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Abstract. In this paper, we propose a novel end-to-end system to ex-
tract strokes from offline math expressions. Using a multi-task neural net-
work we simultaneously predict the location of the pen and the pen state.
Our approach is based on a recent state-of-the-art image-to-sequence
method limited to small fixed-sizes images. We generalize it to large and
multi-symbol images without preprocessing steps such as skeletonization
or binarization. This architecture allows an end-to-end training. A cur-
riculum learning strategy have been used to address the complexity of
the images. We achieve comparable results to the state of the art on the
UNIPEN English character dataset considering the next point predic-
tion. We propose a stroke level metrics that allows us to measure the
stroke reconstruction. Experiments show the advantages and limitations
of the adopted Image-to-Sequence method when scaling up to large and
complex images such as math equations.

Keywords: Stroke Extraction · End-to-end Trainable System · Hand-
written Mathematical Expressions.

1 Introduction

Traditionally, handwriting recognition approaches are split in two categories:
off-line systems which use as input an image of a scanned document; and on-
line systems which use the pen trajectory recorded with e-pen or touch-sensitive
surfaces. In most of real use cases, there is no choice in the input modality.
Finger traces on a smartphone are on-line data, ancient documents are always
digitized as images. However, each modality has its own advantages. The on-
line signal keeps the dynamic of the pen trace which is useful for most of the
recognition algorithms. In addition, on-line signals facilitate editing to the users.
Image based systems have the advantage to better take into account local 2D
context or the global layout of a full document. Multi-modal systems try to
keep advantages from both worlds [18,19] but they need the two modalities.
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Very few datasets provide both modalities natively [17]. Rasterization or on-
line world to the off-line conversion is a straightforward problem. This is very
useful to produce training pairs for multi-modal systems from on-line data [3]
or to produce new training image samples (data augmentation) [10]. In this
last case, rendering realistic raster images from on-line signals usually involves
adding background noise, variation in pen tip width to simulate movement speed
and different artifacts [7]. The reverse operation, off-line to on-line conversion,
is mainly used in two different contexts.

The first one is the vectorization which attempts to model a line drawing
image as a set of mathematical primitives (polygons, parametric curves, etc.)
associated to vector elements found in vector image format such as SVG. Ap-
plication can be for technical drawing vectorization [6] and 2D animation [7]. In
this case, retrieving temporal information is less relevant. The ordering between
the different primitives is not an interest here and parametric curves have no
drawing direction.

The second one is pen trajectory recovery from image of handwritten docu-
ments focus on retrieving the original temporal information. It is a crucial step
for many applications, such as handwriting recognition and signature verifica-
tion. The availability of temporal information in online systems often makes them
better performing than their offline analogue [13]. In 2019, the Competition on
Recognition of Online Handwritten Mathematical Expressions (CROHME) [12]
included for the first time a offline recognition task. It has sparked since a great
interest for offline to online conversion [4].

Recovering the stroke structure (or skeleton) is one of the initial steps in
most document image analyses and understanding systems. It plays a key role
in document processing since its performance affects quite critically the degree
of success in a subsequent character segmentation and recognition. Degradation
appear frequently and can be due to several reasons which range from the acqui-
sition source type to environmental conditions [11]. Sketches and rough pencil
drawings can add difficulties to the process when multiple overlapped lines should
be merged into a single line [16]. Skeletonization is a ubiquitous step in classical
approaches [13] of on-line to off-line conversion. Those approach suffer from the
aforementioned limitations of skeletonization.

Based on the work of Zhao et al . [20], we propose a fully convolutional neural
and multitask network, based on U-Net [15] to predict the pen location and the
skeleton. A final fully connected layer is added for pen state classification. Pen
state prediction enable the reconstruction of strokes and to halt the iteration
framework (thanks to END state). Training data is generated using variable
width strokes [7] making the system robust to stroke width variations.

1.1 Related Works

Pen trajectory recovery Over the years, researchers have proposed many
methods to recover the temporal information. Usually they follow similar steps:
topology extraction, local ambiguous regions detection (junctions, double traced
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(a) (b)

Fig. 1: offline image (a) rendered from a math expression online signal (b).

