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Abstract: The work presented in this paper consists of searching for all the longest
common subsequences among r sequences of equal length n which exclude a
particular string. This problem is named the constrained-multiple longest common
subsequence (constrained-MLCS) and is a general case of the constrained-LCS. Due
to its importance, particularly in bioinformatics, the constrained-MLCS is widely
studied. Thus, the solution proposed here is a coarse-grained multicomputer-based

algorithm that uses an existing serial algorithm for local computation and a master-

[D|x|Z[+ |CSSs|x|MLCS|
p

slave paradigm. This solution requires O( ) local computation

. . 2\ L.
time on each processor, O(JMLCS|) communication rounds and O (%ll) time for

preliminary works. || is the alphabet’s size, p is the number of processors used, |D|
is the number of dominants generated during the entire resolution process, |CSSs]|
and |[MLCS| are the number of all common subsequences, and the length of the
longest common subsequences respectively. The experiments performed indicate that
our proposed algorithm is scalable both with the number of processors and the

number of input sequences.

Keywords: Constrained-multiple longest common subsequence, Dominant point,
Coarse Grained Multicomputer.

1. Introduction

With important applications in various fields such as computational biology, information
retrieval and file comparison [2, 13, 24], the multiple longest common subsequence problem,
denoted MLCS problem, is a classic NP-hard problem which consists in finding the longest
subsequence shared between two or more sequences. In fact, according to the number of
sequences, this problem can be classified into two cases:
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1. An LCS problem which is searching for the longest common subsequences of exactly
two sequences;

2. An MLCS dealing with at least three sequences.
Considerable efforts have been made during the last three decades to find solutions to this
problem, but the most significant and applicable contributions deal only with the particular
case of two or three sequences [4, 11, 18, 28]. Indeed, with the increasing volume of
biological data and the widespread use of sequence analysis tools, an efficient MLCS
algorithm, applicable to many sequences, will have a significant impact in bioinformatics.

Many sequential and parallel algorithms have been recently proposed [17, 22, 28, 29]
for the MLCS problem. Depending on the model on which the solutions are based, these
algorithms can be classified into two groups: the dominant point-based and the dynamic
programming-based approaches. Using the dominant point-based approach has an enormous
advantage over classical dynamic programming approaches because it greatly reduces the size
of the search space by orders of magnitude [28]. Although this approach seems suitable, it
also suffers from unnecessary and redundant storage, computations, comparison and deletion
of multidimensional match points [17, 22] that hinder its application on long and numerous
sequences.

To fill the gaps in the dominant point-based approach, in this work we look at a variant
of the MLCS problem called the Constrained-MLCS problem. In fact, our aim is to propose a
parallel algorithm based on an ameliorated version of the dominant point approach [22] and
also based on the Bridging Coarse Grain BSP/CGM (Bulk Synchronous Parallel/Coarse
Grained Multicomputer) model [3, 7, 27]. The CGM seems best suited for designing
algorithms that are not too dependent on an individual architecture. A BSP/CGM machine is a
set of p processors, each having its own local memory of size m with a connection to a router
able to deliver point-to-point messages. A BSP/CGM algorithm alternates between local
computations and global communication rounds. A CGM computation/communication round
corresponds to a BSP super-step with a communication cost of g X m, where g is the cost of
communicating a word in the BSP model. Therefore, an efficient BSP/CGM algorithm must
have maximum speedup and must use minimum number of communication rounds [7].

Our main contribution in this paper is to propose a parallel algorithm based on the serial
solution of Z. Peng and Y. Wang [22] for the Constrained-MLCS. The motivation to use this
particular sequential algorithm is that the data structure (Leveled-DAG) used provides a better
optimization of time and space. In fact, existing dominant point-based algorithms have to

generate a huge number of nodes and save them all in memory, while the Leveled-DAG
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approach can timely eliminate all the nodes in the graph that cannot contribute to the

construction of MLCS. At any moment, only the nodes in the current level as well as some

nodes in the previous levels are saved, therefore, the Leveled-DAG is much smaller than the

DAG constructed by the existing dominant point-based algorithms, which can save a lot of

memory space and allows to solve larger problems. Our contribution can be summarized as

follows:

We introduce and clearly define a new variant of the MLCS problem.

We also propose an efficient CGM-based algorithm that searches all the common
subsequences between a set of sequences.

To take the constraint into consideration, we first define a suitable data structure
called CSS-graph which is used to store all the previously found common
subsequences and we propose an efficient parallel algorithm to construct it and to
perform the validation of the constraint.

We do some analysis of our proposed algorithms resulting in the solution requiring

0 (|D||E|+|CSSS||MLCS|

> ) local computation time on each processor,

O(|MLCS|) communication rounds and O (%IEI) for the preliminary works. In this

analysis, p, n, r denote respectively, the number of processors used, the length and
the number of sequences and |D|, |CSSs|, |[MLCS|, |Z| are the number of dominant
points generated by the sequences, the number of common subsequences, the length
of the longest common multiple subsequences and the size of the alphabet
respectively.

