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Abstract: The work presented in this paper consists of searching for all the longest 

common subsequences among r sequences of equal length n which exclude a 

particular string. This problem is named the constrained-multiple longest common 

subsequence (constrained-MLCS) and is a general case of the constrained-LCS. Due 

to its importance, particularly in bioinformatics, the constrained-MLCS is widely 

studied. Thus, the solution proposed here is a coarse-grained multicomputer-based 

algorithm that uses an existing serial algorithm for local computation and a master-

slave paradigm. This solution requires O �|�|×|�|� |	

�|×|�	
|
� � local computation 

time on each processor, O�|MLCS|� communication rounds and O ���|Σ|
� � time for 

preliminary works. |Σ| is the alphabet’s size, p is the number of processors used, |D| 

is the number of dominants generated during the entire resolution process, |����| 
and |����| are the number of all common subsequences, and the length of the 

longest common subsequences respectively. The experiments performed indicate that 

our proposed algorithm is scalable both with the number of processors and the 

number of input sequences. 

Keywords: Constrained-multiple longest common subsequence, Dominant point, 

Coarse Grained Multicomputer. 

1. Introduction  

 With important applications in various fields such as computational biology, information 

 retrieval and file comparison [2, 13, 24], the multiple longest common subsequence problem, 

denoted MLCS problem, is a classic NP-hard problem which consists in finding the longest 

subsequence shared between two or more sequences. In fact, according to the number of 

sequences, this problem can be classified into two cases: 
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1. An LCS problem which is searching for the longest common subsequences of exactly 

two sequences; 

2. An MLCS dealing with at least three sequences.  

Considerable efforts have been made during the last three decades to find solutions to this 

problem, but the most significant and applicable contributions deal only with the particular 

case of two or three sequences [4, 11, 18, 28]. Indeed, with the increasing volume of 

biological data and the widespread use of sequence analysis tools, an efficient MLCS 

algorithm, applicable to many sequences, will have a significant impact in bioinformatics. 

Many sequential and parallel algorithms have been recently proposed [17, 22, 28, 29] 

for the MLCS problem. Depending on the model on which the solutions are based, these 

algorithms can be classified into two groups: the dominant point-based and the dynamic 

programming-based approaches. Using the dominant point-based approach has an enormous 

advantage over classical dynamic programming approaches because it greatly reduces the size 

of the search space by orders of magnitude [28]. Although this approach seems suitable, it 

also suffers from unnecessary and redundant storage, computations, comparison and deletion 

of multidimensional match points [17, 22] that hinder its application on long and numerous 

sequences. 

To fill the gaps in the dominant point-based approach, in this work we look at a variant 

of the MLCS problem called the Constrained-MLCS problem. In fact, our aim is to propose a 

parallel algorithm based on an ameliorated version of the dominant point approach [22] and 

also based on the Bridging Coarse Grain BSP/CGM (Bulk Synchronous Parallel/Coarse 

Grained Multicomputer) model [3, 7, 27]. The CGM seems best suited for designing 

algorithms that are not too dependent on an individual architecture. A BSP/CGM machine is a 

set of p processors, each having its own local memory of size m with a connection to a router 

able to deliver point-to-point messages. A BSP/CGM algorithm alternates between local 

computations and global communication rounds. A CGM computation/communication round 

corresponds to a BSP super-step with a communication cost of g × m, where g is the cost of 

communicating a word in the BSP model. Therefore, an efficient BSP/CGM algorithm must 

have maximum speedup and must use minimum number of communication rounds [7]. 

Our main contribution in this paper is to propose a parallel algorithm based on the serial 

solution of Z. Peng and Y. Wang [22] for the Constrained-MLCS. The motivation to use this 

particular sequential algorithm is that the data structure (Leveled-DAG) used provides a better 

optimization of time and space. In fact, existing dominant point-based algorithms have to 

generate a huge number of nodes and save them all in memory, while the Leveled-DAG 
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approach can timely eliminate all the nodes in the graph that cannot contribute to the 

construction of MLCS. At any moment, only the nodes in the current level as well as some 

nodes in the previous levels are saved, therefore, the Leveled-DAG is much smaller than the 

DAG constructed by the existing dominant point-based algorithms, which can save a lot of 

memory space and allows to solve larger problems. Our contribution can be summarized as 

follows: 

• We introduce and clearly define a new variant of the MLCS problem. 

• We also propose an efficient CGM-based algorithm that searches all the common 

subsequences between a set of sequences. 

• To take the constraint into consideration, we first define a suitable data structure 

called CSS-graph which is used to store all the previously found common 

subsequences and we propose an efficient parallel algorithm to construct it and to 

perform the validation of the constraint. 

• We do some analysis of our proposed algorithms resulting in the solution requiring 

� �| ||�|�|!""#||$%!"|
� � local computation time on each processor, 

��|����|� communication rounds and � �&'|�|
� � for the preliminary works. In this 

analysis, p, n, r denote respectively, the number of processors used, the length and 

the number of sequences and |(|, |����|, |����|, |Σ| are the number of dominant 

points generated by the sequences, the number of common subsequences, the length 

of the longest common multiple subsequences and the size of the alphabet 

respectively. 

• We perform experiments with sample sequences from a real biological NCBI 

database [23]. The collected results show that our solution is suitable for long 

sequences and is sufficiently scalable both with the number of input sequences and 

with the number of processors. 