strokes, etc.). The ambiguities are then resolved using handcrafted heuristics. Ex-
isting approach often fall into three categories: recognition-based, topology-based
and tracking-based. Recognition-based methods [5] were initially addressed to
drawing composed of regular shapes (diagrams, engineering drawing, etc.). They
detect those shapes using geometric primitives. By nature, this approach is not
well-suited to handwriting and limit the user to a limited graphical vocabulary.
Topology-based approaches build a representation from topological information
in original image (skeleton, contour, etc.) and express the pen trajectory recov-
ery as a global or local optimization problem. Qiao et al . proposed a weighted
graph approach to recover the pen trajectory by finding the best matching paths
[14]. They achieve good performance on English characters. Tracking-based ap-
proach iteratively estimates the relative direction of the pen. Bhunia et al . ap-
plied sequence-to-sequence modeling with an end-to-end Convolutional-BLSTM
network obtaining excellent results on Tamil, Telugu and Devanagari characters
[2]. However, Their approach is limited to single isolated characters. Although
the mentioned scripts are closely related, they train a separate model for each
script. Zhao et al . [20] proposed an image-to-sequence iterative framework to
generate pen trajectories with a CNN followed by fully connected layers to pre-
dict the pen position at each time step. They obtain good results on Chinese
and English handwriting datasets. However, these approaches suffer from the
same drawback: the complexity of the model is directly dependent on the offline
image resolution. Small resolutions (such as 28× 28 or 64× 64) can be sufficient
for characters level applications but will lead to illegible images in the case of
larger content like math equations. Using higher resolutions implies a quadratic
increase of the total number of parameters in the model, stemming from the fully
connected layers. Their method also relies on the skeleton to guide the prediction
and to end the iteration framework. Skeletonization of real-world offline image
often results in noisy and incomplete skeletons.

Line drawing vectorization is an essential step for 2D animations and sketch-
ing. Vectorization focus on converting the drawing images to vector graphics.
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Artist usually start by sketching up a first version of their work with a pen
and paper and then manually vectorize and finalize their work digitally. Vec-
torization of rough and complex real-world sketches is a difficult task. Multiple
overlapping lines should be merged into a single line, noisy background and
non-essential lines (e.g . construction lines) need to be cleaned. Simo-Serra et
al . [16] proposed a fully convolutional simplification network augmented with a
discriminator network to clean high resolution sketches. Guo et al . [7] presented
a two-phase method using two networks to vectorize clean line drawings. A first
multi-task CNN extract the skeleton and junction images. The skeleton is sub-
divided to many lines by removing junctions. A second CNN reconstruct the
line connectivity around junctions. They achieve state of the art on the public
Quick, Draw! [9] dataset. Nonetheless, their approach is limited to junction of
valence 3 to 6 of small size 32× 32.

2 Proposed method

2.1 Overview

Our approach is based on Zhao et al . image to sequence method [20]: we design
a pen trajectory prediction network to model pen position frames and infer the
pen trajectory from handwriting offline images by iteratively predicting the next
pen position with the said network. Our approach goes beyond limitations of the
original method by being applicable to arbitrary image resolution, reconstructing
the different strokes using pen states classification and eliminating the need for
a preprocessing skeletonization step. The Fig. 2 shows the inputs and outputs
of our model. The input of our network consists of fives images, the previous
and current images Fi−1, Fi ∈ {−2,−1, 0}h×w, the grayscale offline image I ∈
[0, 1]h×w. We also provide the pixel coordinates as two images IX , IY ∈ [0, 1]h×w.
In fact, the network has a receptive field size of 32 × 32, the spatial clues we
provide are global information that can help improve the network decisions in
the local regions. The network outputs three images, the full skeleton IS of
the input image, all the stroke end points IE , and the next pen position Ii+1

POS .
Furthermore, we also predict a pen state in {Down, Up, End}. The redundancy
in the different outputs allows to guide the training of the main task (the pen
position and pen state). We train our network on synthetic off-line images with
a variable stroke-width generated from the on-line signals c.f . 3.1. Contrary
to [20], the network learns the skeleton image and can handle different image
resolutions.

2.2 Network architecture

Motivated by the successful application of fully convolutional neural networks
(FCNNs) in the recent work of [16] for sketch simplification, We adapt our model
from the U-Net architecture [15]. U-Net is a FCNN used for image segmentation
in biomedical applications. It consists of a downsampling and an upsampling
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Fig. 2: Inputs and outputs of our model.

path. The downsampling path is a succession of 3 × 3 convolutions followed by
ReLU and a 2×2 max pooling layers. It can be seen as an encoder, that encodes
the input in a small hidden feature map H. The upsampling path decodes the
feature map H to the original resolution using up convolutions with a stride of
2× 2. The high-resolution information is reused thanks to shortcut connections
from the downsampling layers to the upsampling layers.

As shown in Fig. 3, the input frame images (Fi−1, Fi), the offline image I
and the coordinate images IX , IY are encoded to a small size hidden feature map
H ∈ R448:

H = Encoder(Fi−1, Fi, I, IX , IY ).