We perform experiments with sample sequences from a real biological NCBI
database [23]. The collected results show that our solution is suitable for long
sequences and is sufficiently scalable both with the number of input sequences and

with the number of processors.

This paper is organized as follows: Section 2 is dedicated to introducing key concepts

and for presenting recent research related to the MLCS problem. In Section 3, we present and

analyze our parallel algorithm to solve the Constrained-MLCS problem. Experimental results

and analyses are presented in Section 4. Finally, in Section 5, we summarize the paper and

provide directions for future research.

2. Constrained-MLCS problem and Related works



In this section, we will first provide a formal definition of the MLCS and Constrained-
MLCS problems; second, we will describe the dominant point approach used to solve the
MLCS problem in the research literature and finally, we review related works on exact and

approximate, sequential and parallel algorithms for the MLCS problem.

2.1. The Constrained-MLCS problem

The MLCS problem with a string-exclusion constraint, denoted STR-EC-MLCS,
consists of searching all common subsequences of several sequences that are of maximum

length and which exclude a string.

Definition 1. Let X be a finite set of symbols called an alphabet. A sequence x of length n
over the alphabet X is defined as: X = x;X, ...x,,. The i”" character of x is denoted x[i]. A

sequence Yy = X; X;, ...X;, is a subsequence of x if Vj,1<j<k:1<i;<nand Vr,t 1<

k

r <t < ki, <i;. Asubstring of x is a subsequence of successive symbols within x.

Definition 2. Let S ={S;,S,,...,S;} be a set of sequences over alphabet X. The MLCS
problem for set S consists in finding all sequences x such that:
i. X is asubsequence of S; for each i;
ii. x isthe longest among all sequences satisfying (i).
In general, there exists more than one MLCS between many sequences.
Definition 3. For a given set of sequences S = {S;,5,,...,5S4} and a string P, the
Constrained-MLCS searches all sequences x such that:
i. xisasubsequence of S;,1 <i<d;
ii. x doesn’t entirely contain P,
iii. x is of maximal length satisfying (i) and (ii).
This problem has already been addressed in the literature [9, 10, 18, 20], but it was
only for the simple case of two input sequences.
An example of this problem is depicted in Figure 1 where the input sequences are
ACTAGCTA, TCAGGTAT and CTAAGTTA.
Notations
Hereafter we will use the following notations:
* MLCS stands for multiple longest common subsequence;
* |MLCS]| is the length of the MLCS;
* ST is the table of successors which indicates for a sequence x the position of the next

character identical to each symbol of the alphabet after a given position;
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* (SSs stands for all common subsequences between multiple sequences;

* STR-EC-MLCS stands for string exclusion multiple longest common subsequence;

* ris the number of sequences in a MLCS;

* p denotes the number of processors used;

* nis the common length of the r sequences;

* D is the set of all dominant points generated during the search process;

* P is the constraint string (or sequence) in a Constraint-MLCS problem.
They will be widely used in the following.
Figure 1. Illustration of the MLCS and the Constrained-MLCS problems with input
sequences ACTAGCTA, TCAGGTAT, CTAAGTTA and a constraint string P.; =TA.

2.2. The dominant point-based approach

The dominant points approach, introduced by Hischberg [4, 19], consists of reducing
the search to the exploration of a smaller set of dominant points rather than all the positions in
a square matrix as done in the dynamic programming technique. This method has been widely
used not only for the LCS problem [1, 5, 19] but also for the extended case of more than two

sequences [4, 13, 28].

2.2.1 Preliminaries: definitions

Definition 4. Over a set of sequences S = {5;,5,,...,S4}, a vector v = (v1, V3, ...,Vq) is
called a match point if S;[v,] = S,[v,] = -+ = S4[v4] = a. Hereafter match v(a) will denote
the fact that the vector v is a match point over S. In Figure 1, X[4] = Y[3] = Z[3] = A, thus
the point v = (4, 3, 3) is a match point.

Definition 5. Given two match points v = (v4, V3, ..., Vg) and w = (Wy, Wy, ..., W,), We say
that v dominates w denoted by v <w if v; < w; for 1 < i < d. In a similar way, we say that v
strongly dominates w if v; < w;,1 < i < d. In contrast, v doesn’t dominate w if there exists
an [,1 <i < d such that w; < v;. This relation is denoted. v £ w. We also say that w is a
successor of v if w strongly dominates v and no other match point z exists such that w < z <
V.

We can observe in Figure 1 that (2,2, 1)< (4, 3,3), (2,2,1) £ (3, 1,2)and 4, 3,3)is a
successor of (3, 1, 2) on the symbol T.

