept that uses a fundamental diagram (that can be any concave flow-

density relation) whose parameters are determined by network topology, as well

as by data from real-life experiments. Moreover, vehicles moving in some di-

rection layer can switch to another layer, i.e., there exists a mixing between

different direction layers, which is an important aspect to be included into the

model due to its physical ubiquity.

We have been able to show that NEWS model is a hyperbolic PDE system.

Hyperbolicity implies that a lot of analysis tools used for hyperbolic conservation

laws (such as LWR) can be also used to analyse the structure of NEWS, which

significantly simplifies analysis for future tasks such as explicit control design or

estimation of steady states. The model prediction results have been validated

using experimental platform GTL Ville that provides real-time data from a

network of sensors installed in Grenoble. This project is an open source such

that the results are reproducible and can be used for future studies.

As a promising direction for the future development of optimally operating

transportation systems, it would be interesting to use this model to solve traffic

control tasks on urban networks such as vehicle density stabilization around

some desired equilibrium value, e.g., throughput maximization.
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Appendix A. List of notations

Appendix A.1. Road formulation

Variable Meaning Units

ρ(x, y, t) vehicle density veh/m

Φ(x, y, ρ) flow function veh/s

v(x, y) kinematic wave speed in free-flow regime m/s

ω(x, y) kinematic wave speed in congested regime m/s

ρc(x, y) critical vehicle density veh/m

φmax(x, y) flow capacity veh/s

D(ρ) demand function veh/s

S(ρ) supply function veh/s

φini inflow to intersection from road i veh/s

φoutj outflow from intersection to road j veh/s

ψinj inflow into road j veh/s

ψoutj outflow from road j veh/s

nin number of incoming roads for intersection -

nout number of outgoing roads from intersection -

φij flow from road i to road j veh/s

αij turning ratio from road i to road j -

βij supply coefficient of road j for the flow from road i -

Dij flow demand of road i to enter road j veh/s

Sij supply of road j for flow coming from road i veh/s

θi angle that road i builds with East degrees

li length of road i m
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Appendix A.2. NEWS formulation

Variable Meaning Units

pNθ , p
S
θ , p

W
θ , p

E
θ projection coefficients wrt corresponding directions -

Pin ∈ R4×nin projection matrix for incoming roads into NEWS -

Pout ∈ R4×nout projection matrix for outgoing roads into NEWS -

ρ̄(x, y, t) 4-dim density vector veh/m

Φ̄(x, y, ρ̄) 4-dim flow function veh/s

ρ̄max(x, y) 4-dim maximal density veh/m

v̄(x, y), ω̄(x, y) 4-dim kinematic wave speeds m/s

ρ̄c(x, y) 4-dim critical density veh/m

φ̄max(x, y) 4-dim flow capacity veh/s

D̄(x, y, ρ̄) 4-dim demand function veh/s

S̄(x, y, ρ̄) 4-dim supply function veh/s

φ̄inN (x, y) inflow into intersection in the North direction veh/s

φ̄outN (x, y) outflow from intersection in the North direction veh/s

φ̄NE(x, y) partial flow from North to East wrt intersection veh/s

ψ̄inN (x, y) inflow into outgoing road in the North direction veh/s

ψ̄outN (x, y) outflow from outgoing road in the North direction veh/s

ψ̄NE(x, y) partial flow from North to East wrt outgoing roads veh/s

ᾱEN (x, y) turning ratio from East to North layer -

β̄EN (x, y) supply of East layer for the flow from the North -

cos θ(x, y),

sin θ(x, y)
average direction parameters of intersection -

L(x, y) average length of outgoing roads of intersection m

Appendix B. Proof that ψ̄N = min
{
D̄N , S̄N

}
Here we prove that the flow in some direction (here North) can be written

as a function of demand and supply of the same direction:

ψ̄N = min
{
D̄N , S̄N

}
,
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which allows to simplify the model (24).

Let us consider (1− γ)ψ̄EN + γψ̄NE from (25). By definition (16) we get:

ψ̄EN = min
{
ᾱEN D̄E , β̄EN S̄N

}
, ψ̄NE = min

{
ᾱNED̄N , β̄NES̄E

}
.