This paper is organized as follows: Section 2 is dedicated to introducing key concepts 

and for presenting recent research related to the MLCS problem. In Section 3, we present and 

analyze our parallel algorithm to solve the Constrained-MLCS problem. Experimental results 

and analyses are presented in Section 4. Finally, in Section 5, we summarize the paper and 

provide directions for future research. 

2. Constrained-MLCS problem and Related works 
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In this section, we will first provide a formal definition of the MLCS and Constrained-

MLCS problems; second, we will describe the dominant point approach used to solve the 

MLCS problem in the research literature and finally, we review related works on exact and 

approximate, sequential and parallel algorithms for the MLCS problem. 

2.1. The Constrained-MLCS problem 

The MLCS problem with a string-exclusion constraint, denoted STR-EC-MLCS, 

consists of searching all common subsequences of several sequences that are of maximum 

length and which exclude a string.  

Definition 1. Let Σ be a finite set of symbols called an alphabet. A sequence x of length n 

over the alphabet Σ is defined as: ) = +,+- … +&. The ith character of x is denoted x[i]. A 

sequence / = +01+02 … +03 is a subsequence of x if ∀5, 1 ≤ 5 ≤ 8: 1 ≤ :; ≤ < and ∀=, >, 1 ≤
= ≤ > ≤ 8: :' ≤ :?. A substring of x is a subsequence of successive symbols within x.  

Definition 2. Let � = @�,, �-, … , �AB be a set of sequences over alphabet Σ. The MLCS 

problem for set � consists in finding all sequences x such that: 

i. x is a subsequence of  �0  for each i; 

ii. x is the longest among all sequences satisfying (i). 

In general, there exists more than one MLCS between many sequences.  

Definition 3. For a given set of sequences � = @�,, �-, … , �AB and a string Pct, the 

Constrained-MLCS searches all sequences x such that: 

i. x is a subsequence of �0, 1 ≤ : ≤ C; 

ii. x doesn’t entirely contain Pct; 

iii. x is of maximal length satisfying (i) and (ii). 

 This problem has already been addressed in the literature [9, 10, 18, 20], but it was 

only for the simple case of two input sequences.  

An example of this problem is depicted in Figure 1 where the input sequences are 

ACTAGCTA, TCAGGTAT and CTAAGTTA. 

Notations 

Hereafter we will use the following notations: 

• MLCS stands for multiple longest common subsequence; 

• |MLCS| is the length of the MLCS; 

• ST is the table of successors which indicates for a sequence x the position of the next 

character identical to each symbol of the alphabet after a given position; 
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• CSSs stands for all common subsequences between multiple sequences; 

• STR-EC-MLCS stands for string exclusion multiple longest common subsequence; 

• = is the number of sequences in a MLCS; 

• D denotes the number of processors used; 

• n is the common length of the  r sequences;  

• ( is the set of all dominant points generated during the search process; 

• Pct is the constraint string (or sequence) in a Constraint-MLCS problem. 

They will be widely used in the following. 

Figure 1. Illustration of the MLCS and the Constrained-MLCS problems with input 

sequences ACTAGCTA, TCAGGTAT, CTAAGTTA and a constraint string Pct =TA.  

2.2. The dominant point-based approach 

The dominant points approach, introduced by Hischberg [4, 19], consists of reducing 

the search to the exploration of a smaller set of dominant points rather than all the positions in 

a square matrix as done in the dynamic programming technique. This method has been widely 

used not only for the LCS problem [1, 5, 19] but also for the extended case of more than two 

sequences [4, 13, 28]. 

2.2.1 Preliminaries: definitions 

Definition 4. Over a set of sequences � = @�,, �-, … , �AB, a vector E = �E,, E2, … , EC� is 

called a match point if �,GE,H = �-GE-H = ⋯ = �AGEAH = α. Hereafter match E�K� will denote 

the fact that the vector E  is a match point over �. In Figure 1, LG4H = NG3H = PG3H = A, thus 

the point v = (4, 3, 3) is a match point. 

Definition 5. Given two match points E = �E,, E2, … , EC� and R = �R,, R2, … , RC�, we say 

that v dominates w denoted by v ≤ w  if E0 ≤ R0 for 1 ≤ : ≤ C. In a similar way, we say that v 

strongly dominates w if E0 < R0, 1 ≤ : ≤ C. In contrast, v doesn’t dominate w if there exists 

an :, 1 ≤ : ≤ C such that R0 ≤ E0. This relation is denoted. E ≰ R. We also say that w is a 

successor of v if w strongly dominates v and no other match point z exists such that R < V <
E.  

We can observe in Figure 1 that (2, 2, 1) ≤ (4, 3, 3), (2, 2, 1) ≰ (3, 1, 2) and (4, 3, 3) is a 

successor of (3, 1, 2) on the symbol T. 

Definition 6. A match E = �E,, E2, … , EC� is called a dominant of level k or a k-dominant if: 
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i.  ��E� = 8 where � is a matrix computed by a dynamic programming technique 

using the standard recursive formula for the MLCS problem (see [22]); 

ii. There is no further match point on the same symbol that dominates v. 

We denote (W and ( as the set of all k-dominant points and the set of all dominant points 

respectively. 

Definition 7. A point V in a set B is called the minimal point of B if for all points X ∈ B −
@VB, �\]ℎ >ℎ_> X ≰ V. We denote by minima (B) the set of all the minimal points of B. 

