
HAL Id: hal-03236552
https://hal.science/hal-03236552v1

Preprint submitted on 26 May 2021 (v1), last revised 5 Dec 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Directional Continuous Traffic Model For
Large-Scale Urban Networks

Liudmila Tumash, Carlos Canudas de Wit, Maria Laura Delle Monache

To cite this version:
Liudmila Tumash, Carlos Canudas de Wit, Maria Laura Delle Monache. Multi-Directional Continuous
Traffic Model For Large-Scale Urban Networks. 2021. �hal-03236552v1�

https://hal.science/hal-03236552v1
https://hal.archives-ouvertes.fr


Multi-Directional Continuous Traffic Model
For Large-Scale Urban Networks

Liudmila Tumasha, Carlos Canudas-de-Wita, Maria Laura Delle Monacheb,∗

aUniv. Grenoble Alpes, CNRS, Inria, Grenoble INP, GIPSA-Lab
bUniv. Grenoble Alpes, Inria, CNRS, Grenoble INP, GIPSA-Lab

Abstract

In this paper we propose a new multi-direction traffic flow model called the

NSWE-model. This macroscopic model is composed by a set of four partial dif-

ferential equations (PDEs), each modelling the density propagation in one of the

four cardinal directions: North, South, West and East. We show step-by-step

the formal derivation of this continuous model from the classical cell transmis-

sion model at intersections. We use only the knowledge about the network

topology (location of the roads) and network infrastructure parameters such as

roads maximal speeds, number of lanes and capacities. The information about

the flow direction is retrieved from the turning ratios at the intersections, which

is then aggregated in four directions using projection matrices. Additionally,

we discuss the mathematical properties of the NSWE-model. In particular, we

show that this model is hyperbolic and corresponds to a conservation law, where

the conserved quantity is the total vehicle density in the network. The model

is validated using synthetic data from the microsimulator Aimsun that takes

Grenoble downtown as a network input. Moreover, the model is also validated

using real data collected from real sensors installed in Grenoble.

Keywords: Macroscopic traffic flow model, partial differential equations,

simulation and validation, continuation of ODE to PDE, large-scale urban
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networks, Gaussian Kernel estimation.

1. Introduction

On the level of traffic management it is essential to be able predict how traffic

conditions could evolve within several hours. This makes traffic modelling an

important issue to study due to ever-growing demand for transportation in

urban areas. Yearly people spend hundreds of hours in traffic jams, which

requires development of novel techniques allowing to predict traffic propagation

and transportation management solutions.

The development of traffic flow models, based on the conservation of vehicles,

has been mostly influenced by the Lighthill-Whitham-Richards model (LWR)

proposed in the fifties by [1] and [2]. This model describes the propagation of

traffic flow as if it was a compressible fluid. It is also assumed there exists a

relation between average flow and average density along the road called Funda-

mental Diagram (FD). Later on, a time-discrete approximation of the LWR was

introduced by [3], which is now known as the cell transmission model (CTM).

The CTM-model is based on the demand-supply concept, and it is now the most

popular model in the traffic community due to its simplicity.

In its original formulation the LWR-model is applicable only to single roads

of infinite length. Extension to networks required developing a methodology for

intersection modelling within the LWR-framework, which was first done at the

end of last century by [4] who considered a network of unirectional roads. Later

on, this formulation was refined to capture multidirectional traffic, e.g. see [5].

The CTM model has also been extended to networks in [6], who considered

networks as directed graphs consisting of links (roads) and nodes (junctions).

The general theory of traffic flow on networks is presented in [7]. However,

traffic modelling might become tedious on large networks containing thousands

of roads due to a high computational cost which is determined by the number

of roads and junctions in a network.

For urban traffic modelling, one can also use continuous macroscopic models
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that describe traffic as a two-dimensional fluid moving on a continuum plane

that corresponds to a dense urban network. This approach has various advan-

tages, e.g., the problem size does not depend on the number of roads as well as

less data are required for the model setup. Early works on continuous traffic

models appeared several decades ago [8, 9, 10], and their focus was to determine

equilibrium in urban networks. However, due to the lack of any knowledge on a

flow-density relation on a city level, these static models could not predict traffic

dynamics in rush hours (see [11] for a general review).

A relation between average density and average flow on a city level known

as Macroscopic Fundamental Diagram (MFD) has been empirically established

from the data collected in Yokohama, Japan [12, 13]. This discovery triggered

development of multi-reservoir models that correspond to ordinary differential

equations describing the change in the number of cars in some zone (reservoir)

per time unit. Thereby, the information about inflows and outflows of a reservoir

is obtained from MFD. Having only few parameters to tune and a low compu-

tational cost, MFD-based models are now widely used. The main drawback of

this approach arises when a zone consists of links whose congestion level has a

large variance. This problem could be overcome using partitioning algorithms

that divide an area such that each zone has a well-defined MFD [14, 15]. How-

ever, in case of rapidly changing traffic conditions (e.g., accident on a road), the

MFD-based approach may be inefficient, since it requires applying partitioning

algorithms every time the congested region moves, see [16] for more details.

Another way to describe the evolution of traffic in cities is to use dynamic

two-dimensional continuum models, see [17] for a review. These models share a

lot of features with pedestrian models [18] with the difference that the direction

of the traffic flow propagation is restricted to the underlying urban network

topology. Some of the traffic models [19, 20] are based on solving Eikonal

equations to determine the direction of the lowest cost of the flow propagation.

A recent work [21] introduced a two-dimensional LWR model that uses the

network topology to determine the direction of the traffic flow by including

space-dependence into the fundamental diagram.
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Most of the studies on two-dimensional traffic evolution consider models

having a unique direction of motion, while only few of them consider anisotropic

conditions, i.e., multi-directional traffic. The first work considering multiple

directions of flow appeared quite recently [22]. This work took inspiration from

pedestrian modelling by considering a poly-centric urban city as a continuum,

in which the path is chosen according to the dynamic user-optimal principle.

However, this model has several drawbacks such as the density that might violate

its maximal possible value. There exist other works [23, 24] proposing two-

dimensional multi-layer models. In both of these works each layer is coupled

to other layers but mixing between them is not included, i.e., vehicles can not

change their layers. In [23] the model design is based on network topology,

while in [24] the model is based on MFD. Furthermore, both of these models

can sometimes lose hyperbolicity.

To cope with some of these limitations, in this paper, we propose a new

multi-directional two-dimensional continuous traffic NSWE-model. It consists

of four partial differential equations (PDEs) that describe the evolution of the

vehicle density in four cardinal directions: North, South, West and East. We

use the information on network topology, turning ratios at each intersection and

infrastructure parameters.

Our main contribution is the formal derivation of the macroscopic model de-

scribing traffic propagation in some large traffic network by using the classical

CTM-model at each intersection. The resulting NSWE-model is a hyperbolic

system with bounded densities in each layer, and the model corresponds to

a conservation law. The main novelty of our model is that it includes mixing

between different density layers, i.e., it allows cars to change their original direc-

tion of movement. For example, imagine a car going to the North that changed

its direction and went to the East, thus there is a non-zero flow from North

to East layer. We present a method allowing to transform traffic evolving on

arbitrarily sparse networks into a continuum model, which is a beneficial form

when it comes to modelling on a large scale.

The structure of this paper is the following. In Section 2, we review the CTM
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model for one intersection, thereby introducing several important assumptions.

In Section 3, we present the NSWE-framework used to derive the NSWE-model

from the CTM-model in Section 4, where the model is expanded to cover the

whole network by the continuation method presented in [25] that turns an ordi-

nary differential equation into a partial differential equation. In Section 5, the

mathematical properties of the NSWE-model are analysed, such as the conserva-

tion law property, hyperbolicity and boundedness of the state (four-dimensional

density). In Section 6, we provide a numerical example verifying the ability of

the model to predict the traffic flow evolution. Finally, the concluding remarks

are given in Section 7.

2. Traffic Flow at One Intersection

The main goal of this paper is to derive a multi-directional macroscopic

traffic model. To achieve this, we need, first of all, to derive a traffic flow model

for one intersection. During this derivation we will be able to define several

important variables that will be later used to derive a macroscopic continuous

model. In particular, we use the CTM model [3] at one intersection to introduce

the concept of partial flows from one road to another road, which is then used

to express the directions as a function of the network topology (more details

are given below). Thus, we consider an intersection located at (x1, y1) with two

incoming and two outgoing roads (as illustrated in Fig. 1), and show a step-by-

step derivation of the traffic model at this intersection, which is then generalized

to an intersection with an arbitrary number of incoming and outgoing roads.

2.1. Demand-Supply Concept

In general, one of the key assumption in traffic modelling is that there is a

concave relation between traffic flow φ and vehicle density ρ. This relation is an

empirical law known as the fundamental diagram (FD) [26]. Mathematically, FD

Φ(ρ) : [0, ρmax]→ R+ is a concave function with a unique maximum φmax (road

capacity) achieved at the critical density ρc, while the minimum is achieved at
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φin2

φin1

ρout2

ρout1

φout2

φout1

(x1, y1)

(x2, y2)

(x3, y3)

Figure 1: Example of a small traffic network consisting of 3 intersections. We consider the

intersection filled in blue.

Φ(0) = Φ(ρmax) = 0, i.e., for zero and maximal density ρmax (also called the

traffic jam density). If density on a road is below its critical value ρc, then

vehicles move freely with a positive kinematic wave speed v, otherwise we have

a congested regime characterized by a negative kinematic wave speed ω. Notice

that the fundamental diagram parameters such as speed limits, capacities and

maximal densities might vary from road to road.

1

D(ρ)

2

S(ρ)

Figure 2: Schematic illustration of the demand-supply concept.

Consider a road divided into two sections as illustrated in Fig. 2. In accor-

dance with the demand-supply concept introduced in [6], the amount of flow φ
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that may enter section 2 from section 1 is determined by the minimum between

the demand D(ρ) of section 1 and the supply S(ρ) of section 2:

φ(ρ) = min (D(ρ), S(ρ)) , ∀t ∈ R+, (1)

where D(ρ) and S(ρ) are defined as

D(ρ) =

φ(ρ), if 0 ≤ ρ ≤ ρc,

φmax, if ρc < ρ ≤ ρmax
(2)

and

S(ρ) =

φmax, if 0 ≤ ρ ≤ ρc,

φ(ρ), if ρc < ρ ≤ ρmax.
(3)

2.2. Flows at Intersections: Example

We use the demand-supply concept to derive a traffic flow model for the

intersection at (x1, y1) as illustrated in Fig. 1. In particular, we need to deter-

mine inflows and outflows, which are necessary to establish a model, since the

change of the number of cars N at some location can be found, in general, as

the difference between inflows and outflows, i.e.:

dN

dt
= φin − φout.