Notice that now we omit indices ”in” and ”out” in the demand and supply

functions, since they are now referred to the same point. This comes from the

continuation, due to which intersections are now assumed to be infinitesimally

small in space.

Recall that by definition of the demand-supply formulation, if D̄E < ψ̄max,E ,

then S̄E = ψ̄max,E and vice versa. The same holds for D̄N and S̄N . For

simplicity of writing denote Q(γ) = (1 − γ)ψ̄EN + γψ̄NE . We will prove that

there always exists γ such that Q(γ) = min
{
ᾱNED̄N , β̄EN S̄N

}
. There are no

more than six different possibilities:

1. ᾱEN D̄E < β̄EN S̄N and ᾱNED̄N > β̄NES̄E . From the first inequality we

obtain

ᾱEN D̄E < β̄EN S̄N ≤ β̄EN ψ̄max,N = ᾱEN ψ̄max,E ,

where the last equality comes for the assumption that the network is well-

designed (27). Thus, we get that

D̄E < ψ̄max,E .

From the other side, if we consider the second inequality, we get

β̄NES̄E < ᾱNED̄N ≤ ᾱNEψ̄max,E ⇒ S̄E < ψ̄max,E .

According to the demand-supply formulation, it is however not possible

that D̄E < ψ̄max,E and S̄E < ψ̄max,E hold at the same time. Thus, this

case can be excluded from consideration.

2. ᾱEN D̄E > β̄EN S̄N and ᾱNED̄N < β̄NES̄E . This case is also impossible,

since from the first inequality we get S̄N < ψ̄max,N and from the sec-

ond inequality we get D̄N < ψ̄max,N , which violates the demand-supply

formulation.

52



3. ᾱNED̄N ≤ β̄NES̄E and ᾱNED̄N ≤ β̄EN S̄N . In this case taking γ = 1

results into

Q(1) = ψ̄NE = min
{
ᾱNED̄N , β̄NES̄E

}
= ᾱNED̄N ,

which in combination with the second inequality yields

Q(1) = min
{
ᾱNED̄N , β̄EN S̄N

}
,

which is the desired property achieved with γ = 1.

4. ᾱEN D̄E ≤ β̄EN S̄N , ᾱNED̄N ≤ β̄NES̄E and ᾱNED̄N > β̄EN S̄N .

By the first inequality for γ = 0 we obtain the following:

Q(0) = ψ̄EN = min
{
ᾱEN D̄E , β̄EN S̄N

}
= ᾱEN D̄E ≤ β̄EN S̄N .

By the second inequality for γ = 1 we obtain

Q(1) = ψ̄NE = min
{
ᾱNED̄N , β̄NES̄E

}
= ᾱNED̄N ,

and from the third inequality we get

Q(1) > β̄EN S̄N .

Combining these results all together, we show the desired property:Q(0) ≤ β̄EN S̄N ,

Q(1) > β̄EN S̄N ,

⇒ ∃γ ∈ [0, 1) : Q(γ) = β̄EN S̄N =

min
{
ᾱNED̄N , β̄EN S̄N

}
.

5. ᾱEN D̄E ≤ β̄EN S̄N , ᾱNED̄N ≤ β̄NES̄E and ᾱNED̄N ≤ β̄EN S̄N . The

analysis here is the same as in case (3): we take γ = 1, which results in

Q(1) = min
{
ᾱNED̄N , β̄NES̄N

}
.

6. ᾱEN D̄E ≥ β̄EN S̄N , ᾱNED̄N ≥ β̄NES̄E and ᾱNED̄N > β̄EN S̄N . Here

we also proceed as in case (4): taking γ = 0 results in Q(0) = β̄EN S̄N .

Further, by the second condition Q(1) ≤ ᾱNED̄N , therefore there exists

γ ∈ [0, 1] such that Q(γ) = min
{
ᾱNED̄N , β̄EN S̄N

}
.
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Therefore, if we assume that we can manipulate gamma independently for

every pairwise flow, we can summarize the discussion above in the following

formula: (1 − γ)ψ̄EN + γψ̄NE = min
{
ᾱNED̄N , β̄EN S̄N

}
. This leads to the

following transformation of (25):

ψ̄N = ψ̄NN + min
{
ᾱNSD̄N , β̄SN S̄N

}
+

+ min
{
ᾱNW D̄N , β̄WN S̄N

}
+ min

{
ᾱNED̄N , β̄EN S̄N

}
.