Definition 6. A match v = (vq, Uy, ..., Vy) is called a dominant of level k or a k-dominant if:



i. M(v) = k where M is a matrix computed by a dynamic programming technique

using the standard recursive formula for the MLCS problem (see [22]);
ii. There is no further match point on the same symbol that dominates v.

We denote D* and D as the set of all k-dominant points and the set of all dominant points

respectively.

Definition 7. A point z in a set B is called the minimal point of B if for all points g € B —

{z}, such that q £ z. We denote by minima (B) the set of all the minimal points of B.

2.2.2 Principle of the method
The key idea of this method is based on the observation that only the dominant points
can contribute to the construction of the MLCS. The search space of the dominant point

method can be represented as a Direct Acyclic Graph (DAG) in which:

i. A node represents a match point;
ii. The edges (z, q) represent the fact that q is a successor of z.

This approach consists of constructing the DAG starting from level O to level [MLCS].
Therefore, initially, the DAG contains only the source (0,0, ..., 0) and the final (oo, oo, ..., 00)
nodes, which don’t have incoming and outgoing edges respectively. From here, the DAG is
constructed level by level as follows: at the first level, k = 0 and D* = {(0,0, ...,0)}, and with

a forward iteration procedure, the (k + 1)-dominants D*1

are computed based on the k-
dominants D¥. At the end, the DAG will be fully built and an MLCS will be any longest paths
starting from the source node to the final node.

A simple example (case of two sequences) of this method is illustrated in Figure 2
where S1 = AGCTGA and S; = CAGATCAGAG. In this figure, the nodes in gray and black
represent those that have been removed either by the minima operation or because they appear
more than one time in the same level. For example, to build level 1, we look for all the
successors of the node (0,0) on all the symbols of the alphabet. Here, we have the nodes
A(1,3), G(2,3), C(3,1) and T(4,5) among which G(2,3) and T(4,5) are not minimal nodes
because (1, 2) < (2, 3) and (1, 2) £ (4, 5). In level 2, the node (4,5) is duplicated, thus, one
should be removed (CT(4, 5)). It should be noted that the final node is the successor of nodes
having no successors. In this figure, the nodes in dark gray are nodes leading to the MLCS.

Figure 2. A DAG constructed using the dominant point method using sequences Si =

AGCTGA and S> = CAGATCAGAG.



2.3. Related Works

Because of its crucial importance, this problem has received the attention of many
researchers. Thus, several sequential and parallel solutions have been proposed. Among these
solutions, some just calculate the length of the MLCS and others return the sequences
corresponding to the MLCS. It should be noted that the dominant points technique is the most
used.

Based on dynamic programming, Hsu and Du [11] proposed for an MLCS problem with
r sequences of equal length n, an algorithm requiring O(n") time and space. This algorithm
returns a set of sequences which are LCS. To improve this, many other solutions have been
proposed [1, 9, 19]. In [9], after proposing a CGM-algorithm to compute the length of the
LCS, a backtracking method is used to find the corresponding LCS. Even with all these
improvements, these solutions are still inefficient for practical use. For the LCS problem,
many parallel solutions have been recently proposed [10, 26].

Recently, many dominant point-based solutions have been developed for the special
case of two sequences [5, 12, 14, 20]. In [14], three dominant point algorithms for three or
more sequences were proposed. One of the algorithms, Algorithm A, which was designed
specifically for MLCS problems of three sequences, is much faster than the traditional
dynamic programming algorithms for three sequences. However, Algorithm A finds dominant
point sets by enumerating points of the same coordinate values in each dimension. As a result,
its complexity increases rapidly with the growing number of sequences. The other algorithm,
Koji and Imai’s algorithm [14], works for an arbitrary number of strings. Apart from finding
the length of the MLCS, these algorithms also proposed methods for recovering all MLCS.

For the MLCS problem, D. Korkin [15] proposed the first parallel MLCS algorithm
requiring O(|Z||D]) time complexity, where |D|is the number of dominant points in the
graph. Later, Chen et al. [4] presented an efficient MLCS algorithm named FAST-LCS for
DNA in which they introduced a novel data structure called a successor table to obtain the
successors of nodes in constant time and they used a pruning operation to eliminate the
nondominant nodes in each level. To improve this solution, Wang et al. [28] use the divide-
and-conquer strategy, which is very suitable for parallelization to eliminate the nondominant
nodes and proposed an efficient algorithm named Quick-DPAR. Many other improvements
have also been proposed [16, 17, 22, 30, 31].