2.2.2 Principle of the method 

The key idea of this method is based on the observation that only the dominant points 

can contribute to the construction of the MLCS. The search space of the dominant point 

method can be represented as a Direct Acyclic Graph (DAG) in which: 

i. A node represents a match point; 

ii. The edges 〈V, X〉 represent the fact that q is a successor of z. 

This approach consists of constructing the DAG starting from level 0 to level |����|. 
Therefore, initially, the DAG contains only the source �0,0, … , 0� and the final �∞, ∞, … , ∞� 

nodes, which don’t have incoming and outgoing edges respectively. From here, the DAG is 

constructed level by level as follows: at the first level, 8 = 0 and (W = @�0,0, … ,0�B, and with 

a forward iteration procedure, the (k + 1)-dominants (W�, are computed based on the k-

dominants (W. At the end, the DAG will be fully built and an MLCS will be any longest paths 

starting from the source node to the final node. 

A simple example (case of two sequences) of this method is illustrated in Figure 2 

where S1 = AGCTGA and S2 = CAGATCAGAG. In this figure, the nodes in gray and black 

represent those that have been removed either by the minima operation or because they appear 

more than one time in the same level. For example, to build level 1, we look for all the 

successors of the node (0,0) on all the symbols of the alphabet. Here, we have the nodes 

A(1,3), G(2,3), C(3,1) and T(4,5) among which G(2,3) and T(4,5) are not minimal nodes 

because (1, 2) ≤ (2, 3) and (1, 2) ≤ (4, 5). In level 2, the node (4,5) is duplicated, thus, one 

should be removed (CT(4, 5)). It should be noted that the final node is the successor of nodes 

having no successors. In this figure, the nodes in dark gray are nodes leading to the MLCS. 

Figure 2. A DAG constructed using the dominant point method using sequences S1 = 

AGCTGA and S2 = CAGATCAGAG. 
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2.3. Related Works 

Because of its crucial importance, this problem has received the attention of many 

researchers. Thus, several sequential and parallel solutions have been proposed. Among these 

solutions, some just calculate the length of the MLCS and others return the sequences 

corresponding to the MLCS. It should be noted that the dominant points technique is the most 

used. 

Based on dynamic programming, Hsu and Du [11] proposed for an MLCS problem with 

r sequences of equal length n, an algorithm requiring ��<'� time and space. This algorithm 

returns a set of sequences which are LCS. To improve this, many other solutions have been 

proposed [1, 9, 19]. In [9], after proposing a CGM-algorithm to compute the length of the 

LCS, a backtracking method is used to find the corresponding LCS. Even with all these 

improvements, these solutions are still inefficient for practical use. For the LCS problem, 

many parallel solutions have been recently proposed [10, 26].  

Recently, many dominant point-based solutions have been developed for the special 

case of two sequences [5, 12, 14, 20]. In [14], three dominant point algorithms for three or 

more sequences were proposed. One of the algorithms, Algorithm A, which was designed 

specifically for MLCS problems of three sequences, is much faster than the traditional 

dynamic programming algorithms for three sequences. However, Algorithm A finds dominant 

point sets by enumerating points of the same coordinate values in each dimension. As a result, 

its complexity increases rapidly with the growing number of sequences. The other algorithm, 

Koji and Imai’s algorithm [14], works for an arbitrary number of strings. Apart from finding 

the length of the MLCS, these algorithms also proposed methods for recovering all MLCS.  

For the MLCS problem, D. Korkin [15] proposed the first parallel MLCS algorithm 

requiring ��|Σ||(|� time complexity, where |(| is the number of dominant points in the 

graph. Later, Chen et al. [4] presented an efficient MLCS algorithm named FAST-LCS for 

DNA in which they introduced a novel data structure called a successor table to obtain the 

successors of nodes in constant time and they used a pruning operation to eliminate the 

nondominant nodes in each level. To improve this solution, Wang et al. [28] use the divide-

and-conquer strategy, which is very suitable for parallelization to eliminate the nondominant 

nodes and proposed an efficient algorithm named Quick-DPAR. Many other improvements 

have also been proposed [16, 17, 22, 30, 31]. 

Among these recently proposed solutions, we have chosen as our sequential algorithm 

for local computation, the solution of Z. Peng and Y. Wang [22] because of its better 
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optimization of time and space. This solution consists in setting up a leveled-DAG that 

collects the partial MLCS until reaching the complete MLCS. The preliminary work consists 

in constructing the tables of successors. The entire execution process for sequences 

ACTAGCTA and TCAGGTAT of their solution is depicted on Figure 3. In this figure, the 

match point and the corresponding symbol are shown in each node. The partial LCSs are 

shown by strings near the nodes. The white nodes are newly generated and will be expanded 

later and the green ones are outdated and will be removed right away. The red nodes with 

incoming edges are left from the previous levels and cannot be removed at present. Steps (A), 

(B) and (C) generate the first, second and third level of nodes respectively. In step (D), no 

new node is created any more. Step (E) deletes the remaining outdated nodes and in step (F), 

only the end node is left. 