The upsampling path decodes the feature map H to a map O ∈ Rh×w×28 at
the original resolution and outputs the target skeleton image ÎS , the stroke ends
positions ÎE and locate the next pen position Îi+1

pos . The equations (1) to (3)
explain how these images are computed.

O = Decoder(H) (1)

ÎS , ÎE = σ(conv2(O)) (2)
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Fig. 3: Network architecture. The number of filters used in each convolution is
shown on every block. The encoder and decoder are shared by PSNet and PPNet.

Îi+1
pos = σ(conv1(O)� IS) (3)

The conv1 and conv2 functions are classical convolution layers with respectively
1 and 2 kernels. The σ function is the sigmoid function. The product with the
skeleton IS before the output of the next position allows to constraint the next
position to be on the predicted skeleton. This simplifies the task of the last conv1

operation. A similar operation is done in [20] but as a post-processing step, using
the skeleton extracted separately.

The encoder and decoder define the pen position prediction network PPNet.
We modify U-Net by adding third path, a pen state classification network PSNet

with one fully connected layer. We aggregate the decoder output O to a fixed
size vector with global max pooling and input it to the classification layer:

P̂i+1 = PSNet(O). (4)

This allows the classification network to have a complete view of the input image
whereas the decoder has a fixed size receptive field to make it prediction. Fortu-
nately, the max pooling layers exponentially increase the receptive field. The pen
can take three different state values. In addition to the standard pen down and
pen up, we define an end state indicating that the scripter has finished writing.
We consider that an end is a pen up, which implies multi-label classification. The
end state is necessary, it’s a stopping condition for the iterative framework used
in the inference. Checking if every pixel from the skeleton has been visited (as
done in [20]) is insufficient, as a scripter can draw certain pixels multiple times
(pixels at junctions and double traced segments).
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2.3 Loss functions

We train our network with a multi-task loss composed of a binary-cross entropy
loss of the outputed pen state P̂ , a soft-F1 loss of the predicted skeleton ÎS and
for the predicted end of stroke positions ÎE and L2 loss of the predicted pen
position Îpos.

L = LP + LS + LE + LPOS

LP (P̂ , P ) =
1

3

∑
y∈{down,up,end}

−(Py log(P̂y) + (1− Py) log(1− P̂y))

LS(ÎS , IS) =
1

h× w
∑
h,w

softF1(ÎS , IS)

LE(ÎE , IE) =
1

h× w
∑
h,w

softF1(ÎE , IE)

LPOS =
1

h× w
∑
h,w

∥∥∥Ipos − Îpos∥∥∥2
2

(5)

Where IS , IE , Ipos ∈ {0, 1}h×w are the ground-truth skeleton, next pen posi-
tion and strokes ends images.

3 Experimental results

This section describes the used data sets and their preparation, the training
protocol with curriculum learning and finally the proposed evaluations using the
stroke level metrics.

3.1 Dataset preparation

We use the online data from the CROHME 2019 [12] dataset to create a synthetic
offline dataset of handwritten math expressions. We also use the isolated symbols
of UNIPEN online handwriting [8] to allow a fair comparison with [20]. We apply
the same prepossessing steps on both datasets.

The following preprocessing steps are applied to the online data:

– Symbol-wise normalization: the online signals are recorded with different
resolutions and written in different handwriting sizes. To reduce handwriting
size variation, we normalize the writing size to an average stroke diagonal
size (so about a symbol size) of 32 pixels.

– Rasterization: We raster the online signals to gray-scale images with four
stroke thickness selection strategies as in [7]. We vary the strokes-widths
between 1 and 3 pixels.

– Frames generation: Each frame indicates the position of the pen. Similar to
[20], we set background pixels to -2, already drawn pixels that are on the
pen trajectory to -1. We encode the current pen position with 0 value.
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The CROHME 2019 dataset provides 9,993 math equations for the training
set, 986 and 1199 for the validation and test sets respectively (see table 1). To
reduce computational time, the validation set is reduced to a smaller subset of
40 randomly selected equations. The Unipen dataset only contains small images
and thus allows comparison of both systems. The CROHME dataset contains
larger and more complex images with much more strokes per samples.

Dataset Number Training Validation Test

CROHME # of equations 9,993 40 1,119
# of strokes 137K 539 17K
# of frames 6M 25K 770K

Unipen # of characters 8,000 500 2,000
# of strokes 12K 722 2,852
# of frame 407K 26K 102K

Table 1: Dataset split between training, validation and test sets. And the corre-
sponding total frame images.