Assume the fundamental diagram has a triangular shape as in [3]. Then in

this case the demand and supply functions given in general by (2) and (3) can

be defined as:

D(ρ) = min(vρ, φmax), S(ρ) = min(ω(ρmax − ρ), φmax). (4)

Moreover, we define the critical density as ρc = ρmax/3.

Throughout this paper, we use a subscript to number roads, and a super-

script is used to indicate whether this particular road is incoming or outgoing,

e.g., φinmax,1 is the capacity of incoming road number 1.

Each incoming road has its own demand for the flow to enter the intersection

(illustrated in Fig. 1) that reads with (4):

Din
1 = min(vin1 ρ

in
1 , φ

in
max,1), Din

2 = min(vin2 ρ
in
2 , φ

in
max,2). (5)
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A part of the flow entering the intersection goes to the first outgoing road

and the other part goes to the second outgoing road. These flows are split

according to the turning ratios αij ∈ [0, 1], where i is the index of the incoming

road and j is the index of the outgoing road. For instance, if α11 = 0.6 and

α12 = 0.4, then 60% of the cars from the first incoming road turn to the first

outgoing road, and 40% turn to the second outgoing road. Note also that the

sum of turning ratios for each incoming road must be 1, i.e.,

α11 + α12 = 1, α21 + α22 = 1.

The concept of turning ratios coincides with the one from the discussion on

diverging intersections in [6].

Let us now introduce the concept of partial demands. A partial demand

refers to the flow of an incoming road that wants/demands to enter a partic-

ular outgoing road. These are equal to the overall demands (5) multiplied by

corresponding turning ratios, i.e.:

D11 = min(α11v
in
1 ρ

in
1 , α11φ

in
max,1), D12 = min(α12v

in
1 ρ

in
1 , α12φ

in
max,1),

D21 = min(α21v
in
2 ρ

in
2 , α21φ

in
max,2), D22 = min(α22v

in
2 ρ

in
2 , α22φ

in
max,2).

In accordance with [6], each outgoing road provides a supply for the flow coming

from intersection, which we get from (4):

Sout1 = min(ωout1 (ρoutmax,1 − ρout1 ), φoutmax,1),

Sout2 = min(ωout2 (ρoutmax,2 − ρout2 ), φoutmax,2).
(6)

Let us also assume that each outgoing road has a particular supply for each

incoming road, e.g., Sout1 is split into S11 and S21. In order to define these

partial supplies, we introduce supply coefficients βij ∈ [0, 1] used to denote the

supply of an outgoing road j that it provides for the maximal flow coming

from a particular incoming road i (among all the incoming roads). The supply

coefficient βij is thus defined as

βij =
αijφ

in
max,i∑nin

k=1 αkjφ
in
max,k

, (7)

8



Notice that for each outgoing road the sum of supply coefficients must be 1, i.e.,

β11 + β21 = 1, β12 + β22 = 1.

With the definition of supply coefficients (7), we are now ready to formulate

partial supplies as the overall supplies given by (6) multiplied by corresponding

supply coefficients:

Sij = βijS
out
j = min

(
βijω

out
j (ρoutmax,j − ρoutj ), βijφ

out
max,j

)
.

Under the assumption of supply coefficients, we can also define partial flows

as the minimum between partial demand and partial supply, i.e., φ11 = min(D11, S11)

yields:

φ11 = min(α11v
in
1 ρ

in
1 , β11ω

out
1 (ρoutmax,1 − ρout1 ), α11φ

in
max,1, β11φ

out
max,1),

Finally, the flows of incoming and outgoing roads are found by summing up

the partial flows, i.e.,

φin1 = φ11 + φ12, φin2 = φ21 + φ22,

φout1 = φ11 + φ21, φout2 = φ12 + φ22,

Notice that the sum of flows before and after the intersection is always

conserved, i.e., φin1 +φin2 = φout1 +φout2 . Thus, we have established a traffic flow

model at the intersection by explicitly deriving expressions for its inflows and

outflows.

2.3. Flows at Intersections: Generalization

We can generalize the calculations from the previous subsection to any

intersection with nin incoming roads having densities ρini and flows φini for

i ∈ {1, .., nin} and with nout outgoing roads having densities ρoutj and flows φoutj

for j ∈ {1, .., nout}.

Every incoming road i has its own demand Din
i for the flow to enter the

intersection:

Din
i = min

(
vini ρ

in
i , φ

in
max,i

)
.
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Then, we define partial demands from road i to road j as

Dij = αijD
in
i = min

(
αijv

in
i ρ

in
i , αijφ

in
max,i

)
.

Supply Soutj of the outgoing road j is simply given by

Soutj = min
(
ωoutj (ρoutmax,j − ρoutj ), φoutmax,j

)
.

Partial flow φij entering an outgoing road j from an incoming road i are

defined as

φij = min(Dij , Sij) =

= min(αijv
in
i ρ

in
i , βijω

out
j (ρoutmax,j − ρoutj ), αijφ

in
max,i, βijφ

out
max,j).

(8)

Finally, the flow from the incoming road φini is the sum over all the flows exiting

this road, and the flow into outgoing road φoutj is the sum over all the flows

coming into this road:

φini =

nout∑
j=1

φij , φoutj =

nin∑
i=1

φij . (9)

For a better overview, we have summarized all the notations introduced in

this section in Appendix A.1.

3. The NSWE-framework

Our main goal is to model the evolution of multi-directional traffic in a large-

scale network. The main challenge thereby is that roads at an intersection may

be oriented arbitrarily. Hence, we would like to obtain a model in terms of

flows that are parallel to the cardinal directions: North (N), South (S), West

(W) and East (E). This will enable us to formulate the model in macroscopic

terms, if every intersection will be described in a unified way. Let us call it the

NSWE-model and denote the corresponding variables by bars, e.g., φ̄.

In order to formulate the traffic model in terms of NSWE, we will use only

the geometric properties of the network, such as the angle of the roads directions

with respect to the East direction denoted by θ, see Fig. 3.
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2in

1in

EW

N

S

θout1

2out

1out

Figure 3: Main idea of NSWE-framework: map roads’ directions at an intersection into four

cardinal directions: North, South, West and East. Roads 1in and 2out are oriented towards

North-East and roads 2in and 1out are oriented towards South-East.

Let us consider the projection of flows into the North. We calculate the flow

to the North as a weighted sum of all flows on the roads which have angles

less than π/2 with the North direction, i.e., these are roads 1in and 2out in

Fig. 3. This also means that, in general, an angle of the road’s direction with

non-zero projection to the North is bounded to the range θ ∈ (0, π), while for

non-zero projections to the South, West and East the angle must be θ ∈ (π, 2π),

θ ∈ (π/2, 3π/2) and θ ∈ (0, π2 ) ∪ ( 3π
2 , 2π), respectively. Then, the outflows in

the NSWE-formulation are:

φ̄outN = pNθout1
φout1 + pNθout2

φout2 , φ̄outS = pSθout1
φout1 + pSθout2

φout2 ,

φ̄outW = pWθout1
φout1 + pWθout2

φout2 , φ̄outE = pEθout1
φout1 + pEθout2

φout2 ,

where pθ ∈ [0, 1] are the weights that should satisfy the following properties:

1. If a road goes exactly to the North, pNθ = 1.

2. If a road has an angle equal to or greater than π/2 with the North direc-

tion, pNθ = 0.

3. The sum pNθ + pSθ + pWθ + pEθ = 1 to ensure the conservation of flows.

Notice that these properties are defined for the North direction, while the same

holds also for other directions.
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The simplest choice for the coefficients pθ, satisfying all these properties, is

pNθ =


sin(θ)

| cos(θ)|+ | sin(θ)|
, θ ∈ (0, π),

0, elsewhere,

pSθ =


− sin(θ)

| cos(θ)|+ | sin(θ)|
, θ ∈ (π, 2π),

0, elsewhere,

pWθ =


− cos(θ)

| cos(θ)|+ | sin(θ)|
, θ ∈ (

π

2
,

3π

2
),

0, elsewhere,

pEθ =


cos(θ)

| cos(θ)|+ | sin(θ)|
, θ ∈ (0,

π

2
) ∪ (

3π

2
, 2π),

0, elsewhere.

(10)

where θ is a positive angle between the direction of the road and the East

direction.

Notice that, in general, each road can have non-zero weights with at most

two directions. For example, in Fig.3 the flow along the first outgoing road 1out

has only two non-zero weights: pSθout1
and pEθout1

.

Thus, flows at each intersection in NSWE-formulation should be given by

vectors φ̄in = (φ̄inN , φ̄
in
S , φ̄

in
W , φ̄

in
E )T and φ̄out = (φ̄outN , φ̄outS , φ̄outW , φ̄outE )T . This

allows us to establish the following relation with the flows from the original

road formulation given by (9):

φ̄in =



φ̄inN

φ̄inS

φ̄inW

φ̄inE


=



pN
θin1

pN
θin2

pS
θin1

pS
θin2

pW
θin1

pW
θin2

pE
θin1

pE
θin2



 φin1

φin2


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and

φ̄out =



φ̄outN

φ̄outS

φ̄outW

φ̄outE


=



pNθout1
pNθout2

pSθout1
pSθout2

pWθout1
pWθout2

pEθout1
pEθout2



 φout1

φout2

 .

For a general case of nin incoming and nout outgoing roads, we introduce

matrices Pin ∈ R4×nin and Pout ∈ R4×nout consisting of coefficients pθini and

pθoutj
, respectively. Thus, the flows are transformed into the NSWE-formulation

as follows:

φ̄in = Pinφ
in, φ̄out = Poutφ

out. (11)

φ̄outE

φ̄inW

φ̄outNφ̄inS

φ̄inNφ̄outS

φ̄inE

φ̄outW

φ̄NE

φ̄SW

Figure 4: Explanation of flows’ directions in NSWE-formulation.