Among these recently proposed solutions, we have chosen as our sequential algorithm

for local computation, the solution of Z. Peng and Y. Wang [22] because of its better



optimization of time and space. This solution consists in setting up a leveled-DAG that

collects the partial MLCS until reaching the complete MLCS. The preliminary work consists

in constructing the tables of successors. The entire execution process for sequences

ACTAGCTA and TCAGGTAT of their solution is depicted on Figure 3. In this figure, the

match point and the corresponding symbol are shown in each node. The partial LCSs are

shown by strings near the nodes. The white nodes are newly generated and will be expanded
later and the green ones are outdated and will be removed right away. The red nodes with

incoming edges are left from the previous levels and cannot be removed at present. Steps (A),

(B) and (C) generate the first, second and third level of nodes respectively. In step (D), no

new node is created any more. Step (E) deletes the remaining outdated nodes and in step (F),

only the end node is left.

The construction steps of the new graph are:

Step 0: Compute the entries of the successor tables of each input sequence;

Step 1: Build the first level of the Leveled-DAG: generate all the successors of the initial
node as the first level by referring to the successor tables;

Step 2: Build the next level of the Leveled-DAG and delete the outdated nodes (generate and
delete). A node is said to be outdated or useless when it can no more contribute to the
search process of the MLCS. If there are nodes in the Leveled-DAG that have not been
expanded, repeat the following two substeps:

Step 2.1: For each unexpanded node z, generate all its successors (if a successor already
exists in the graph, it does not need to be generated several times and only needs a
pointer), and if z has no successors, let the final node be its only successor;

Step 2.2: If [partial_LCS(z)| is the length of the partial LCS of the node z then, for each
node z which does not possess an incoming arc (nodes (1, 3), (2, 2) and (3, 1) in figure
3 at step B), and for each successor s of z do the following:

o If |partial LCS(z)| = |partial_LCS(s)|, delete the partial LCSs of s. Append
the corresponding symbol of s to each partial LCS of z, and then save all the
appended partial LCSs as the new partial LCSs of s;

o If |partial LCS(z)| = |partial_LCS(s)| — 1, then append the corresponding
symbol of s to each partial LCS of z, and add all the appended partial LCSs to the
existing partial LCSs of s. Delete node z (as well as its partial LCSs) from the
graph.

Step 3: Repeat Step 2.2, until only the final node is left in the graph;



Step 4: Output the partial LCSs saved in the end node, which are the real MLCS of the input

sequences.

Figure 3. The Leveled-DAG constructed for sequences ACTAGCTA and TCAGGTAT.

The resulting algorithm returns all MLCS in a time complexity that is linear to the
number of nodes in the graph, say O(|D|) and a space complexity that depends on the
maximum level of the Leveled-DAG O(Max_Level).

To find the length of the Constrained-LCS, many sequential solutions have been
proposed [8, 25]. For parallel solutions, Deorowicz [8] proposed the first bit-parallel
algorithm for the STR-IC-LCS problem and recently we proposed a CGM-based algorithm
for a string-exclusion LCS [21]. To the best of our knowledge, our parallel algorithm, finding
all the constrained-MLCS, is the first presented in all the research literature.

3. CGM Algorithm for the Constrained-MLCS problem

This section describes our proposed parallel algorithm. We first present an efficient
CGM algorithm for preliminary works, second, we propose a parallel algorithm using the
master-slave paradigm to find all the common subsequences (CSSs) between the input
sequences and we finally describe an algorithm to validate all the previously found CSSs

according to a constraint.

3.1. Preliminaries

For a STR-EC-MLCS problem with r sequences of equal length n, the calculation of the
values of the entries of a successor table (ST) for a sequence x = x;x, ...x, is performed
using equation (1) [22]:

ST[i,j] = min{m|x, =a;,;m>j,1<i<|Z],0<j<n} (1)
where «; is the i symbol in X .

From this equation, the following dependency relationships are derived:

i. The computation of the entries of the tables ST for two sequences Si and S; is
independent withj #iand 1 < i,j < r;

ii. When calculating the entries of a table ST, the computation of the values corresponding
to each symbol of the alphabet is mutually independent. Formally, the computation of
each ST|[i,j] for 1 < i < |Z] is independent to STk, j] for 1 < k < |Z| with k # i;

iii. The computation of each ST[i, j] for a sequence of size n with 1 < j < n depends on the

symbols present in the sequence in positions j + 1,j + 2,---,n.



Based on these dependencies, because our algorithm runs on a parallel computer with p
processors, and in order to ensure load balancing among processors, we propose two
distribution schemes:

Scheme 1: Equally distribute the sequences on processors. This formally consists of assigning

to a processor i, the [r/p]™

sequences. This distribution is easy to implement but has
the drawback of leaving some processors idle if 7 < p;

Scheme 2: If r < p, then we assign a sequence to several processors as follows: we first
assign a sequence to |p/r| processors. If r X |p/r] < p, then add a processor to the
previous |p/r| starting with the first block of processors. Although it is difficult to
implement, this distribution scheme reduces the processor’s idle time and ensures
much better load balancing.