The construction steps of the new graph are: 

Step 0: Compute the entries of the successor tables of each input sequence; 

Step 1: Build the first level of the Leveled-DAG: generate all the successors of the initial 

node as the first level by referring to the successor tables; 

Step 2: Build the next level of the Leveled-DAG and delete the outdated nodes (generate and 

delete). A node is said to be outdated or useless when it can no more contribute to the 

search process of the MLCS. If there are nodes in the Leveled-DAG that have not been 

expanded, repeat the following two substeps: 

Step 2.1: For each unexpanded node z, generate all its successors (if a successor already 

exists in the graph, it does not need to be generated several times and only needs a 

pointer), and if z has no successors, let the final node be its only successor; 

Step 2.2: If |D_=>:_d_����V�| is the length of the partial LCS of the node z then, for each 

node z which does not possess an incoming arc (nodes (1, 3), (2, 2) and (3, 1) in figure 

3 at step B), and for each successor s of z do the following: 

• If |D_=>:_d_����V�| ≥ |D_=>:_d_������|, delete the partial LCSs of s. Append 

the corresponding symbol of s to each partial LCS of z, and then save all the 

appended partial LCSs as the new partial LCSs of s; 

• If |D_=>:_d_����V�| ≥ |D_=>:_d_������| − 1, then append the corresponding 

symbol of s to each partial LCS of z, and add all the appended partial LCSs to the 

existing partial LCSs of s. Delete node z (as well as its partial LCSs) from the 

graph. 

Step 3: Repeat Step 2.2, until only the final node is left in the graph; 
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Step 4: Output the partial LCSs saved in the end node, which are the real MLCS of the input 

sequences. 

Figure 3. The Leveled-DAG constructed for sequences ACTAGCTA and TCAGGTAT. 

The resulting algorithm returns all MLCS in a time complexity that is linear to the 

number of nodes in the graph, say ��|(|� and a space complexity that depends on the 

maximum level of the Leveled-DAG ���_+_�gEgd�. 

To find the length of the Constrained-LCS, many sequential solutions have been 

proposed [8, 25]. For parallel solutions, Deorowicz [8] proposed the first bit-parallel 

algorithm for the STR-IC-LCS problem and recently we proposed a CGM-based algorithm 

for a string-exclusion LCS [21]. To the best of our knowledge, our parallel algorithm, finding 

all the constrained-MLCS, is the first presented in all the research literature. 

3. CGM Algorithm for the Constrained-MLCS problem 
This section describes our proposed parallel algorithm. We first present an efficient 

CGM algorithm for preliminary works, second, we propose a parallel algorithm using the 

master-slave paradigm to find all the common subsequences (CSSs) between the input 

sequences and we finally describe an algorithm to validate all the previously found CSSs 

according to a constraint.   

3.1. Preliminaries  

For a STR-EC-MLCS problem with r sequences of equal length n, the calculation of the 

values of the entries of a successor table (ST) for a sequence ) = +,+- … +& is performed 

using equation (1) [22]: 

�hG:, 5H = i:<@i|+j = K0 , i > 5, 1 ≤ : ≤ |Σ|, 0 ≤ 5 ≤ <B (1) 

where K0 is the ith symbol in Σ . 

From this equation, the following dependency relationships are derived: 

i. The computation of the entries of the tables ST for two sequences Si and Sj is 

independent with j ≠ i and 1 ≤ :, 5 ≤ =; 

ii. When calculating the entries of a table ST, the computation of the values corresponding 

to each symbol of the alphabet is mutually independent. Formally, the computation of 

each �hG:, 5H for 1 ≤ : ≤ |Σ| is independent to �hG8, 5H for 1 ≤ 8 ≤ |Σ| with k ≠ i; 

iii. The computation of each �hG:, 5H for a sequence of size n with 1 ≤ 5 ≤ < depends on the 

symbols present in the sequence in positions 5 + 1, 5 + 2, ⋯ , <. 
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Based on these dependencies, because our algorithm runs on a parallel computer with p 

processors, and in order to ensure load balancing among processors, we propose two 

distribution schemes: 

Scheme 1: Equally distribute the sequences on processors. This formally consists of assigning 

to a processor i, the ⌈=/D⌉th sequences. This distribution is easy to implement but has 

the drawback of leaving some processors idle if = < D; 

Scheme 2: If = < D, then we assign a sequence to several processors as follows: we first 

assign a sequence to ⌊D/=⌋ processors. If = × ⌊D/=⌋ < D, then add a processor to the 

previous ⌊D/=⌋ starting with the first block of processors. Although it is difficult to 

implement, this distribution scheme reduces the processor’s idle time and ensures 

much better load balancing. 

In our algorithm, we use the first scheme, because, in practice, the number of input 

sequences is usually greater than the number of processors. With this, in order to have the 

tables of successors of all the sequences, after the computation phase, all the processors will 

perform a global communication of all-to-all type. An overview of this solution is given in 

Figure 4 below. 

Figure 4. Overview of preliminary work. 

In this figure, the first step represents the task distribution process, the second, the local 

computation phase on each processor (calculating the entries of the table of successors of 

each sequence assigned to it) and the last, the global communication round between 

processors. Algorithm 1 presents local computations operations for a processor of rank i. The 

time and space complexity of this algorithm is summarized by lemma 1. 

Algorithm 1: Local computation for preliminary work. 

1 Data: The ⌈= D⁄ ⌉ith sequences 

2 Output: Successors tables of the ⌈= D⁄ ⌉ith sequences 

3 Begin 

4 Foreach sequence + = +,+- ⋯ +&do 

5 For j from 1 to n do 

6 Foreach symbol K0 ∈ Σ do 

7 �hG:, 5H = i:<@i|+j = K0B; 
8 End for 

9 End For 
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10 End For 

11 End 

Lemma 1: On p processors, the preliminary work for the Constrained-MLCS problem with r 

sequences of equal length n requires � �&'|�|
� � execution time and ��<=|Σ|� space with a 

single communication round. 