In general, φ̄inN is the flow on incoming roads going to the North direction

(before the intersection), and φ̄outN is the flow on outgoing roads going to the

North (after the intersection), see Fig. 4 for illustration of this concept. They

can also be represented by the sums over partial flows in the NSWE-formulation:

φ̄inN = φ̄NN + φ̄NS + φ̄NW + φ̄NE , (12)
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and

φ̄outN = φ̄NN + φ̄SN + φ̄WN + φ̄EN , (13)

where, for example, φ̄NE is the flow consisting of cars going to the North before

the intersection and to the East after they have passed the intersection, see Fig.

4. Thus, φinN is composed of all such flows that were going to the North before

the intersection and then continued their way either to the North or changed to

the South, West or East after passing the intersection.

In NSWE formulation, partial flows can be calculated as follows:

φ̄EN =

nin∑
i=1

nout∑
j=1

pEθini
pNθoutj

φij , (14)

where pθ are the NSWE weights from (10).

Notice that the correctness of this definition of partial flows can be verified

by inserting (14) into (13):

φ̄outN =

nout∑
j=1

pNθoutj

[
nin∑
i=1

(
pNθini

+ pSθini
+ pWθini

+ pEθini

)
φij

]
=

nout∑
j=1

pNθoutj

nin∑
i=1

φij =

nout∑
j=1

pNθoutj
φoutj ,

whereby we have used the fact that the weights’ sum over all the cardinal di-

rection is 1 (see property 3 in the definition of pθ) and (9).

To gain more insight into the concept of partial flows, let us consider an

example of an intersection that has one incoming and one outgoing road, as

shown in Fig. 5. First, we define the incoming flow in the NSWE-formulation

from Fig. 5:

φ̄in =



φ̄inN

φ̄inS

φ̄inW

φ̄inE


=



0

φ̄SN + φ̄SE

0

φ̄EN + φ̄EE


.

Then, we see that φ̄inN = φ̄inW = 0, since the incoming road has a zero weight

with respect to both North and West direction, while it has non-zero weights
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with the South and East directions. The outgoing road has non-zero weights

only with North and East direction, which results into φ̄inS = φ̄SN + φ̄SE and

φ̄inE = φ̄EN + φ̄EE .

In a similar way, we analyse the flow on the outgoing road that yields:

φ̄out =



φ̄outN

φ̄outS

φ̄outW

φ̄outE


=



φ̄SN + φ̄EN

0

0

φ̄SE + φ̄EE


.

Also note that in Figure 5 there is no flow in the West direction, therefore

all the flows containing at least one W are zero, e.g., φ̄NW = φ̄SW = 0, etc.

1in

E

S

1out

E

N

Figure 5: Sketch of an intersection with one incoming road 1in and one outgoing road 1out.

For a better overview, we have summarized all the notations introduced in

this and next sections in Appendix A.2.

4. Derivation of the NSWE-model

Similar to our road model given by (9) and (8), we would like to define

partial flows in the NSWE-formulation using the demand-supply concept (1).

For this we will need to provide the NSWE-definition of the turning ratios ᾱ

and supply coefficients β̄. Moreover, we will also have to define the fundamental

diagram parameters v̄, ω̄, ρ̄max in NSWE-formulation to be able to derive the

complete model that predicts the density evolution in four cardinal directions.
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4.1. Turning Ratios and Supply Coefficients

The demand D̄in ∈ R4×1 and supply S̄out ∈ R4×1 functions from (4) can be

formulated in terms of NSWE using coefficient matrices Pin, Pout as in (11):

D̄in = Pin min(vinρin, φinmax),

S̄out = Pout min(ωout(ρoutmax − ρout), φoutmax).
(15)

Now, without loss of generality, let us consider the partial flow from East to

North φ̄EN , which we would like to write using demand and supply as in (8):

φ̄EN = min(ᾱEN D̄
in
E , β̄EN S̄

out
N ), (16)

where ᾱEN is the turning ratio from East to North, and β̄EN is the proportion

of supply of the North provided for the cars arriving from the East, i.e., the

same as βij from (7) but in the NSWE-formulation.

The coefficients ᾱEN and β̄EN need to be determined, which can be done

using (14), in which we substitute (8), which yields

φ̄EN =

nin∑
i=1

nout∑
j=1

pEθini
pNθoutj

min
(
αijv

in
i ρ

in
i , βijω

out
j (ρoutmax,j − ρoutj ), αijφ

in
max,i, βijφ

out
max,j

)
.

This expression is a sum over minimum functions, which is difficult to handle.

Thus, we make the following approximation: we change the order of taking the

minimum and the summations. This leads to the minimum function over just

four arguments as in demand-supply concept:

φ̄EN ≈ min

(
nout∑
j=1

pNθoutj

nin∑
i=1

pEθini
αijv

in
i ρ

in
i ,

nout∑
j=1

pNθoutj

nin∑
i=1

pEθini
βijω

out
j (ρoutmax,j − ρoutj ), ...

)
.

Notice that the difference between putting minimum inside and outside the

summation is decreasing as the level of the homogeneity in the congestion of

links increases. This approximation is exact if all roads in the network are in

the same traffic regime, i.e., either all roads are in free-flow or congested.

We set the latter expression equal to (16) for φ = φmax, and get the coeffi-

cients ᾱEN and β̄EN that read

ᾱEN =

nout∑
j=1

[
pNθoutj

nin∑
i=1

αijp
E
θini
φinmax,i

]
nin∑
i=1

pE
θini
φinmax,i

, (17)
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and

β̄EN =

nin∑
i=1

[
pE
θini

nout∑
j=1

βijp
N
θoutj

φoutmax,j

]
nout∑
j=1

pN
θoutj

φoutmax,j

. (18)

4.2. FD Parameters in the NSWE-framework

Consider the demand and the supply functions in the NSWE-formulation.

From one side, we can calculate them using the projection matrices Pin and Pout

as in (15). From the other side, we would like to be able to calculate demand

and supply using a triangular FD, which should enable us to describe traffic

flow in a unified way for any intersection. Recall that FD parameters depend

on a specific road, while another road might already have a different speed limit

or capacity.

Thus, we are going to define a unified FD in the NSWE-formulation such

that the FD is defined for each direction separately. This equivalently means

that the parameters of FD will all become four-dimensional vectors or 4 × 4

diagonal matrices. Let us consider the FD for the North direction, while similar

steps should be done for other directions. That is, for D̄N and S̄N we would

like to find kinematic wave speeds v̄N and ω̄N and density transformations ρ̄inN

and ρ̄outN such that the following relations would hold:

D̄N =

nin∑
i=1

pNi min(viρi, φmax,i) ≈ min(v̄N ρ̄
in
N , φ̄

in
max,N ),

S̄N =

nout∑
j=1

pNj min(ωj(ρmax,j − ρj), φmax,j) ≈ min(ω̄N (ρ̄max,N − ρ̄outN ), φ̄outmax,N ).

Note that in the case when there are much more roads than cardinal directions,

we can use only approximations of the fundamental diagram.

By approximating sum of minimum functions as a minimum of sums and

writing the conditions on maximal flows together, we get

nin∑
i=1

pNi viρc,i = v̄N ρ̄
in
c,N ,

nout∑
j=1

pNj ωj(ρmax,j − ρc,j) = ω̄N (ρ̄outmax,N − ρ̄outc,N ).

(19)
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System (19) is undetermined since it consists of two equations that have five

unknowns (v̄N , ω̄N , ρ̄
in
c,N , ρ̄

out
c,N , ρ̄

out
max,N ).

In general, we get the coordinates of each road, its number of lanes and speed

limits as network data. The speed limits are directly related to the kinematic

wave speeds vj , while the maximal density ρmax,j on each road j is determined

by its number of lanes and the minimal car-to-car distance (we assume it is

6m). Knowing ρmax,j for every road, we can easily obtain the critical density

ρc,j (recall that in Section 2 we assumed that ρc = ρmax/3). The negative

kinematic wave speeds ωj can be obtained from the speed limits vj and critical

density ρc,j as

ωj =
ρc,jvj

ρmax,j − ρc,j
.

Assume that the densities are transformed into the NSWE-formulation in

the same way as it is done for the flows (11), e.g.:

ρ̄N =

nin∑
i=1

pNi ρi +

nout∑
j=1

pNj ρj , (20)

which is then also done for the maximal ρ̄max,N and critical ρ̄c,N densities.

After we have defined all the densities, we can finally express the velocities

from (19) as

v̄N =

nin∑
i=1

pNi viρc,i +
nout∑
j=1

pNj vjρc,j

ρ̄c,N
,

ω̄N =

nin∑
i=1

pNi ωi(ρmax,i − ρc,i) +
nout∑
j=1

pNj ωj(ρmax,j − ρc,j)

ρ̄max,N − ρ̄c,N
.

4.3. Continuation

Our main goal is to derive a macroscopic NSWE-model for multi-directional

traffic in terms of density. This model is derived by considering an intersection

and its outgoing roads that should be viewed as incoming roads for the neigh-

bouring intersections. In the end, we will be able to describe the whole urban

area due to a unified description of the traffic behaviour at any intersection.
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This unified description will be obtained using the continuation method that

was introduced in [25].

Previously, we considered inflow φin and outflow φout with respect to some

intersection. However, in the following, we consider inflow and outflow with

respect to roads that we will denote by ψin and ψout as in Fig. 6.

Recall that θ is an angle between the road direction and the East direction.

Denote the flow in the direction θ as ψθ. Essentially, there are two flows with

direction θ: inflow ψinθ which is a sum of all flows incoming in a road with

direction θ, and outflow ψoutθ which is a sum of all flows outgoing from this

road. Notice that, in the following, we will deal with outgoing roads only, thus,

we will skip the superscript in the notation of angle, i.e., θoutj = θj .

(x1, y1)

(x2, y2)

lj
ψinθj

ψoutθj

θj

x2 − x1

y2 − y1

Figure 6: Illustration of the notations used for the derivation of NSWE-model.