3.2 Training

During training we follow a curriculum learning [1] strategy. We start by selecting
frame images of one symbol (image resolution of 4096 pixels, e.g . 64 × 64) and
equally sub-sample each pen state class. We compute the total f1-score of the
substasks with eq. (6) on the validation set regularly during training. When
the validation f1-score has not improved over 10 evaluation steps, the image
resolution selection threshold is doubled. We stop at an image resolution of
202, 752 pixels (e.g . 256 × 792). As all images in a mini-batch should have the
same size, each image is padded with white background inside each mini-batch.
To optimize the mini-batch content, each one is built with images of about the
same size. Its means that mini-batches with small images contain more samples
than one with large images.

LC(ÎS , IS) =
1

h× w
∑
h,w

[
softF1(ÎE , IE) + softF1(ÎS , IS)

+softF1(Îpos, Ipos)
]

+
∑

y∈{down,up,end}

F1(P̂y, Py)
(6)

The Fig. 4 illustrates the training progression showing the F1 score of the
validation dataset which always contains the same images, and the F1 score of the
training set which is updated with new larger images every time the validation
F1-score converges. As the validation set contains simple (small images with
few strokes) and complex (large images with numerous strokes), the f1 score is
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Fig. 4: Network training and validation learning curve. The different phases of
curriculum learning are illustrasted with the green vertical lines.

progressing after each update of the training set. However the training score
remains stable as complex images are smoothly introduced.

We use Adam optimizer with a learning rate of 1e−3. The maximum batch
size is set to 10. The network is trained on a single NVIDIA GeForce RTX 2080
Ti 11GB GPU, taking 18 hours to be completed.

3.3 Evaluation & Metrics

In this section, we provide a comprehensive performance analysis of our network
architecture. First we evaluate each subtasks such as skeletonization, next frame
prediction and pen state classification. We then assess the efficiency of their
combination in the iteration framework using an end-to-end image-to-sequence
scenario. We also compare our results with [20] on the Unipen dataset.

Skeletonization, pen location and state prediction The output of PPNet
jointly predicts the position of the next point, the structure of the skeleton as
well as the end point of the strokes, in three separate output layers. We define
the position of the next point as the pixel with the highest activation in the
dedicated layer and compute the TOP-1 error as an evaluation metric for the
pen position prediction. We choose the F1 score metric for the skeleton and end
points extraction. To evaluate PSNet, we compute the per-class f1-score for pen
state classification. The evaluation results on UNIPEN and CROHME datasets
are listed in Table 2.

In comparison, [20] achieves a pen position top-1 error rate of 1.2% on
UNIPEN. No public implementation of their work is available. We implemented
and trained their neural network on UNIPEN. Some meta parameters were not
available in the paper, thus we optimized them on the validation dataset. We
obtained a 4.6% error rate. This result should be compared with the 15.5% of
error obtained by our network on the same dataset in Table 2.
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Pen position error Skeleton End points
Pen state

Down Up End

CROHME 0.100 0.993 0.754 0.990 0.770 0.870
UNIPEN 0.155 0.939 0.6691 0.990 0.682 0.789

Table 2: Evaluation results of PPNet and PSNet on the Unipen and CROHME
test datasets. The table shows the pen position TOP-1 error, the skeleton and
end points f1-score and the per-class f1-score for pen state classification.

Stroke extraction We adapt the iteration framework [20] to extract strokes
with our network. At every iteration, in addition to the next point prediction,
the pen state output is used to recover the strokes. The next point is constrained
to be on the skeleton by multiplying the heat map Ii+1

POS by the predicted skele-
ton IS . We evaluate the proposed stroke extraction algorithm on UNIPEN and
CROHME. We use the stroke intersection over union SIoU from [7] defined as

SIoU =
1

n

∑
i=1,...,n

max
j=1,...,m

Pi ∩ P̂j

Pi ∪ P̂j

, (7)

with n being the number of strokes in the ground-truth online signal and m the
stroke number in the predicted one. A groundtruth stroke Pi is matched with
the predicted stroke P̂j with the highest IoU. We add a new metric, SIoU 75%

which is the rate of strokes for which the SIoU is greater than 75%.
Table 3 compare these metrics for the two systems on UNIPEN dataset. The

method from [20] does not provide pen up information. Thus, we consider that
a pen up state has been reached if the next pen positions is not 8-connected to
the current position.

Method SIoU SIoU 75% Number of parameters

Zhao et al. [20] 0.3587 0.4673 17.8 Millions
Ours 0.568 0.283 5.9 Millions

Table 3: Stroke extraction evaluation and comparison on UNIPEN dataset.