Proof: According to equation (1), the computation of the entries of a successor table for a 

sequence of length n is done in ��<|Σ|�. Since each processor will evaluate at most ⌈= D⁄ ⌉ 

sequences, it therefore requires ��<|Σ|� × s'
�t = � �&'|�|

� � time. Additionally, as each 

processor must have the table of successors of all the sequences, the space used is ��<|Σ|� ×
=.  

3.2. Parallel solution finding all common subsequences of the Constrained-

MLCS problem 

Among the existing sequential and parallel solutions for the MLCS problem, those 

based on the classical dominant point approach suffer from too much time and space 

consumption [28, 29]. Therefore, our aim here is to propose a parallel algorithm based on the 

efficient serial algorithm presented in [22]. Indeed, the main ideas for our solution are the 

following: 

1. We will use the Leveled-DAG presented in [22] but since our goal is to have all 

common subsequences, we will no longer remove all outdated nodes (nodes that can 

no longer contribute to the search process of other CSSs). 

2. At the last level (the level where all MLCS are found), all CSSs found since level 1 are 

returned in the form of a graph (this representation optimizes the memory space 

necessary to store these CSSs because their identical prefixes are recorded in a single 

copy). 

Definition 8. When solving the MLCS problem using the dominant point approach, a 

subproblem can be defined as being the search of all the successors of a match point. 

From this definition, the level k of a subproblem is defined as the length of the common 

subsequence that it generates. These subproblems can be represented as a multilevel acyclic 

graph defined as follows: 
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Definition 9. The DAG used to solve the MLCS problem is a graph in which: 

1. A node is represented by: 

a. A match point E�E,, E2, … , EC�; 

b. The symbol having produced the match point E; 

c. The subsequence(s) generated by the point E. 

2. An edge represents the operation of calculating a successor from another match. Indeed, if 

 E, and E- are two match points associated with symbols K, and K- respectively, then the 

edge E, → E2 represents the generation of subsequence K,K-; 

3. The nodes that never have incoming and outgoing edges are respectively the initial and 

the final node; 

4. The dependencies between the nodes are defined as follows: 

a. Two nodes which are not connected by an edge are mutually independent; 

b. The evaluation of one node may depend on the evaluation of another node of the same 

and the previous level. An example of this is shown in figure 3 where the evaluation of 

the node (7, 6) depends on the node of the same level (4, 3) and on the node of the 

previous level (5, 4); 

c. A node no longer having an incoming edge can no longer contribute to the search 

process of subsequences of other nodes and thus can be saved with all its generated 

subsequences. 

From this definition, searching all CSSs consists in constructing the DAG starting from 

the initial node and ending at the final node by generating new nodes, saving the CSSs and 

removing the outdated nodes. 

From the definition of the DAG the following characteristics emerge: 

• The DAG has an unknown form: for two sets v = @v,, v-, … , v'B and w =
@w,, w-, … , w'B of r sequences each, in the case where |v,| = |w,|, |v-| =
|w-|, … , |v'| = |w'|, the DAG generated by the set A may be different from the one 

generated by the set B; 

• Uncertainty of generation of new nodes: the transition from one level to another does 

not involve the generation of new nodes. With this DAG, it is impossible to exactly 

calculate the number of nodes generated by a level. 

Given these characteristics, it is therefore a challenge for us to evaluate in parallel the 

nodes of a graph whose form is unknown and in which dependencies exist between the nodes 
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of the same and the previous level. This form requires a supervisor during the parallelization 

process because it will be necessary to synchronize the data so that each processor works on 

correct and updated data. 

This algorithm uses the master-slave model. On a parallel machine having p processors, 

the processor Dx will be the master, and the rest yD,, D-, … , D��z,�{ the slaves. The roles of 

each type of processor are as follows: 

• 3.2.1 Master processor: 

� Generate the first points of correspondence (the successors of the initial node); 

� Distribute all these nodes on slave processors; 

� Combine the partial results of slave processors after each step; 

� Based on the partial results, rebuild the next level by deleting the duplicates and 

reassigning the CSSs to the corresponding nodes. 

• 3.2.2 Slave processor:  

� Determine, using a specific algorithm, the nodes on which it will perform 

calculations; 

� Generate all the successors of each node assigned to it. In the case where a 

successor already exists, it is no longer generated and we just perform a 

redirection from the node to this successor. 

Algorithm 2: Local algorithm for the master processor 

1 Data: Successors table of all the r sequences 

2 Output: The CSSs corresponding to the input sequences 

3 Begin 

4 DAG = {initial node, final node}; 

5 Succ(initial node) ← Generate_Next(initial node); 

6 Distribution of Succ(initial node) on the p-1 slave processors; 

7 Wait for the first results from the slave processors; 

8 Result’s reception and partial recombination of DAG; 

9 Foreach duplicated node s of the same or previous level do 

10 Merge s; 

11 End For 

12 Foreach outdated node s do  

13 Save CSSs of s; 

15 End For 
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16 End 

The CGM-based algorithm can therefore be summarized in three steps: 

Step 1: The master processor generates the successors of the initial node and distributes them 

on all slave processors. 

Step 2: Construction of the next level as follows: 

Step 2.1: For each unexpanded node (node for which the successors have not been 

generated) generate its successors. If it has no successors then the final node is 

taken as its only successor. 