Now consider some road j of length lj that is an outgoing road for the

intersection located at (x1, y1), see Fig. 6. The density evolution on road j that

is connecting the intersection at (x1, y1) and the intersection at (x2, y2) is

∂ρj
∂t

=
1

lj

(
ψinθj (x1, y1)− ψoutθj (x2, y2)

)
,

where θj = atan[(y2 − y1)/(x2 − x1)] as in Fig. 6.

The equation above depends on two different space points (x1, y1) and (x2, y2).

However, we would like to obtain an equation that is described at a unique point.

In order to achieve that, we can perform continuation at the beginning of the

road (x1, y1). Its simplest form, the continuation method corresponds to the
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first order term of Taylor expansion in spatial coordinates, which reads:

ψoutθj (x2, y2) ≈ ψoutθj (x1, y1) + (x2 − x1)
∂ψoutθj

∂x
+ (y2 − y1)

∂ψoutθj

∂y
,

and assuming this approximation to be an equality, we get the following model

∂ρj
∂t

=
1

lj

(
ψinθj (x1, y1)− ψoutθj (x1, y1)− (x2 − x1)

∂ψoutθj

∂x
− (y2 − y1)

∂ψoutθj

∂y

)
,

or simply

∂ρj
∂t

=
1

lj

(
ψinθj (x1, y1)− ψoutθj (x1, y1)

)
− cos θj

∂ψoutθj

∂x
− sin θj

∂ψoutθj

∂y
.

At the same time, by performing continuation at the end of the road (x2, y2)

we arrive at

∂ρj
∂t

=
1

lj

(
ψinθj (x2, y2)− ψoutθj (x2, y2)

)
− cos θj

∂ψinθj
∂x
− sin θj

∂ψinθj
∂y

.

Since the density along the road is assumed to be constant, both continuous

models can be used to represent the original one. The first model is defined

in terms of the beginning of the road and contains spatial derivatives of ψoutθj
,

whereas the second model is defined in terms of end of the road and contains

spatial derivatives of ψinθj . However, performing continuation not at the end

points but somewhere in between can result into a more general form.

Let us perform continuation of the model for some arbitrary point along the

road (x, y) whose coordinates lie between two endpoints (x1, y1) and (x2, y2):

x = x1γ + x2(1− γ), y = y1γ + y2(1− γ),

where γ ∈ [0, 1]. Thus, by performing continuation at (x, y), we arrive at

∂ρj
∂t

=
1

lj

(
ψinθj (x, y)− ψoutθj (x, y)

)
− cos θj

∂((1− γ)ψinθj + γψoutθj
)

∂x

− sin θj
∂((1− γ)ψinθj + γψoutθj

)

∂y
.

(21)

Now let the vector-flow on road j be

−→
Ψθj = ψθj

cos θj

sin θj

 , where ψθj = (1− γ)ψinθj + γψoutθj .
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Then, the model (21) can be rewritten as

∂ρj
∂t

=
1

lj

(
ψinθj (x, y)− ψoutθj (x, y)

)
−∇ ·

−→
Ψθj (x, y), (22)

where ∇ is a nabla operator defined as ∇ = ( ∂
∂x ,

∂
∂y )T .

This model (22) predicts the dynamics of the vehicles’ density at some out-

going road j with direction θ. Note that this equation (22) has the same form

for any intersection located at (xk, yk), where k ∈ [1, ..., N ] is an index used

to label intersections in the domain of interest. Notice that parameter γ was

introduced only for the derivation purposes, it will not explicitly appear in the

final model, see the details below.

4.4. The NSWE-model

We would like to translate the model (22) given in terms of roads into NSWE-

formulation. Recall that the densities in every direction are transformed similar

to (20). Let us again consider the North direction for simplicity, while the same

steps should be performed for all other directions.

Thus, multiplying the equation (22) by pNθj and taking the summation, we get

the model of the vehicle density that evolves in the North direction on outgoing

roads of an intersection located at (xk, yk) that reads

∂ρ̄N
∂t

=

nout∑
j=1

pNθj
1

lj

(
ψinθj − ψ

out
θj

)
−∇ ·

nout∑
j=1

pNθj
−→
Ψθj

 . (23)

We cannot further simplify the equation (23) towards the NSWE-formulation,

since the summations contain additional index-dependent coefficients such as

1/lj , sin θj and cos θj .

Let us then approximate the system (23) by averaging road’s length lj :

L =

nout∑
j=1

ρmax,j lj

nout∑
j=1

ρmax,j

,
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such that the mean length of outgoing roads conserves the maximum number

of cars. Further, we also approximate sine and cosine in (23) as

cos θN =

nout∑
j=1

pNθj cos θjψmax,j

nout∑
j=1

pNθjψmax,j

, sin θN =

nout∑
j=1

pNθj sin θjψmax,j

nout∑
j=1

pNθjψmax,j

.

Substituting these approximations into (23), we get

∂ρ̄N
∂t

=
1

L

nout∑
j=1

pNθj

(
ψinθj − ψ

out
θj

)
−

−∇ ·

nout∑
j=1

cos θN

sin θN

 pNθj ((1− γ)ψinθj + γψoutθj )

 ,

or simply

∂ρ̄N
∂t

=
1

L

(
ψ̄inN − ψoutN

)
−∇ ·

cos θN

sin θN

 ((1− γ)ψ̄inN + γψ̄outN )

 , (24)

where we can further define ψ̄N = (1− γ)ψ̄inN + γψ̄outN .

Notice that this model (24) is a macroscopic NSWE-model (thus, it does

not depend on road index j any more). However, it can be further simplified in

order to get rid of derivatives over multi-directional flows, since otherwise the

model can lose hyperbolicity and, moreover, we want to get rid of parameter γ.

4.5. Model Simplification

The term under the space derivative is ψ̄N = (1−γ)ψ̄inN +γψ̄outN . Recall that

ψ̄inN = ψ̄NN + ψ̄SN + ψ̄WN + ψ̄EN ,

ψ̄outN = ψ̄NN + ψ̄NS + ψ̄NW + ψ̄NE ,

which is the same as in (12) and (13) but defined for ψ̄ that we use to denote

the flow w.r.t. roads. Therefore,

ψ̄N = ψ̄NN +
[
(1− γ)ψ̄SN + γψ̄NS

]
+

+
[
(1− γ)ψ̄WN + γψ̄NW

]
+
[
(1− γ)ψ̄EN + γψ̄NE

]
.

(25)
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Our model (24) would be considerably simplified if each term under the

spatial derivative could be written only as a function of demand and supply of

the corresponding direction, i.e.,

ψ̄N = min(D̄N , S̄N ). (26)

Now we make an assumption that the network is well-designed in terms of

maximal flows, that is

ᾱNEψ̄max,N = β̄NEψ̄max,E . (27)

Physically, this assumption means that if vehicles before the intersection move

at maximal possible flow, then after the intersection they continue to use the

roads’ capacity at maximum.

The proof that (26) holds under the assumption of a well-designed network

(27), being rather technical, is shifted to Appendix B, where we show that there

exists γ such that (26) holds. Thus, the transported term under the derivative in

(24) can be approximated by a standard flow in the demand-supply formulation

that depends only on the density of the same direction. Hence, the full system

of equations is given by

∂ρ̄N
∂t

=
1

L

(
ψ̄inN − ψ̄outN

)
− ∂(cos θN ψ̄N )

∂x
− ∂(sin θN ψ̄N )

∂y
,

∂ρ̄S
∂t

=
1

L

(
ψ̄inS − ψ̄outS

)
− ∂(cos θSψ̄S)

∂x
− ∂(sin θSψ̄S)

∂y
,

∂ρ̄W
∂t

=
1

L

(
ψ̄inW − ψ̄outW

)
− ∂(cos θW ψ̄W )

∂x
− ∂(sin θW ψ̄W )

∂y
,

∂ρ̄E
∂t

=
1

L

(
ψ̄inE − ψ̄outE

)
− ∂(cos θEψ̄E)

∂x
− ∂(sin θEψ̄E)

∂y
,

(28)

where ψ̄in − ψ̄out are defined as
ψ̄inN − ψ̄outN

ψ̄inS − ψ̄outS

ψ̄inW − ψ̄outW

ψ̄inE − ψ̄outE

 =


ψ̄SN + ψ̄WN + ψ̄EN − ψ̄NS − ψ̄NW − ψ̄NE
ψ̄NS + ψ̄WS + ψ̄ES − ψ̄SN − ψ̄SW − ψ̄SE

ψ̄NW + ψ̄SW + ψ̄EW − ψ̄WN − ψ̄WS − ψ̄WE

ψ̄NE + ψ̄SE + ψ̄WE − ψ̄EN − ψ̄ES − ψ̄EW

 .

This system of equations describes the density evolution in the vicinity of one

intersection. Thus, the density ρ̄(x, y, t) and the flow ψ̄(x, y, t) are space- and
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time-dependent functions, whereas all the parameters are constant (ᾱ, β̄, L, v̄,

ω̄, ρ̄max, cos θ, sin θ).

Notice that the term ψ̄in − ψ̄out is responsible for mixing between different

density layers, e.g., ψ̄inN = ψ̄SN + ψ̄WN + ψ̄EN accounts for vehicles that were

moving to the South, West and East, and then turned to the North.

System (28) together with four-dimensional fundamental diagram relating

flow and density represents the NSWE-model, which is the main result of

this paper. It models the evolution of vehicle density on outgoing roads of

an intersection in all cardinal directions: North, South, West and East. The

last step here is to obtain a continuous PDE system describing traffic flow

propagation in the whole network under consideration, the parameters of system

(28) should now be interpolated over the whole continuum domain. First, we

calculate ᾱ, β̄, L, v̄, ω̄, ρ̄max, cos θ, sin θ for all N intersections in the network.

Then, we are looking for functions that approximate those parameters over the

space, e.g., the value of an average road length can be defined ∀(x, y) ∈ R2

L(x, y) =

∑N
k=1 L(xk, yk)e−η

√
(x−xk)2+(y−yk)2∑N

k=1 e
−η
√

(x−xk)2+(y−yk)2
, (29)

where η is a weighting parameter used to denote the sensitivity of the estimated

variables to the distance from the real roads. This approximation method is

called Inverse Distance Weighting, where we chose an exponential function to

give more weights to close roads, see [21].