In our algorithm, we use the first scheme, because, in practice, the number of input
sequences is usually greater than the number of processors. With this, in order to have the
tables of successors of all the sequences, after the computation phase, all the processors will
perform a global communication of all-to-all type. An overview of this solution is given in
Figure 4 below.

Figure 4. Overview of preliminary work.

In this figure, the first step represents the task distribution process, the second, the local
computation phase on each processor (calculating the entries of the table of successors of
each sequence assigned to it) and the last, the global communication round between
processors. Algorithm 1 presents local computations operations for a processor of rank i. The

time and space complexity of this algorithm is summarized by lemma 1.

Algorithm 1: Local computation for preliminary work.

1  Data: The [r/p]i" sequences

2 Output: Successors tables of the [r/p]i™ sequences
3  Begin

4 Foreach sequence x = x{x, - x,do

5 For j from 1 to n do

6 Foreach symbol ¢; € X do

7 ST[i,j] = min{m|x,, = a;};

8 End for

9 End For
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10 End For
11 End

Lemma 1: On p processors, the preliminary work for the Constrained-MLCS problem with r
sequences of equal length n requires O (%D:l) execution time and O(nr|X|) space with a

single communication round.

Proof: According to equation (1), the computation of the entries of a successor table for a

sequence of length n is done in O(n|Z|). Since each processor will evaluate at most [r/p]

nr|Z|

sequences, it therefore requires O(n|Z|) X H =0 (T) time. Additionally, as each

processor must have the table of successors of all the sequences, the space used is O(n|Z|) X

r.

3.2. Parallel solution finding all common subsequences of the Constrained-
MLCS problem
Among the existing sequential and parallel solutions for the MLCS problem, those
based on the classical dominant point approach suffer from too much time and space
consumption [28, 29]. Therefore, our aim here is to propose a parallel algorithm based on the
efficient serial algorithm presented in [22]. Indeed, the main ideas for our solution are the

following:

1. We will use the Leveled-DAG presented in [22] but since our goal is to have all
common subsequences, we will no longer remove all outdated nodes (nodes that can
no longer contribute to the search process of other CSSs).

2. At the last level (the level where all MLCS are found), all CSSs found since level 1 are
returned in the form of a graph (this representation optimizes the memory space

necessary to store these CSSs because their identical prefixes are recorded in a single

copy).

Definition 8. When solving the MLCS problem using the dominant point approach, a

subproblem can be defined as being the search of all the successors of a match point.

From this definition, the level k of a subproblem is defined as the length of the common
subsequence that it generates. These subproblems can be represented as a multilevel acyclic

graph defined as follows:
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Definition 9. The DAG used to solve the MLCS problem is a graph in which:

1. A node is represented by:

a.
b.

C.

A match point v(vq, Uy, ..., Vg);
The symbol having produced the match point v;

The subsequence(s) generated by the point v.

2. An edge represents the operation of calculating a successor from another match. Indeed, if

v; and v, are two match points associated with symbols a; and a, respectively, then the

edge v; — v, represents the generation of subsequence a;a,;

3. The nodes that never have incoming and outgoing edges are respectively the initial and

the final node;

4. The dependencies between the nodes are defined as follows:

a.

b.

Two nodes which are not connected by an edge are mutually independent;

The evaluation of one node may depend on the evaluation of another node of the same
and the previous level. An example of this is shown in figure 3 where the evaluation of
the node (7, 6) depends on the node of the same level (4, 3) and on the node of the
previous level (5, 4);

A node no longer having an incoming edge can no longer contribute to the search
process of subsequences of other nodes and thus can be saved with all its generated

subsequences.

From this definition, searching all CSSs consists in constructing the DAG starting from

the initial node and ending at the final node by generating new nodes, saving the CSSs and

removing the outdated nodes.

From the definition of the DAG the following characteristics emerge:

The DAG has an unknown form: for two sets A ={A;A,, .., A} and B =
{Bi,By,...,B,} of r sequences each, in the case where |A;|=|Bil |4;] =
|B,|, ..., |A;| = |B;|, the DAG generated by the set A may be different from the one
generated by the set B;

Uncertainty of generation of new nodes: the transition from one level to another does
not involve the generation of new nodes. With this DAG, it is impossible to exactly
calculate the number of nodes generated by a level.

Given these characteristics, it is therefore a challenge for us to evaluate in parallel the

nodes of a graph whose form is unknown and in which dependencies exist between the nodes
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of the same and the previous level. This form requires a supervisor during the parallelization
process because it will be necessary to synchronize the data so that each processor works on
correct and updated data.

This algorithm uses the master-slave model. On a parallel machine having p processors,
the processor p, will be the master, and the rest {pl,pz, ...,p(p_l)} the slaves. The roles of

each type of processor are as follows:

e 3.2.1 Master processor:
= Generate the first points of correspondence (the successors of the initial node);
= Distribute all these nodes on slave processors;
= Combine the partial results of slave processors after each step;
= Based on the partial results, rebuild the next level by deleting the duplicates and
reassigning the CSSs to the corresponding nodes.
* 3.2.2 Slave processor:
* Determine, using a specific algorithm, the nodes on which it will perform
calculations;
= Generate all the successors of each node assigned to it. In the case where a
successor already exists, it is no longer generated and we just perform a

redirection from the node to this successor.