Step 2.2: If |z| denotes the length of the common subsequence of a node z, then for each 

node z having no incoming arc and for each successor s of z, do the following: 

• If |V| ≥ |�| then replace all CSSs of s by CSSs of z which have been 

concatenated with the corresponding s; 

• If |V| ≥ |�| − 1 then append the CSSs of z with the corresponding symbol of 

s and add them to the CSSs of s; 

• Save the CSSs of z.  

 Step 3: Repeat Step 2 until the final node remains the single unexpanded node in the graph. 

Algorithms 2 and 3 describe respectively the work of the master and slave processors 

during each step of the search process of all the CSSs. In Algorithm 2, the procedure 

Generate_Next generates the successors of a node. It should also be noted that the sending 

phase of the successors of the initial node is a one-to-all communication. 

In Algorithm 3: 

• The function compute_nb_node (E) is used to calculate the number of nodes on which a 

processor will perform its jobs. In the case where this number is zero, the indexed 

processor will be waiting during the corresponding step; 

• During the first communication phase, the processors having performed local 

calculations will communicate their results to the others; 

• The second communication phase consists in sending to the master processor by the 

slave processors, information which accelerates the process of saving the CSSs. 

To optimize memory space, the slave processors will perform local deletions and only the 

supervisor will keep all found CSSs that are the results from algorithms 2 and 3.  

Algorithm 3: Local algorithm for slave processors 

1 Data: Set E of unexpanded nodes. 
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2 Output: a set of generated nodes with their corresponding CSSs. 

3 Begin 

4  nb_node ←  compute_nb_node (E); 

5 For i from 1 to nb_node do 

6 Foreach symbol α∈Σ do 

7 Succ ← Succ ∪  Generate_Next(nodei, α ); 

8 End For 

9 End For 

10 First communication phase of all-to-all type; 

11 Collect information and possibility delete outdated nodes; 

12 Second communication phase of all-to-one type;  

13 End 

Figure 5 is an illustration of the overall process of our parallel algorithm searching all 

existing CSSs between the sequences ACTAGCTA, TCAGGTAT and CTAAGTTA. In this 

illustration, we have 4 processors among which 1 is a supervisor and 3 are slaves. In figures 

5.a and 5.b, the green and red nodes represent the initial and the final node respectively. The 

step (E1) is the generation of the successors of the initial node by the supervisor. (E2) is the 

parallel generation of the successors of nodes of the previous level. (E3) represents the first 

synchronization by the supervisor. (E4) is the second local computation on slave processors 

and (E5) is the corresponding synchronization phase on the master. The third local 

computation and synchronization are represented by (E6) and (E7) respectively. After (E7), 

the master processor will no longer synchronize data because only one node remains in the 

DAG. Step (E9) shows how only active slave processors compute the last subproblem. This 

last step exists to create links between the last unexpanded node and the final node. 

Figure 5.a First five steps to find the CSSs between three sequences with four processors. 

 

Figure 5.b. Last ending steps for the search process of CSSs of three sequences using 4 

processors. 

Figure 5. Entire search process of all existing CSSs between ACTAGCTA, TCAGGTAT and 

CTAAGTTA sequences with 4 processors. 

Lemma 2: On p processors, the overall search process requires � �| |×|}|
� � local computation 

time and ��|����|� communication rounds. 
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Proof: The evaluation of a node requires ��|Σ|� time. The distribution scheme used here 

guarantees, in the worst case, 
| |
�  nodes per processor. Which gives us a local calculation time 

of ��|Σ|� × | |
�  = � �| |×|�|

� �. Since the DAG has a maximum of ��|����|� levels and each 

level induces two communication rounds, we conclude that the entire resolution process 

requires ��2|����|� = ��|����|� rounds.   

3.3. Coarse-Grained algorithm validating all common subsequences  

This parallel algorithm works on a set of p processors and can be summarized as 

follows: 

• Definition of a data structure which will optimize the storage space used by all common 

subsequences. This backup will be done only on the master processor during the process 

of backing up CSSs; 

• Distribute the constraint on each processor; 

• Group all the common subsequences according to their level (a level k groups the CSSs of 

length k); 

• Validate the CSSs in parallel level after level starting by the levels of the maximum 

length; 

• If one or more sequences of a level k respect the constraint, then the validation process is 

completed and the CSSs of the current level can be returned as MLCS. 

3.3.1 Data structure used to store all CSSs 

The idea here is motivated by the fact that during the process of searching for CSSs, 

CSSs of length k are found directly after searching for all common subsequences of length k-

1. Thus, subsequences of length k-1 are prefixes of subsequences of length k. The structure 

defined here is a graph whose preview is given in Figure 6 for the sequences ACTAGCTA, 

TCAGGTAT and CTAAGTTA.  

3.3.2 Parallelization constraints 

The previous data structure results in the following constraints: 

• A level k is evaluated only if all CSSs of the nodes of the level k+1 have all been 

validated and none of them respects the constraint; 

• The evaluation of nodes belonging to the same level and of two CSSs belonging to the 

same nodes are mutually independent; 
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• The number of nodes to evaluate on a level is not predictable. Additionally, the 

evaluation costs of two nodes (the number of CSSs to validate) of the same level can be 

different. 

To ensure load balancing between processors, we will not distribute nodes but, a set of CSSs.  

Figure 6. Data structure storing all CSSs. 