Thus, we define all the variables ∀(x, y), and we obtain a continuous PDE

system that looks like (28) with time- and space-dependent density ρ̄(x, y, t)

and flow ψ̄(x, y, ρ̄), while all parameters are obtained using (29), which makes

them space-dependent functions, i.e., ᾱ(x, y), β̄(x, y), v̄(x, y), etc.

4.6. Extended Model with Source Terms

In an urban network of finite size there exist roads through which cars can

enter or exit the domain. Such roads are called sources and sinks, respectively.

It appears that they can be trivially captured by the NSWE-model. Let us now
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show how sources are implemented into system (28), while the implementation

of sinks can be done in the same way.

We consider some road j, at the beginning of which cars are assumed to be

created as a constant flow ψsourceθj
. We can take this flow into account by adding

it into equation (22) for road j, which yields

∂ρj
∂t

=
1

lj

(
ψinθj − ψ

out
θj

)
−∇ ·

−→
Ψθj +

1

lj
ψsourceθj . (30)

In general, when we want to specify inflow for some road, we can only formulate

it in terms of demand function. Then, the amount of flow that can enter this

road, depends on supply that is determined by the traffic state of the road:

ψsourceθj = min(Dsource
θj , Sθj (ρj)).

We can rewrite (30) in NSWE-formulation by performing the transforma-

tions described in Section 4.4, which leads us to the extended NSWE-model

(with sinks also included):

∂ρ̄N
∂t

=
1

L

(
ψ̄inN − ψ̄outN + ψ̄sourceN − ψ̄sinkN

)
− ∂(cos θN ψ̄N )

∂x
− ∂(sin θN ψ̄N )

∂y
,

∂ρ̄S
∂t

=
1

L

(
ψ̄inS − ψ̄outS + ψ̄sourceS − ψ̄sinkS

)
− ∂(cos θSψ̄S)

∂x
− ∂(sin θSψ̄S)

∂y
,

∂ρ̄W
∂t

=
1

L

(
ψ̄inW − ψ̄outW + ψ̄sourceW − ψ̄sinkW

)
− ∂(cos θW ψ̄W )

∂x
− ∂(sin θW ψ̄W )

∂y
,

∂ρ̄E
∂t

=
1

L

(
ψ̄inE − ψ̄outE + ψ̄sourceE − ψ̄sinkE

)
− ∂(cos θEψ̄E)

∂x
− ∂(sin θEψ̄E)

∂y
,

(31)

where

ψ̄sourceN = min(D̄source
N , S̄N ), ψ̄sinkN = min(D̄N , S̄

sink
N ),

with

D̄source
N =

nout∑
j=1

pNθjD
source
θj , S̄sinkN =

nout∑
j=1

pNθjS
sink
θj .

Further, one needs to approximate D̄source
N and S̄sinkN in the whole domain,

since originally we specify it in terms of roads of the network. In contrast to all

other variables obtained by (29), the overall number of incoming cars should be

conserved. Thus, we choose Gaussian kernel for the approximation of demand
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and supply functions:

D̄source
N (x, y) =

N∑
k=1

D̄source
N (xk, yk)Gσ(x− xk, y − yk),

where Gσ(x, y) is a two-dimensional symmetric Gaussian kernel with variance

σ2:

Gσ(x, y) =
1

2πσ2
e−

1
2σ2

(x2+y2).

Note that such a choice of Gσ(x, y) provides that its integral over the whole

domain equals 1, therefore the overall incoming demand in (31) is the same as

in the original network model (30) (road formulation).

5. Mathematical Properties of NSWE-model

Let us here study the properties of the NSWE-model. For its explicit analy-

sis, we take system (28) that does not include any source terms. In this section

we will check whether our system represents a conservation law, then we will

discuss the boundedness of its state ρ̄, and, finally, we will show that out model

represents a hyperbolic PDE system.

5.1. Conservation Law

The overall density in the network is the sum over the density in all four

directions, that is

ρ̄ = ρ̄N + ρ̄S + ρ̄W + ρ̄E .

By taking its time derivative we get

∂ρ̄

∂t
=
∂ρ̄N
∂t

+
∂ρ̄S
∂t

+
∂ρ̄W
∂t

+
∂ρ̄E
∂t

,

for which we can substitute the equations from our model (28). It appears that

all the mixing terms cancel each other, and we simply get:

∂ρ̄

∂t
= −∇ · Ψ̄, (32)
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where

Ψ̄ =

cos θN

sin θN

 ψ̄N +

cos θS

sin θS

 ψ̄S +

cos θW

sin θW

 ψ̄W +

cos θE

sin θE

 ψ̄E ,

which has a form of a conservation law, where the conserved quantity is the

overall density in the network.

5.2. Boundedness of ρ̄

The boundedness of the density ρ̄ ∈ [0, ρ̄max] is not violated in our model

given by (28), since the terms under the derivatives are resolved using the stan-

dard Godunov scheme (same as LWR). For example, consider the North direc-

tion, then the term under the derivative is just

ψ̄N = min(D̄N , S̄N ).

The mixing terms that are positive (these are ψ̄SN , ψ̄WN and ψ̄EN in the

equation for ρ̄N ) depend on the supply of N , e.g.,

ψ̄EN = min(ᾱEN D̄E , β̄EN S̄N ).

If ρ̄N = ρ̄max,N , then

S̄N = 0⇒ ψ̄EN = 0⇒ ∂ρ̄N
∂t
≤ 0,

which means that positive terms can not contribute to the increase of density

when it has reached ρ̄max,N .

Negative terms depend on the demand of the North, e.g.,

ψ̄NE = min(ᾱNED̄N , β̄NES̄E),

which in case of ρ̄N = 0⇒ DN = 0 yields:

ψ̄NE = 0⇒ ∂ρ̄N
∂t
≥ 0,

which means that negative terms do not contribute to the decrease of density

when it is already zero.
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5.3. Hyperbolicity

Let us now investigate whether our new continuous model (28) is hyperbolic.

This is a fundamental property determining the behaviour of solutions. Thus,

in contrast to other types of partial differential equations, in a hyperbolic PDE,

any disturbance made in the initial data will travel along the characteristics

of the equation with a finite propagation speed. Although the definition of

hyperbolicity is fundamentally a qualitative one, there are precise criteria using

which we can classify a partial differential equation as a hyperbolic one. In this

section, we will apply this criteria to determine hyperbolicity of our model (28).

Equation (28) can take the following general form:

∂tρ̄+ ∂x
[
F x(ρ̄, x, y)

]
+ ∂y

[
F y(ρ̄, x, y)

]
= g(ρ̄, x, y), (33)

where F x and F y are the flow matrices defined from (28) as

F x =


cos θN ψ̄N 0 0 0

0 cos θSψ̄S 0 0

0 0 cos θW ψ̄W 0

0 0 0 cos θEψ̄E

 ,

and

F y =


sin θN ψ̄N 0 0 0

0 sin θSψ̄S 0 0

0 0 sin θW ψ̄W 0

0 0 0 sin θEψ̄E

 .

The right-hand side term g(ρ̄, x, y) from (33) corresponds to the vector contain-

ing all the mixing terms from (28):

g(ρ̄, x, y) =
1

L


ψ̄SN + ψ̄WN + ψ̄EN − ψ̄NS − ψ̄NW − ψ̄NE
ψ̄NS + ψ̄WS + ψ̄ES − ψ̄SN − ψ̄SW − ψ̄SE

ψ̄NW + ψ̄SW + ψ̄EW − ψ̄WN − ψ̄WS − ψ̄WE

ψ̄NE + ψ̄SE + ψ̄WE − ψ̄EN − ψ̄EN − ψ̄EW

 .
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The spatial derivatives of flow matrices from (33) can be written as

∂x
[
F x(ρ̄, x, y)

]
= ∂ρ̄F

x(ρ̄, x, y) · ∂xρ̄+ ∂xF
x(ρ̄, x, y), and

∂y
[
F y(ρ̄, x, y)

]
= ∂ρ̄F

y(ρ̄, x, y) · ∂yρ̄+ ∂yF
y(ρ̄, x, y),

which is further inserted into equation (33) that yields:

∂tρ̄+ ∂ρ̄F
x(ρ̄, x, y) · ∂xρ̄+ ∂ρ̄F

y(ρ̄, x, y) · ∂yρ̄ = b(ρ̄, x, y), (34)

where b(ρ̄, x, y) = g(ρ̄, x, y)− ∂xF x(ρ̄, x, y)− ∂yF y(ρ̄, x, y).

According to Section 3.1 of [27], the right-hand side part of (34) b(ρ̄, x, y)

does not play any significant role for the analysis. Thus, we simply omit it by

setting b(ρ̄) = 0.

Let us further rewrite (34) as

∂tρ̄+Ax∂xρ̄+Ay∂yρ̄ = 0, (35)

where Ax = ∂F x/∂ρ̄ and Ay = ∂F y/∂ρ̄ represent matrices of flow derivatives:

Ax =


cos θN

∂ψ̄N
∂ρ̄ 0 0 0

0 cos θS
∂ψ̄S
∂ρ̄ 0 0

0 0 cos θW
∂ψ̄W
∂ρ̄ 0

0 0 0 cos θE
∂ψ̄E
∂ρ̄

 ,

and

Ay =


sin θN

∂ψ̄N
∂ρ̄ 0 0 0

0 sin θS
∂ψ̄S
∂ρ̄ 0 0

0 0 sin θW
∂ψ̄W
∂ρ̄ 0

0 0 0 sin θE
∂ψ̄E
∂ρ̄

 .
The system (35) is symmetrisable hyperbolic, since matrices Ax and Ay are

both symmetric. This implies that the system (35) is hyperbolic [27], which

equivalently means that our model given by (28) is a hyperbolic one.

6. Model Validation

To validate the theoretical results, we will compare the density predicted by

the numerical simulation of NSWE-model given by (28) with the results pre-

29



dicted by commercial software Aimsun, and then also using the results obtained

from real-life measurements.

(a) Google satellite view (b) Network in Aimsun

Figure 7: Selected area in Grenoble downtown.

6.1. Numerical Scheme

As a network we take an area located in Grenoble downtown, France, with

a total surface of around M = 1.4× 1 km2, see Fig.7a) for the Google satellite

view and Fig.7b) for the network model in Aimsun of this area.