Algorithm 2: Local algorithm for the master processor

1 Data: Successors table of all the r sequences

2 Output: The CSSs corresponding to the input sequences

3 Begin

4 DAG = {initial node, final node};

5 Succ(initial node) < Generate_Next(initial node);

6 Distribution of Succ(initial node) on the p-1 slave processors;
7 Wait for the first results from the slave processors;

8 Result’s reception and partial recombination of DAG;

9 Foreach duplicated node s of the same or previous level do
10 Merge s;

11 End For

12 Foreach outdated node s do

13 Save CSSs of s;

15 End For

13



16 End

The CGM-based algorithm can therefore be summarized in three steps:

Step 1: The master processor generates the successors of the initial node and distributes them
on all slave processors.

Step 2: Construction of the next level as follows:

Step 2.1: For each unexpanded node (node for which the successors have not been
generated) generate its successors. If it has no successors then the final node is
taken as its only successor.

Step 2.2: If |z| denotes the length of the common subsequence of a node z, then for each
node z having no incoming arc and for each successor s of z, do the following:

e If |z| = [s| then replace all CSSs of s by CSSs of z which have been
concatenated with the corresponding s;

o If |z| = |s| — 1 then append the CSSs of z with the corresponding symbol of
s and add them to the CSSs of s;

* Save the CSSs of z.

Step 3: Repeat Step 2 until the final node remains the single unexpanded node in the graph.

Algorithms 2 and 3 describe respectively the work of the master and slave processors
during each step of the search process of all the CSSs. In Algorithm 2, the procedure
Generate_Next generates the successors of a node. It should also be noted that the sending

phase of the successors of the initial node is a one-fo-all communication.

In Algorithm 3:

* The function compute_nb_node (E) is used to calculate the number of nodes on which a
processor will perform its jobs. In the case where this number is zero, the indexed
processor will be waiting during the corresponding step;

* During the first communication phase, the processors having performed local
calculations will communicate their results to the others;

* The second communication phase consists in sending to the master processor by the
slave processors, information which accelerates the process of saving the CSSs.

To optimize memory space, the slave processors will perform local deletions and only the

supervisor will keep all found CSSs that are the results from algorithms 2 and 3.

Algorithm 3: Local algorithm for slave processors

1  Data: Set E of unexpanded nodes.
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2 Output: a set of generated nodes with their corresponding CSSs.
3 Begin

4 nb_node . compute_nb_node (E),

5 For i from 1 to nb_node do

6 Foreach symbol al1Z do
7

8

9

Succ . Succu Generate_Next(node;, o );

End For
End For
10 First communication phase of all-to-all type;
11 Collect information and possibility delete outdated nodes;
12 Second communication phase of all-to-one type;
13 End

Figure 5 is an illustration of the overall process of our parallel algorithm searching all
existing CSSs between the sequences ACTAGCTA, TCAGGTAT and CTAAGTTA. In this
illustration, we have 4 processors among which 1 is a supervisor and 3 are slaves. In figures
S.a and 5.b, the green and red nodes represent the initial and the final node respectively. The
step (E1) is the generation of the successors of the initial node by the supervisor. (E2) is the
parallel generation of the successors of nodes of the previous level. (E3) represents the first
synchronization by the supervisor. (E4) is the second local computation on slave processors
and (ES5) is the corresponding synchronization phase on the master. The third local
computation and synchronization are represented by (E6) and (E7) respectively. After (E7),
the master processor will no longer synchronize data because only one node remains in the
DAG. Step (E9) shows how only active slave processors compute the last subproblem. This

last step exists to create links between the last unexpanded node and the final node.
Figure 5.a First five steps to find the CSSs between three sequences with four processors.

Figure 5.b. Last ending steps for the search process of CSSs of three sequences using 4
processors.

Figure 5. Entire search process of all existing CSSs between ACTAGCTA, TCAGGTAT and
CTAAGTTA sequences with 4 processors.

local computation

. D|x|=
Lemma 2: On p processors, the overall search process requires O (—l |p| l)

time and O (|MLCS|) communication rounds.
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Proof: The evaluation of a node requires O(|Z|) time. The distribution scheme used here

. D . . D
guarantees, in the worst case, l;' nodes per processor. Which gives us a local calculation time

Dl _

of O(|Z|) x "y 0 (ll)lrﬁ). Since the DAG has a maximum of O(|MLCS]|) levels and each

level induces two communication rounds, we conclude that the entire resolution process

requires O (2|MLCS|) = O(|MLCS|) rounds.