In Figure 6, a CSS of length k will be represented by the path from the source node to 

one node in level k. For example, the CSS “CAGA” is represented by the path @��2,2,1� →
v�4,3,3� → ~�5,4,5� → v�8,7,8�B. The evaluation of one level consists in finding all CSSs 

generated by nodes of the level and distributes them on each slave processor. Thus, to 

evaluate level 5, two processors will validate in parallel “TAGTA” and “CAGTA”. With 

“TA” as a constraint, these two sequences will not respect it. Therefore, level 4 can be 

evaluated, and during the evaluation, the set of CSSs of this level will be equally distributed 

on processors and will be processed simultaneously. At the end of this level, only “CAGA” 

will respect the constraint and the validation process will be stopped. 

 

3.3.3 Parallel algorithm 

This solution is based on the previous parallelization constraints and is summarized in the five 

next steps: 

1.  The master processor distributes the graph to the others processors;  

2. Evaluate the level |����|. The evaluation of a level consists in looking for all the 

CSSs generated by nodes of the level and then for each CSS to carry out a validation;  

a. To evaluate a level k, we search all nodes of the level by assigning them 

indexes. For each node, we memorize the number nb of CSSs that it has 

generated; 

b. When this number is known, each processor calculates the number of CSSs 

that it will evaluate, say �∑ &�
� �. The distribution here is linear starting from the 

lowest indexed nodes. 

c. After the local calculations (validation of the CSSs), if there exists among the 

validated CSSs those that respect the constraint, then, the corresponding 

processor will carry out a one-to-all communication in order to notify the other 

processors that an MLCS has already been found.  

3. If after Step 2, no CSSs validate the constraint, then the |����| − 1th level is 

evaluated; 
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4. Repeat Steps 2 and 3 until level |��?|. Indeed, if we could reach the level |��?| without 

having found an MLCS, since all the CSSs of length less than the constraint 

necessarily respect it, then the final solution will be all the CSSs of the level |��?| − 1. 

Algorithm 4: Local validation for a processor rang 8 

1 Input: The graph G of CSSs and the constraint Pct 

2 Output: A set of MLCS not containing Pct 

3 Begin 

4  If k == 0 then 

5     Send (G); 

6   else  

7     Receive(G); 

8  End if 

9  j = |����|; 
10 While j > = length(P) do  

11       nb_css = compute_nb_css(G, j); 

12 For i from 1 to nb_css do 

13     Validate(���0, ��>); 

14     If (valid(���0, Pct)) then 

15        add (���0, list); 

16     End if 

17 End For 

18 If not_empty (list) then 

19      Send(list); 

20       Break; 

21 End if 

22 j = j-1; 

23 End while 

24 End  

Algorithm 4 is the executed pseudo code on a processor of rank k. In this algorithm, the 

procedure validate(���0, Pct) verifies if ���0 contains the constraint string Pct. This 

verification is performed using simple comparisons. The procedure compute_nb_ css(G, j) 

finds the number of CSSs to be validated by a processor on a level according to the principle 
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of Steps 2.a and 2.b described above. The complexity analysis of this algorithm and the global 

solution is presented in lemma 3 and theorem 1 respectively. 

Lemma 3: Algorithm 4 requires � �|!""#|×|$%!"|
� � local computation time and ��|����|� 

communication rounds, where p is the number of processors used. 

Proof: This proof is similar to that of Lemma 2.  

Theorem 1: Our solution for the MLCS problem with a string exclusion constraint requires  

� �| |×|�|� |!""#|×|$%!"|
� � local computation time on each processor, ��|����|� 

communication rounds and � �&'|Σ|
� � time for preliminary work. 

Proof: This result is derived from Lemmas 1, 2 and 3. 

4. Results and discussion 

In this section, we present and analyze the results obtained from the implementation of 

our algorithms in order to validate our theoretical predictions. 

4.1. Simulation environment 

The following configurations were made during the experiments:  

• C was used as a programming language; 

• The MPI library (OpenMPI version 3.1.1) provided inter-processor communication; 

• Tests of our programs were carried out on the Dophin cluster of the MATRICS 

platform of the University of Picardy Jules Verne that has the following configuration:  

i. Sixty computation nodes with 28 cores each (1680 cores in total). Forty-eight 

nodes called thin nodes with 128 GB of RAM and 12 thick nodes with 512 GB of 

RAM;  

ii. Each node is composed of 2 processors where a processor is an Intel Xeon E5-2680 

V4 processor (35 MB Cache, 2.40 GHz); 

iii. 2 login nodes that are not intended to perform calculations but to provide the job 

submission environment;  

iv. The operating system used was CentOS Linux version 7.4.1708; 

v. One NFS server (85 TB) with 10 Gbits;  

vi. A BeeGFS (300 TB) 100 Gbits Distributed File System. 

vii. All nodes are interconnected with Omni-Path links providing 100Gbps throughput. 
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• The data (sets of input sequences) used are actual biological data from the NCBI 

(National Center for Biotechnology Information) database [23]. The constraint is 

generated randomly according to date sizes.  

 During these experiments, we conducted 3 types of tests:  

1. The first consists in varying the number of processors (or MPI processes) used for a 

fixed number of input sequences (the size of these sequences being identic). Thus, this 

number varies from 1 to 128 for a number of 100, 500, 900 and 1000 sequences of 

length 100; 

2. The second uses 32 processors and varies the number of input sequences of fixed sizes 

from 3 to 900; 

3. In the third test, the number of input sequences and the number of processors is fixed 

at 10 and 16 respectively. Only the size of the input sequences varies from 100 to 

40000.  

 The communication time in this work is the sum of the effective data transfer time and 

processor idleness. The execution time is obtained by averaging the results of 5 sets of tests. 