We can observe that our approach has a better SIoU than the other sys-
tem. However both have quite low results, in the best case, there is only 56.8%
of matching between the predicted strokes and the ground-truth strokes. The
SIoU75% shows that the reasons are different for both systems. It seems that
our approach over segment the strokes (only 28.3% of the strokes match at more
than 75%) and the system from Zhao et al. seems to merge strokes. We can also
notice that our system has 3 times less parameters than the other one.

To better understand the behavior of the proposed system on large images,
we study in Table 4 on different subsets of the CROHME data set depending
of the number of strokes in the original ink. We can observe a small decrease
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of SIoU for ink between 10 to 20 strokes, but the results are globally stable
arround 53.2%. The low value of the SIoU75% shows that we over segment most
of the strokes as only 22% of the stroke match more than 75% of the original
stroke. However, we note surprisingly that the lowest result is for small expression
(17.7% for less than 5 strokes). We think that this is because the system well
succeeded in long straight strokes (as fraction bar, integral, equals, ...) which are
rare in small expressions.

[1,5] ]5,10] ]10,15] ]15,20] ]20,25] All

SIoU 0.510 0.511 0.498 0.498 0.535 0.532
SIoU75% 0.177 0.178 0.192 0.217 0.229 0.220

Table 4: Matching rate of predicted stroke on the CROHME data set, considering
different sizes of ink.

Figure 5 presents results of complete inference on two samples with different
sizes. We can see in the original images the used variability in the pen styles
(width and gray level). The second line in the figure shows the ground-truth
strokes. We can see in the last line that the predicted strokes correctly follow the
true skeleton. We can notice that the strokes end at the extremity of the skeleton
and no symbol or part of symbol is missing. However, we globally observe an
over segmentation of the ink. The system well predicts long strait lines (fraction
bars, equal parts) and smooth curves (parts of the α, θ or t). The difficulties
rise in the complex parts at crossing strokes (in alpha, θ symbols), at inflection
points (in 7, 1, or tan symbols).

4 Discussions

One of the main difficulties we faced in this work was the absence of absolute
ground-truth for the strokes order. In the case of equations, the great diversity
which exists in the way of writing a single number, but also the various correc-
tions made a posteriori on the beginning of an equation (e.g. the prolongation of
a fraction bar) means that the order of the strokes captured by the user does not
always correspond to a logical and semantically valid visual order. One solution
to overcome this issue would be to use an online recognition system to evalu-
ate if the produced ink is recognizable. We think that it would not completely
overcome this problem because these systems generally put a rather strong prior
knowledge on the dynamics and the temporality of the entries, and for the mo-
ment none produce a perfect recognition. Moreover, the non-differentiable nature
of this approach prevents the backpropagation from using the stroke order tol-
erance of the online math recognition engine to improve the stroke extraction.
That is why we proposed the SIoU and SIoU75% metrics which evaluate the
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Fig. 5: Stroke extraction visualisation for a simple and a more complex image.
Each stroke is drawn with a different color (better view in color).
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strokes independently of their global order. However, the stroke direction (or-
der of points in a stroke) should be evaluated, but the over/sub-segmentation
of strokes makes it difficult. A metric allowing this evaluation still needs to be
proposed (maybe based on DTW distance).

The proposed approach very well succeed to produce the skeleton and con-
straining the next pen position to be on the skeleton was an interesting pro-
posal. However, the pen state strategy proposed too much pen-up. This decision
needs local and global context. Indeed, the same local configuration (e.g . cross-
ing points) can be solved differently depending on the symbol level context. On
the one hand, the global pooling layer allows a concurrency between all candi-
date points of the image for this type of decision. On the other hand, it brings
confusion on difficult points. The network favors solving obvious regions (e.g .
straight lines) of the image before ambiguous regions (e.g . junctions), resulting
in an over segmentation of the strokes. Furthermore, the network learns a short
temporal transition (t→ t+ 1) from a temporal context limited to the previous
state t− 1 therefore, by design it doesn’t necessarily learn to model longer term
temporal order.

5 Conclusion

In this paper, we presented image-to-sequence approach based on FCNN network
to extract strokes from off-line images. The network simultaneously predicts the
next pen position, skeleton image, stroke end points and pen state at a given
time step. The iterative framework from [20] is complemented with the pen state
information enabling stroke extraction. To the best of our knowledge, we are the
first to tackle stroke extraction from arbitrary image resolution with a neural
network approach. The skeletonization and stroke end points extraction shows
good results that encourage a convolutional approach. However, we show the
limitations of the Image-to-sequence with a FCNN approach on this type of
problem, the network over segments the strokes because of a lack of mid-term
target. A solution can be to model longer temporal transition and to provide a
longer temporal context combining an attention based approach with a recurrent
framework, keeping the CNN backbone.
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