We set the plane interval Ω divided into Nx = 60 cells of size ∆x = M/Nx

and Ny = 60 cells of size ∆y = M/Ny, i.e., the 2D plane is divided into 3600

cells. The mesh sizes ∆x, ∆y and the time step ∆t are chosen such that the

CFL condition is not violated [28]. The discrete density is then ρ̄k(i, j) =(
ρ̄kN (i, j), ρ̄kS(i, j), ρ̄kW (i, j), ρ̄kE(i, j)

)T
, where (i, j) ∈ {1, ..., Nx} × {1, ..., Ny} is

the cell index, and k ∈ Z+ is the time index.

For the numerical simulation of (28), we use the Godunov scheme [29] in

two dimensions. The density in each direction q = {N,S,W,E} is updated at

every time step ∀(i, j) ∈ {1, ..., Nx} × {1, ..., Ny} as

ρ̄k+1
q (i, j) =ρ̄kq (i, j) + ∆t

[
Ekq (i, j) + F kx,q(i, j) + F ky,q(i, j) +Hk

q (i, j)
]
,
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where Ekq (i, j) is the mixing term between direction layers given by

Ekq (i, j) =
1

L(i, j)

4∑
r=1
r 6=q

(
min

(
ᾱrq(i, j)D̄

k
r (i, j), β̄rq(i, j)S̄

k
q (i, j)

)
−min

(
ᾱqr(i, j)D̄

k
q (i, j), β̄qr(i, j)S̄

k
r (i, j)

) )
,

and F kx,q(i, j), F
k
y,q(i, j) are the derivative terms computed as:

F kx,q(i, j) =
cos θq(i, j) + cos θq(i− 1, j)

2∆x
min

(
D̄k
q (i− 1, j), S̄kq (i, j)

)
− cos θq(i, j) + cos θq(i+ 1, j)

2∆x
min

(
D̄k
q (i, j), S̄kq (i+ 1, j)

)
,

F ky,q(i, j) =
sin θq(i, j) + sin θq(i, j − 1)

2∆y
min

(
D̄k
q (i, j − 1), S̄kq (i, j)

)
− sin θq(i, j) + sin θq(i, j + 1)

2∆y
min

(
D̄k
q (i, j), S̄kq (i, j + 1)

)
.

Notice that F kx,q(i, j), F
k
y,q(i, j) are obtained using the upwind scheme [30] for

cos θq(i, j) > 0, sin θq(i, j) > 0. The upwind scheme is used to guarantee the

correct direction of information propagation in a flow field, which needs to be

reversed if cos θq(i, j) < 0 for F kx,q(i, j) and sin θq(i, j) < 0 for F ky,q(i, j).

Finally, Hk
q (i, j) includes source and sink terms, thus it is computed as

Hk
q (i, j) =

1

L(i, j)

(
min

(
D̄source,k
q (i, j), S̄kq (i, j)

)
−min

(
D̄k
q (i, j), S̄sink,kq (i, j)

) )
.

6.2. The SSIM Index

In order to enable a quantitative comparison between two density distribu-

tions, we use the Structural Similarity Index (SSIM) [31]. This index is usually

used to measure the similarity between two images. Thereby, three different

image properties are compared: luminance, contrast and structure. The SSIM

index between two density distributions ρ̄1(i, j) (NSWE) and ρ̄2(i, j) (reference

distribution from either Aimsun or real-life) ∀(i, j) ∈ {1, ..., Nx} × {1, ..., Ny}

can be in general calculated as:

SSIM(ρ̄1, ρ̄2) =
(2µ1µ2 + c) (2σ12 + c)

(µ2
1 + µ2

2 + c) (σ2
1 + σ2

2 + c)
, (36)
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where µ1 and µ2 are the mean values of distributions ρ̄1 and ρ̄2 over the domain

that are computed as:

µ(ρ̄) =
1

Nx

1

Ny

E∑
q=N

Nx∑
i=1

Ny∑
j=1

ρ̄q(i, j). (37)

This term is used to compare luminance of two images. Then, σ1 and σ2 in

(36) are the standard deviations of the density distributions used to compare

the signal contrasts:

σ(ρ̄) =

√√√√√ 1

Nx

1

Ny

Nx∑
i=1

Ny∑
j=1

 E∑
q=N

ρ̄q(i, j)− µ(ρ̄)

2

,

and σ12 is the correlation coefficient of two density distributions used to measure

the similarity of their structures:

σ(ρ̄1, ρ̄2) =
1

Nx

1

Ny

Nx∑
i=1

Ny∑
j=1

 E∑
q=N

ρ̄q,1(i, j)− µ1

 E∑
q=N

ρ̄q,2(i, j)− µ2

 .

Finally, c > 0 in (36) is a constant that needs to be small, e.g., we take c =

1 · 10−13 for the computation. This constant prevents instability, when the

denominator is close to zero. The range of SSIM is [−1, 1], where 1 is achieved

if two images are identical, whereas −1 means that one image is the inverse of

the second image.

The main advantage of SSIM is that it is a perception-based metric used to

perceive structural changes in the image, while, for example, the mean square

error evaluates only the absolute error. Thus, even if two density distributions

are characterized to have the same number of cars, the SSIM index is still able

to detect if congested zones have different shapes.

6.3. Model Validation with Aimsun

We run a scenario of congestion formation in the selected area of Grenoble

downtown (see Fig. 7). For this, we use microsimulator Aimsun and numerical

simulation of NSWE-model, and then the obtained steady states are compared.
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Aimsun takes network, turning ratios and inflows as input, and produces mi-

crosimulations of vehicles’ trajectories. We then reconstruct the density distri-

bution from vehicles’ positions predicted by Aimsun and compare it to the state

predicted by NSWE-model.

In general, we have access to the following network data: (x, y) coordinates

of all intersections and its corresponding roads, as well as speed limits and

number of lanes for each road. Using these data, we compute the parameters of

the fundamental diagram v̄, ω̄, ρ̄max and the intersection parameters ᾱ, β̄, L,

cos θ, sin θ in the NSWE-framework for all the intersections as follows.

For each road we read the free-flow velocity vj from the speed limit data.

Then, the maximal density ρmax,j is computed by placing a car every 6m at

every road. It is assumed that every car represents the center of a Gaussian

kernel, and it contributes to the total density within the radius set by the stan-

dard deviation of the Gaussian function. Here we assume that each vehicle

has influence within 70m radius around its position. The Gaussian Kernel es-

timation is used to define densities everywhere in a continuum two-dimensional

plane from vehicles’ positions. Further, we assume that ρc,j = ρmax,j/3 every-

where, which allows us also to calculate the negative kinematic wave speed ωj

and the roads’ capacities φmax,j . Then, these parameters are translated into

NSWE-formulation using the network geometry, see Section 4.2 for more details.

In order to determine the traffic flow direction, we use information on turning

ratios αij for each road i towards road j that are calculated as

αij =
φmax,j∑nout
k=1 φmax,k

.

Then, supply coefficients βij are calculated using (7). Both ratios α and β are

translated into NSWE-formulation as in (17) and (18). Further, we use the

coordinates of roads’ both ends to determine its length lj and orientation angle

θj , from which we then obtain L, cos θ, sin θ in NSWE-formulation as described

in Section 4.4.

Then, we approximate all these intersection and FD parameters for every

cell (i, j) using Inverse Distance Weighting method as described in Section 4.5.
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In general, low values of weighting parameter η from (29) imply that only the

global trend of the density propagation is reproduced, while high values of η

imply that the density follows more precisely the location of real roads (see [21]

for more details). For the results presented in this section, we chose η = 20,

which is a relatively low value.

We proceed as follows. First of all, we load the Grenoble network to Aimsun

(see Fig.7b)), and let the cars enter the domain through its boundaries by

specifying inflows. We choose inflow such that the main flow of cars comes

from the South of the area. The microsimulations evolve for 2.5 minutes, and

then the state is saved and later used as an initial condition for both Aimsun

and numerical simulation of the NSWE-model. Afterwards, we continue the

microsimulation on Aimsun until we do not perceive any structural changes in

the state, which indicates that a steady state has been achieved. The results are

saved as vehicles’ positions at all time instants. Therefore, we use the density

reconstruction procedure to be able to transform the standard Aimsun data into

a density distribution (Gaussian Kernel estimation, see the details above and

also [21]). The Gaussian Kernel estimation is also used to smooth inflows such

that they enter the domain in a continuous line rather than at discrete points of

space. Notice that we set constant inflows at network boundaries in order to let

the system converge to a steady state, since steady states are easier to compare.

We then perform a numerical simulation of the NSWE-model as described in

the previous subsection using the initial conditions from Aimsun.

The results are depicted in Figure 8, where the comparison of both scenar-

ios is shown for t ∈ (0, 50)min. We see that in both cases the distributions

look quite similar but not identical, which might be caused by several things.

In Aimsun, vehicles are restricted to move only on real physical roads, while

more freedom of movement is perceived in a PDE-driven system. Moreover,

in Aimsun, turning ratios indicate the probability with which a car turns to

one or another road, whenever it reaches an intersection at some time instant.

Thus, turning ratios in Aimsun should be understood as mathematical expec-

tation rather than deterministic values. Hence, it often appears that scenarios
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in Aimsun, having the same inputs, converge to different density distributions,

since vehicles might get stuck in different parts of the city, while this is unlikely

to happen during the numerical simulation of NSWE-model, where cars move

on a continuum space. However, on a global scale traffic regimes seem to be

reproduced correctly in most parts of the city.

Figure 8: Congestion formation in Grenoble downtown for t ∈ (0, 50)min: numerical simula-

tion of NSWE-model (left plots) and Aimsun (right plots) using weighting parameter η = 20.

Blue dots denote vehicles’ positions in Aimsun. Black dashed lines separate Grenoble in zones

used for the calculation of SSIM index.

Let us now compute the structural similarity index defined in (36) to compare

two density distributions from Fig.8. For that, let us divide our domain into 9

windows of equal size as drawn in Fig.9a). We do this in order to be able to

compare density distributions zone-by-zone. The zones are numbered from top

left to bottom right, as shown in Fig.9a). The SSIM index of the whole domain
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is then calculated as the mean value SSIM over all zones:

SSIM(ρ̄1, ρ̄2) =

Nzones∑
l=1

SSIMl µl(ρ̄2)

Nzones∑
l=1

µl(ρ̄2)

, (38)

where Nzones = 9 is the total number of zones in the domain, SSIMl is referred

to the SSIM index of zone l each given by (36), and µl(ρ̄2) is the corresponding

weight of the zone based on its occupancy level in the reference distribution

(here, ρ̄2 is the total density in Aimsun). Thus, the fewer cars a zone has, the

smaller is its weight. The weights are assigned in order to avoid giving too much

importance to zones that are currently almost empty. Notice that µl(ρ̄2(t)) is a

time-dependent parameter.