4.2. Results 

Figure 7. Execution times using D ∈ @2, 4, 5, 8, 16, 32, 64, 80, 115, 120, 128 B processors 

with 100, 500 and 900 sequences respectively. 

 

With 100, 500 and 900 sequences of length 100, Figure 7 shows the final execution time 

of our algorithm with different numbers of processors. This figure shows that for a reduced 

number of processors (less than 32), the speed-up rapidly increases Additionally, for a 

number of processors greater than 32, the speedup doesn’t increase drastically. This is due to 

irregularities that occur during the generation of the DAG’s nodes, which cause some 

processors to be idle during the resolution process. It can therefore be concluded from this 

figure that our solution is sufficiently scalable with the number of processors and input 

sequences. 

Figure 8.a. Memory used for D ∈
@1, 4, 16, 128B and = ∈ @3, 4, … , 900B. 

Figure 8.b. Evolution of speedup for D ∈
@2, 4, 16, 32, 64, 128 B for r=100 and n=100. 

Figure 8. Evaluation of memory used and speedup of our algorithm. 
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An evaluation of the memory used by our algorithm is depicted in figure 8.a. The 

results here is the mean of the memory used by each processor during the resolution.  The first 

observation here is that on a single processor, memory consumption of our algorithm is high 

(≈ 60Gb for only 50 inputs sequences of length 100). We can also observe that by increasing 

the number of processors, we are decreasing considerably the memory used by each. The 

highly memory consumption is justified by the fact that the increase of the number input 

sequences implies an increase not only of the number of nodes per level in the graph but also 

the space taken by a node. 

Figure 8.b gives the speedup of our algorithm. For recall, if Ts and Tp are respectively 

the sequential execution time and the execution time on p processors, the speedup = Ts / Tp 

and the efficiency = speedup / p. We can observe in this figure that the speedup is increasing 

according to the number of processors used. This is a proof of the sufficient scalability of our 

algorithm with the number of processors.  

Figure 9. Communication, computation and execution times for D = 32 and = ∈
@3, 4, … , 900B. 
Figure 9 shows that the communication time does not increase according to the number of 

input sequences. This is justified by the fact that the number of communication rounds does 

not depend on the number of input sequences but rather on the size of the resulting MLCS. 

This communication time is approximately 20% of the execution time, and this is due to the 

idleness of processors caused by a possible unbalanced load, the master-slave alternation and 

the quantity of data share between processors. Ensuring load balancing is a major task for our 

algorithm. From figure 9, it appears that the processors work much more than they 

communicate. 

Figure 10: Communication time, local computation and execution times for D = 16, = = 10 

with an input sequence length < ∈ @100, 200, … , 9000B. 

The results presented in figure 10 shows that the percentage of communication time 

increases with the length of the sequences. This augmentation is explained by the fact that the 

number of communication rounds depends on the number of levels of the DAG, which is a 

function of the size of the CSSs between the input sequences. Thus, the probability to have 

long CSSs increases with the size of the sequences. 

Figure 11.a: Percentage of local computation and communication according to the number of 

sequence number using 32 processors. 
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Figure 11.b. Percentage of communication and local computation based on the size of the 

sequences on 32 processors 

Figure 11: Computation time vs Communication time 

Figures 11.a and 11.b illustrate the percentages of communication and computation with 

two configurations (with different sizes and numbers of sequences). These figures show us 

that there is more communication when the size of the sequences increases than when the 

number of sequences increases. This result is in agreement with our theoretical predictions 

(��|����|�). 

Figure 12. Load difference between 8 processors using = ∈ @3, 4, 5 … , 900B input sequences. 

For 8 processors, Figure 12 illustrates each of their computation loads. It shows that the 

master processor (supervisor) has a maximum load compared to the slave processors. This is 

justified by the fact that during the CSSs search process, a part of the DAG data 

synchronization work, the supervisor backups the CSSs and rebuilds them during the 

validation process. This figure also shows that the processor’s load sufficiently decreases 

from one slave processor to another. This is due to the uncertainty of generating new nodes 

from one level to another. It can also be noted that the higher the rank of a processor, the 

lower its load. Indeed, during the construction process of the DAG, if the number of nodes of 

a level is lower than the number of processors, then our distribution scheme of the tasks to 

processors will attribute only one node to a processor starting with the processor rank 1. 

5. Concluding remarks 

In this paper, we propose a parallel solution based on the sequential algorithm of Peng 

and Wang [22]. The solution proposed here is subdivided into two steps: we first propose an 

algorithm that searches all the common subsequences between the input sequences, and we 

then present a second algorithm that searches among all the subsequences for those that 

exclude the constraint and remain of maximum length. The analysis of this solution reveals 

that it requires O �|�|×|Σ|� |	

�|×|�	
|
� � local computation time on each processor, O�|MLCS|� 

communication rounds and O ���|�|
� � time for preliminary work. 

Experimental results indicate that the proposed solution is efficient and sufficiently 

scalable on large numbers of input sequences with long sequences. Despite its efficiency, our 
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algorithm can be improved by implementing another distribution scheme that ensures better 

load balancing between processors. Additionally, reducing the latency time of processors will 

greatly reduce the runtime of our solution. This algorithm can also be optimized by 

parallelizing the work of the master processor (using a multicores processor as a master). 

Further research should be conducted on a general case of this problem, for example, by 

considering the string-inclusion case rather than the string-exclusion case.  
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