3.3. Coarse-Grained algorithm validating all common subsequences

This parallel algorithm works on a set of p processors and can be summarized as
follows:

* Definition of a data structure which will optimize the storage space used by all common
subsequences. This backup will be done only on the master processor during the process
of backing up CSSs;

* Distribute the constraint on each processor;

*  Group all the common subsequences according to their level (a level k groups the CSSs of
length k);

* Validate the CSSs in parallel level after level starting by the levels of the maximum
length;

» If one or more sequences of a level k respect the constraint, then the validation process is
completed and the CSSs of the current level can be returned as MLCS.

3.3.1 Data structure used to store all CSSs

The idea here is motivated by the fact that during the process of searching for CSSs,

CSSs of length k are found directly after searching for all common subsequences of length k-

1. Thus, subsequences of length k-1 are prefixes of subsequences of length k. The structure

defined here is a graph whose preview is given in Figure 6 for the sequences ACTAGCTA,

TCAGGTAT and CTAAGTTA.

3.3.2 Parallelization constraints
The previous data structure results in the following constraints:
* A level k is evaluated only if all CSSs of the nodes of the level k+/ have all been
validated and none of them respects the constraint;
* The evaluation of nodes belonging to the same level and of two CSSs belonging to the

same nodes are mutually independent;
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* The number of nodes to evaluate on a level is not predictable. Additionally, the
evaluation costs of two nodes (the number of CSSs to validate) of the same level can be
different.

To ensure load balancing between processors, we will not distribute nodes but, a set of CSSs.

Figure 6. Data structure storing all CSSs.

In Figure 6, a CSS of length k£ will be represented by the path from the source node to
one node in level k. For example, the CSS “CAGA” is represented by the path {C(2,2,1) -
A(4,3,3) = G(5/4,5) - A(8,7,8)}. The evaluation of one level consists in finding all CSSs
generated by nodes of the level and distributes them on each slave processor. Thus, to
evaluate level 5, two processors will validate in parallel “TAGTA” and “CAGTA”. With
“TA” as a constraint, these two sequences will not respect it. Therefore, level 4 can be
evaluated, and during the evaluation, the set of CSSs of this level will be equally distributed
on processors and will be processed simultaneously. At the end of this level, only “CAGA”

will respect the constraint and the validation process will be stopped.

3.3.3 Parallel algorithm
This solution is based on the previous parallelization constraints and is summarized in the five
next steps:
1. The master processor distributes the graph to the others processors;
2. Evaluate the level |MLCS|. The evaluation of a level consists in looking for all the
CSSs generated by nodes of the level and then for each CSS to carry out a validation;
a. To evaluate a level k, we search all nodes of the level by assigning them
indexes. For each node, we memorize the number nb of CSSs that it has
generated;

b. When this number is known, each processor calculates the number of CSSs

o b e - .
that it will evaluate, say (ZTn) The distribution here is linear starting from the

lowest indexed nodes.

c. After the local calculations (validation of the CSSs), if there exists among the
validated CSSs those that respect the constraint, then, the corresponding
processor will carry out a one-to-all communication in order to notify the other
processors that an MLCS has already been found.

3. If after Step 2, no CSSs validate the constraint, then the |MLCS|— 1™ level is
evaluated;

17



4. Repeat Steps 2 and 3 until level |P,;|. Indeed, if we could reach the level |P,;| without

having found an MLCS, since all the CSSs of length less than the constraint

necessarily respect it, then the final solution will be all the CSSs of the level |P,;| — 1.

Algorithm 4: Local validation for a processor rang k

O 0 9 O B WD =

[\ TR \© T O R NS R e T e e e e e e e
W NN = O O 0 9 N R WD = O

24

Input: The graph G of CSSs and the constraint P
Output: A set of MLCS not containing Pe
Begin
If k == 0 then
Send (G);
else
Receive(G);
End if
J=|MLCS];
While j > = length(P) do
nb_css = compute_nb_css(G, j);
For i from 1 to nb_css do
Validate(CSS;, P..);
If (valid(CSS;, P.)) then
add (CSS;, list);
End if
End For
If not_empty (list) then
Send(list);
Break;
End if
j=i-1
End while
End

Algorithm 4 is the executed pseudo code on a processor of rank k. In this algorithm, the

procedure validate(CSS;, P.) verifies if CSS; contains the constraint string Pe. This

verification is performed using simple comparisons. The procedure compute_nb_ css(G, j)

finds the number of CSSs to be validated by a processor on a level according to the principle

18



of Steps 2.a and 2.b described above. The complexity analysis of this algorithm and the global

solution is presented in lemma 3 and theorem 1 respectively.

(ICSSSIXIMLCSI)

Lemma 3: Algorithm 4 requires O local computation time and O(|MLCS|)

communication rounds, where p is the number of processors used.
Proof: This proof is similar to that of Lemma 2.