In its original formulation, the SSIM index varies from −1 to 1. In order to

facilitate the interpretation of the SSIM index in the context of density com-

parison, we make it range to be SSIM ∈ [0, 1] by doing (SSIM + 1)/2. Thus,

SSIM = 1 implies that two distributions are identical, and SSIM = 0 means

that one distribution is completely the opposite of the second one (inverted

image).

The SSIM index of corresponding zones in both distributions is depicted as

a function of time in Fig.9b). It seems that the most problematic zones are the

most empty ones that are concentrated in the upper part of the domain, while

the best captured zones are 4 and 9, which are the most congested ones. This

can be explained by the fact that the main vehicle flow enters the domain from

the South (as prescribed by the boundary conditions in our scenario), where

they build the most congested areas. Thus, cars might not have reached the

upper part in Aimsun, since they got stuck in the Southern part of the area.

Finally, in order to unable a quantitative comparison of the density in the

whole Grenoble area, the SSIM index is averaged over all zones by using (38),

and we obtain the result depicted in Fig.10. Thereby, we can see that the overall

SSIM index is approximately equal to 0.9 (≈ 90% accuracy), which indicates

that the congested steady state is close to be reproduced correctly by our model
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Figure 9: a) Zone numbering in Grenoble network; b) The SSIM index of each zone SSIMl

with l = {1...9}.

(28).

6.4. Model Validation using Real Data

For the model validation with real data, we make use of the Grenoble

Traffic Lab for Urban Networks known as GTL Ville, see http://gtlville.

inrialpes.fr/. This is an experimental platform for real-time collection of

traffic data coming from a network of stationary flow sensors installed in Greno-

ble downtown, see Fig.11. This platform also provides real-time traffic indica-

tors oriented towards the users of the city, traffic operators and researchers. The

collected data and computed indicators are available for download at the GTL

website.

The maximal densities at every road ρmax,j , capacities φmax,j , road lengths

lj and orientations θj are the same as described above, since these parameters

are defined by the network topology, which remains the same for the real-life

experiment. However, the free-flow speed data are now taken from floating car

data reported from several vehicles that are equipped with devices such as a

GPS navigator. The free-flow speed is estimated as the maximal speed of a

vehicle in the absence of other cars, and it starts decreasing as the density of

surrounding cars increases. It is worth noting that, in general, the free-flow
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Figure 10: Mean value over zones of SSIM computed by (38) between densities in Aimsun

and in numerical simulation of NSWE as a function of time for weighting parameter η = 20.

speed is lower than the corresponding speed limit value, since in reality cars

lose their velocity, e.g., by stopping at traffic lights.

Now let us explain how do we get turning ratios αij . These data are obtained

from automatic vehicle identifiers using Bluetooth devices that were installed

at adjacent incoming and outgoing roads of 12 intersections in total, see their

location in Fig.11b). These identifiers are able to detect vehicles equipped with

another Bluetooth device, which enables to assign the origin and destination

road of individual vehicles. For the estimation of the remaining turning ratios

(since there are more than 12 intersections in total), the information on road

importance is used, and then the optimization problem minimizing the deviation

of predicted and actual flows is solved.

Finally, we also get the estimated density values for every road ρj for every

minute of the 8th of January 2021 from 6am to 9pm, as well as inflows and

outflows at domain boundaries. Notice that in this scenario inflows are time-

dependent functions. Estimation of free-flow speed, turning ratios and density

reconstruction is described in more details in [33].
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(a) Fixed sensors (b) Bluetooth devices

Figure 11: Sensor location in Grenoble downtown: (a) fixed flow sensors: R denote radars

and L denote induction loops; (b) automatic vehicle identifiers using Bluetooth installed at

12 intersections of Grenoble during a measurement campaign lasting 1 week. These figures

are taken from [32].

On Fig.11a) the sensors marked in blue are those giving boundary inflows

and red sensors give boundary outflows. Sensors marked in green were used

for the validation of state estimation procedure. Notice that state estimation

procedure is not free of error and it does not reconstruct the state exactly, since

there are only a limited number of sensors due to economical cost.

In order to get density values all over the continuum plane, i.e., at every

point in Grenoble downtown (not only at physical roads), we divide each road

into 10 parts, and at the boundary between each part we set a group of vehicles.

We then assume that all these cars contribute to the global density around 70m

from its positions using Gaussian Kernel Estimation. We also use Gaussian

Kernel Estimation for the inflow values, as it was done in the previous example.

The results are depicted in Fig.12, where the comparison of two density

distributions is shown. Again, we see that in both cases the distributions look

quite similar. The first possible reason for these distributions to be non-identical

is the probabilistic nature of turning ratios in reality opposed to deterministic

nature in numerical simulation. Another reason is that the NSWE model does

not include traffic lights, as well as it is not able to capture accidents or the

effect of pedestrians crossing a road.
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Figure 12: Dynamics of traffic density in Grenoble downtown from morning t = 6am to

evening t = 9pm: numerical simulation of NSWE-model (left plots) and real data (right

plots). Weighting parameter η = 20.

Another source of mismatch could be induced by inflows and outflows data.

The problem is that the data represent estimated measurements of the flows in

the city that we can not enforce in our system, since there is always a demand-

supply problem that needs to be solved, i.e.,

φsource = min(Dext, S(ρ)), φsink = min(D(ρ), Sext),

where ext is used in the subscript to highlight that these functions depend on

what happens outside the domain. Thus, the data that we have are not related

to demand and supply at domain boundaries but to actual inflow φ̂source and

outflow φ̂sink of the system (we use hats to denote the measurement data).

To understand which problems can be provoked by these issues, let us con-

sider some measured outflow φ̂sink, which in turn is also just a result of solving
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the minimum between demand and supply, i.e.,:

φ̂sink = min(D(ρ̂), Sext), (39)

where demand D(ρ̂) depends on the measured density, which might be some-

thing different than the one we get from the numerical simulation of NSWE.

For the numerical simulation, the best thing we can do with the data about

the measured outflow φ̂sink is to use it as a supply of the external area:

φsink = min(D(ρ), φ̂sink). (40)

However, it follows from (39) that φ̂sink ≤ Sext, where the equality holds in case

of congested traffic. If the traffic is not congested, then setting our external

supply to be equal to measured outflow might lead to blocking the cars at

domain exit instead of letting them come out.

We compare two distributions again by using the weighted SSIM index av-

eraged over 9 zones as in the previous case using (38) and (36), and depict the

result in Fig.13a), while Fig.13b) is referred to the SSIM index for each zone

computed using (36). Notice that the zone numbering here is the same as in

Fig.9a). The worst captured zones are 1 and 2 located on the upper part of

the city, and the best results are achieved for zones 5, 4 and 8. A possible

reason might be the fact that the cars get stuck at the bottom of the city in the

real experiment, while they more freely in a PDE governed system. In general,

notice that the best results are achieved for the time when the congestion level

is the highest, as we can see from Fig. 13a). This is related to the weighting

parameters used for calculation of SSIM (38). Weights tend to introduce more

noisiness into computation, when there are only a few cars in the city. Finally,

recall that the real-life data are also an approximation, since these densities are

obtained by the estimation procedure that is not error-free due to the lack of

sensors at every road. On average, the total SSIM index is around 0.75 (75%

accuracy), which indicates that two density distributions are still quite close.
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Figure 13: a) Mean value of SSIM computed by (38) between the density ρ1 predicted

by numerical simulation of NSWE-model and the density ρ2 estimated from real data as

a function of time; b) The SSIM index of each zone SSIMl with l = {1...9}. Weighting

parameter: η = 20.

6.5. Reproducibility of the results

It is worth noting that the source code used for model validation is an

open source project that you can find here: https://github.com/Lyurlik/

multidirectional-traffic-model. The README.md file contains all the

essential information about the code structure and the data files such that any-

one can get use of it for different purposes. Thus, the results are made to be

reproducible.

This code is used to produce two different vehicle density distributions: the

one predicted by numerical simulation of NSWE model (28), and the other

density is the one reconstructed from data obtained from real sensors.

In order to run the code, you need to have the following files:

Network topology

1. ”../ModelValidation/IntersectionTable.csv” – contains information about

intersections: x and y coordinates of every intersection (columns 1 and 2),

its ID (column 3) and whether it is a node on border (column 4), which

means that this intersection is located at domain’s boundary through
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which vehicles may enter (inflows), or exit (outflows);

2. ”../ModelValidation/RoadTable.csv” – contains information about roads:

ID1 and ID2 (columns 3 and 4) are the id’s of corresponding intersections

that the road is connecting, ID road (column 5) is the road’s ID, max vel

(column 6) is its free-flow limit estimated from real measurements, then

we have number of lanes (column 7) and road’s length (column 8);

3. ”../ModelValidation/TurnTable.csv” – contains turning ratios between any

pair of roads: ID1 of incoming road (column 1), ID2 of outgoing road (col-

umn 2) and the turning ratio between these roads (column 5).

Data from real sensors

5. ”../ModelValidation/Timestamp.csv”– contains time in seconds at which

the data are given (unix timestamp), the time step equals to one minute;

6. ”../ModelValidation/Density.csv” – contains estimated density from real

sensors: first number is road id followed by its density (that is assumed

to be constant within one road) at all time instants, then the next road id

with its density data for each time instant and so on;

7. ”../ModelValidation/AllInflows.csv” – contains inflow values (in veh/hour)

for every road for every time step (one minute). If road is outgoing from

intersection that is not on border, then the inflow value is zero;

8. ”../ModelValidation/AllOutflows.csv” – contains outflow values (in veh/hour)

for every road for every time step (one minute). If road is incoming into

intersection that is not on border, then the outflow value is zero.