Finally, using once again the approximation, where we replace the sum of min-

ima with the minimum of sums, we can write

ψ̄N = min{ᾱNN D̄N + ᾱNSD̄N + ᾱNW D̄N + ᾱNED̄N ,

β̄NN S̄N + β̄SN S̄N + β̄WN S̄N + β̄EN S̄N} = min
{
D̄N , S̄N

}
,

which is exactly the property we wanted to prove (26).

Appendix C. Reproducibility of the results

Validation of NEWS model with real data is an open source project that

was made available for general public here: https://github.com/Lyurlik/

multidirectional-traffic-model. The README.md file contains all the

essential information about the code structure and the data files such that any-

one can get use of it for different purposes. Thus, the results are made to be

reproducible.

This code is used to produce two different vehicle density distributions: the

one predicted by numerical simulation of NEWS model (28), and the other

density is the one reconstructed from data obtained from real sensors.

In order to run the code, you need to have the following files:

Network topology

1. ”../ModelValidation/IntersectionTable.csv” – contains information about

intersections: x and y coordinates of every intersection (columns 1 and 2),

its ID (column 3) and whether it is a node on border (column 4), which

means that this intersection is located at domain’s boundary through

which vehicles may enter (inflows), or exit (outflows);
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2. ”../ModelValidation/RoadTable.csv” – contains information about roads:

ID1 and ID2 (columns 3 and 4) are the id’s of corresponding intersections

that the road is connecting, ID road (column 5) is the road’s ID, max vel

(column 6) is its free-flow limit estimated from real measurements, then

we have number of lanes (column 7) and road’s length (column 8);

3. ”../ModelValidation/TurnTable.csv” – contains turning ratios between any

pair of roads: ID1 of incoming road (column 1), ID2 of outgoing road (col-

umn 2) and the turning ratio between these roads (column 5).

Data from real sensors

5. ”../ModelValidation/Timestamp.csv”– contains time in seconds at which

the data are given (unix timestamp), the time step equals to one minute;

6. ”../ModelValidation/Density.csv” – contains estimated density from real

sensors: first number is road id followed by its density (that is assumed

to be constant within one road) at all time instants, then the next road id

with its density data for each time instant and so on;

7. ”../ModelValidation/AllInflows.csv” – contains inflow values (in veh/hour)

for every road for every time step (one minute). If road is outgoing from

intersection that is not on border, then the inflow value is zero;

8. ”../ModelValidation/AllOutflows.csv” – contains outflow values (in veh/hour)

for every road for every time step (one minute). If road is incoming into

intersection that is not on border, then the outflow value is zero.

Code structure

The main file of the project is mainwindow.cpp: in its constructor we

specify the file names to be loaded, start simulation starting time (line 26) and

simulation step size (line 28). The paths to files containing network and density

data are also specified here. We can also change there the weighting parameter

η used to approximate parameters for every cell (line 4), and parameter d0 (line

5) is used for Gaussian Kernel estimation.

Other important classes are:
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� UrbanNetwork, which contains all the network geometry information

(this is where all the network files are read). This network is used for both

densities. In its function loadRoads, one needs to specify the minimum

distance between the heads of two consequential vehicles.

� NEWSmodel, which contains translation procedure of all network and

intersection parameters into NEWS-formulation (function processInter-

sections). After all parameters are defined in NEWS, it calls construct-

Interpolation function that approximates these parameters defined for ev-

ery intersection to be defined on every cell of a network. Then update

is performed, where the Godunov numerical scheme is applied for the

state update using NEWS model. There is also a function getSSIMD-

iff mean weighted used to compute the weighted SSIM index between two

densities (38).

� GrenobleData, where all the data estimated from the real-life exper-

iments are loaded. In function reconstructDensity the density initially

given for each road is defined for every cell. Thereby, every road is di-

vided in 10 parts and density values are presented as points on the border

between these parts. Then Gaussian Kernel estimation is used to deter-

mine density for every cell in the domain.

� TrafficSystem, which implements concurrent thread for parallel NEWS

simulation relative to the main visualization thread.
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