Code structure

The main file of the project is mainwindow.cpp: in its constructor we

specify the file names to be loaded, start simulation starting time (line 26) and

simulation step size (line 28). The paths to files containing network and density

data are also specified here. We can also change there the weighting parameter

η used to approximate parameters for every cell (line 4), and parameter d0 (line

5) is used for Gaussian Kernel estimation.

Other important classes are:
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� UrbanNetwork, which contains all the network geometry information

(this is where all the network files are read). This network is used for both

densities. In its function loadRoads, one needs to specify the minimum

distance between the heads of two consequential vehicles.

� NSWEmodel, which contains translation procedure of all network and

intersection parameters into NSWE-formulation (function processInter-

sections). After all parameters are defined in NSWE, it calls construct-

Interpolation function that approximates these parameters defined for ev-

ery intersection to be defined on every cell of a network. Then update

is performed, where the Godunov numerical scheme is applied for the

state update using NSWE model. There is also a function getSSIMD-

iff mean weighted used to compute the weighted SSIM index between two

densities (38).

� GrenobleData, where all the data estimated from the real-life exper-

iments are loaded. In function reconstructDensity the density initially

given for each road is defined for every cell. Thereby, every road is di-

vided in 10 parts and density values are presented as points on the border

between these parts. Then Gaussian Kernel estimation is used to deter-

mine density for every cell in the domain.

� TrafficSystem, which implements concurrent thread for parallel NSWE

simulation relative to the main visualization thread.

7. Conclusions

To summarize, we have derived a macroscopic continuous traffic flow model

that can be used for modelling on large-scale networks. The derivation was

done analytically, using only a few assumptions on networks: they must be

well-designed in terms of maximal flows, and each outgoing road possesses some

particular supply for the flow from incoming roads. The model has been anal-

ysed, and it was shown to be hyperbolic, which is a desirable property signif-
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icantly simplifying the analysis for future tasks such as explicit control design

or steady-state estimation. The model predicts evolution of traffic in four car-

dinal directions. The propagation of traffic flow in each direction is driven by

the demand-supply concept that uses a fundamental diagram whose parameters

are determined by the network topology, as well as by the data from real-life

experiments. Moreover, vehicles moving in some layer can switch to another

layer, which means that there exists mixing between different layers, which is

an important aspect to be included into the model due to its physical ubiquity.

The model prediction results have been validated using experimental platform

GTL Ville that provides real-time data from a network of real sensors installed

in Grenoble. We have made this project to be an open source such that the

results are reproducible and could be used for future studies.

As a promising direction for the future development of optimally operating

transportation systems, it would be interesting to use this model to solve traffic

control tasks on urban networks such as vehicle density stabilization around

some desired equilibrium value, e.g., throughput maximization.
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Appendix A. List of notations

Appendix A.1. Road formulation

Variable Meaning Units

ρ(x, y, t) vehicle density veh/m

Φ(x, y, ρ) flow function veh/s

v(x, y) kinematic wave speed in free-flow regime m/s

ω(x, y) kinematic wave speed in congested regime m/s

ρc(x, y) critical vehicle density veh/m

φmax(x, y) flow capacity veh/s

D(ρ) demand function veh/s

S(ρ) supply function veh/s

φini inflow to intersection from road i veh/s

φoutj outflow from intersection to road j veh/s

ψinj inflow into road j veh/s

ψoutj outflow from road j veh/s

nin number of incoming roads for intersection -

nout number of outgoing roads from intersection -

φij flow from road i to road j veh/s

αij turning ratio from road i to road j -

βij supply coefficient of road j for the flow from road i -

Dij flow demand of road i to enter road j veh/s

Sij supply of road j for flow coming from road i veh/s

θi angle that road i builds with East degrees

li length of road i m
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Appendix A.2. NSWE formulation

Variable Meaning Units

pNθ , p
S
θ , p

W
θ , p

E
θ projection coefficients wrt corresponding directions -

Pin ∈ R4×nin projection matrix for incoming roads into NSWE -

Pout ∈ R4×nout projection matrix for outgoing roads into NSWE -

ρ̄(x, y, t) 4-dim density vector veh/m

Φ̄(x, y, ρ̄) 4-dim flow function veh/s

ρ̄max(x, y) 4-dim maximal density veh/m

v̄(x, y), ω̄(x, y) 4-dim kinematic wave speeds m/s

ρ̄c(x, y) 4-dim critical density veh/m

φ̄max(x, y) 4-dim flow capacity veh/s

D̄(x, y, ρ̄) 4-dim demand function veh/s

S̄(x, y, ρ̄) 4-dim supply function veh/s

φ̄inN (x, y) inflow into intersection in the North direction veh/s

φ̄outN (x, y) outflow from intersection in the North direction veh/s

φ̄NE(x, y) partial flow from North to East wrt intersection veh/s

ψ̄inN (x, y) inflow into outgoing road in the North direction veh/s

ψ̄outN (x, y) outflow from outgoing road in the North direction veh/s

ψ̄NE(x, y) partial flow from North to East wrt outgoing roads veh/s

ᾱEN (x, y) turning ratio from East to North layer -

β̄EN (x, y) supply of East layer for the flow from the North -

cos θ(x, y),

sin θ(x, y)
average direction parameters of intersection -

L(x, y) average length of outgoing roads of intersection m

Appendix B. Proof that ψ̄N = min(D̄N , S̄N)

Here we prove that the flow in some direction (here North) can be written

as a function of demand and supply of the same direction:

ψ̄N = min(D̄N , S̄N ),
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which allows to simplify the model (24).

Let us consider (1− γ)ψ̄EN + γψ̄NE from (25). By definition (16) we get:

ψ̄EN = min(ᾱEN D̄E , β̄EN S̄N ), ψ̄NE = min(ᾱNED̄N , β̄NES̄E).

Notice that now we omit indices ”in” and ”out” in the demand and supply

functions, since they are now referred to the same point. This comes from the

continuation, due to which intersections are now assumed to be infinitesimally

small in space.

Recall that by definition of the demand-supply formulation, if D̄E < ψ̄max,E ,

then S̄E = ψ̄max,E and vice versa. The same holds for D̄N and S̄N . For

simplicity of writing denote Q(γ) = (1 − γ)ψ̄EN + γψ̄NE . We will prove that

there always exists γ such that Q(γ) = min(ᾱNED̄N , β̄EN S̄N ). There are no

more than six different possibilities:

1. ᾱEN D̄E < β̄EN S̄N and ᾱNED̄N > β̄NES̄E . From the first inequality we

obtain

ᾱEN D̄E < β̄EN S̄N ≤ β̄EN ψ̄max,N = ᾱEN ψ̄max,E ,

where the last equality comes for the assumption that the network is well-

designed (27). Thus, we get that

D̄E < ψ̄max,E .

From the other side, if we consider the second inequality, we get

β̄NES̄E < ᾱNED̄N ≤ ᾱNEψ̄max,E ⇒ S̄E < ψ̄max,E .

According to the demand-supply formulation, it is however not possible

that D̄E < ψ̄max,E and S̄E < ψ̄max,E hold at the same time. Thus, this

case can be excluded from consideration.

2. ᾱEN D̄E > β̄EN S̄N and ᾱNED̄N < β̄NES̄E . This case is also impossible,

since from the first inequality we get S̄N < ψ̄max,N and from the sec-

ond inequality we get D̄N < ψ̄max,N , which violates the demand-supply

formulation.
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3. ᾱNED̄N ≤ β̄NES̄E and ᾱNED̄N ≤ β̄EN S̄N . In this case taking γ = 1

results into

Q(1) = ψ̄NE = min(ᾱNED̄N , β̄NES̄E) = ᾱNED̄N ,

which in combination with the second inequality yields

Q(1) = min(ᾱNED̄N , β̄EN S̄N ),

which is the desired property achieved with γ = 1.

4. ᾱEN D̄E ≤ β̄EN S̄N , ᾱNED̄N ≤ β̄NES̄E and ᾱNED̄N > β̄EN S̄N .

By the first inequality for γ = 0 we obtain the following:

Q(0) = ψ̄EN = min(ᾱEN D̄E , β̄EN S̄N )

= ᾱEN D̄E ≤ β̄EN S̄N .

By the second inequality for γ = 1 we obtain

Q(1) = ψ̄NE = min(ᾱNED̄N , β̄NES̄E) = ᾱNED̄N ,

and from the third inequality we get

Q(1) > β̄EN S̄N .

Combining these results all together, we show the desired property:Q(0) ≤ β̄EN S̄N ,

Q(1) > β̄EN S̄N ,

⇒ ∃γ ∈ [0, 1) : Q(γ) = β̄EN S̄N =

min(ᾱNED̄N , β̄EN S̄N ).

5. ᾱEN D̄E ≤ β̄EN S̄N , ᾱNED̄N ≤ β̄NES̄E and ᾱNED̄N ≤ β̄EN S̄N . The

analysis here is the same as in case (3): we take γ = 1, which results in

Q(1) = min(ᾱNED̄N , β̄NES̄N ).

6. ᾱEN D̄E ≥ β̄EN S̄N , ᾱNED̄N ≥ β̄NES̄E and ᾱNED̄N > β̄EN S̄N . Here

we also proceed as in case (4): taking γ = 0 results in Q(0) = β̄EN S̄N .

Further, by the second condition Q(1) ≤ ᾱNED̄N , therefore there exists

γ ∈ [0, 1] such that Q(γ) = min(ᾱNED̄N , β̄EN S̄N ).
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Therefore, if we assume that we can manipulate gamma independently for

every pairwise flow, we can summarize the discussion above in the following

formula: (1 − γ)ψ̄EN + γψ̄NE = min(ᾱNED̄N , β̄EN S̄N ). This leads to the

following transformation of (25):

ψ̄N = ψ̄NN + min(ᾱNSD̄N , β̄SN S̄N )+

+ min(ᾱNW D̄N , β̄WN S̄N ) + min(ᾱNED̄N , β̄EN S̄N ).

Finally, using once again the approximation, where we replace the sum of min-

ima with the minimum of sums, we can write

ψ̄N = min(ᾱNN D̄N + ᾱNSD̄N + ᾱNW D̄N + ᾱNED̄N ,

β̄NN S̄N + β̄SN S̄N + β̄WN S̄N + β̄EN S̄N ) = min(D̄N , S̄N ),

which is exactly the property we wanted to prove (26).
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