Theorem 1: Our solution for the MLCS problem with a string exclusion constraint requires

0 (|D|><|2|+ |CSSs|x|MLCS]|

> ) local computation time on each processor, O(|MLCS|)

. . nr|z . ..
communication rounds and O (%) time for preliminary work.

Proof: This result is derived from Lemmas 1, 2 and 3.
4. Results and discussion

In this section, we present and analyze the results obtained from the implementation of

our algorithms in order to validate our theoretical predictions.

4.1. Simulation environment

The following configurations were made during the experiments:

* (C was used as a programming language;
* The MPI library (OpenMPI version 3.1.1) provided inter-processor communication;
* Tests of our programs were carried out on the Dophin cluster of the MATRICS
platform of the University of Picardy Jules Verne that has the following configuration:
i. Sixty computation nodes with 28 cores each (/680 cores in total). Forty-eight
nodes called thin nodes with 128 GB of RAM and 12 thick nodes with 512 GB of
RAM;
ii. Each node is composed of 2 processors where a processor is an Intel Xeon E5-2680
V4 processor (35 MB Cache, 2.40 GHz);
iii. 2 login nodes that are not intended to perform calculations but to provide the job
submission environment;
iv. The operating system used was CentOS Linux version 7.4.1708;
v. One NFS server (85 TB) with 10 Gbits;
vi. A BeeGFS (300 TB) 100 Gbits Distributed File System.
vii. All nodes are interconnected with Omni-Path links providing 100Gbps throughput.
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* The data (sets of input sequences) used are actual biological data from the NCBI
(National Center for Biotechnology Information) database [23]. The constraint is

generated randomly according to date sizes.

During these experiments, we conducted 3 types of tests:

1. The first consists in varying the number of processors (or MPI processes) used for a
fixed number of input sequences (the size of these sequences being identic). Thus, this
number varies from 1 to 128 for a number of 100, 500, 900 and 1000 sequences of
length 100;

2. The second uses 32 processors and varies the number of input sequences of fixed sizes
from 3 to 900;

3. In the third test, the number of input sequences and the number of processors is fixed
at 10 and 16 respectively. Only the size of the input sequences varies from 100 to

40000.

The communication time in this work is the sum of the effective data transfer time and

processor idleness. The execution time is obtained by averaging the results of 5 sets of tests.

4.2. Results

Figure 7. Execution times using p € {2,4,5,8, 16,32, 64,80,115,120, 128 } processors
with 100, 500 and 900 sequences respectively.

With 100, 500 and 900 sequences of length 100, Figure 7 shows the final execution time
of our algorithm with different numbers of processors. This figure shows that for a reduced
number of processors (less than 32), the speed-up rapidly increases Additionally, for a
number of processors greater than 32, the speedup doesn’t increase drastically. This is due to
irregularities that occur during the generation of the DAG’s nodes, which cause some
processors to be idle during the resolution process. It can therefore be concluded from this

figure that our solution is sufficiently scalable with the number of processors and input

sequences.
Figure 8.a. Memory used for p € Figure 8.b. Evolution of speedup for p €
{1,4,16,128} and r € {3,4, ...,900}. {2,4,16,32, 64,128 } for r=100 and n=100.

Figure 8. Evaluation of memory used and speedup of our algorithm.
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An evaluation of the memory used by our algorithm is depicted in figure 8.a. The
results here is the mean of the memory used by each processor during the resolution. The first
observation here is that on a single processor, memory consumption of our algorithm is high
(= 60GD for only 50 inputs sequences of length 100). We can also observe that by increasing
the number of processors, we are decreasing considerably the memory used by each. The
highly memory consumption is justified by the fact that the increase of the number input
sequences implies an increase not only of the number of nodes per level in the graph but also

the space taken by a node.

Figure 8.b gives the speedup of our algorithm. For recall, if Ts and T, are respectively
the sequential execution time and the execution time on p processors, the speedup = Ts / T
and the efficiency = speedup / p. We can observe in this figure that the speedup is increasing
according to the number of processors used. This is a proof of the sufficient scalability of our

algorithm with the number of processors.

Figure 9. Communication, computation and execution times forp = 32 andr €
{3,4,...,900}.

Figure 9 shows that the communication time does not increase according to the number of
input sequences. This is justified by the fact that the number of communication rounds does
not depend on the number of input sequences but rather on the size of the resulting MLCS.
This communication time is approximately 20% of the execution time, and this is due to the
idleness of processors caused by a possible unbalanced load, the master-slave alternation and
the quantity of data share between processors. Ensuring load balancing is a major task for our
algorithm. From figure 9, it appears that the processors work much more than they
communicate.

Figure 10: Communication time, local computation and execution times forp = 16, r = 10
with an input sequence length n € {100, 200, ...,9000}.

The results presented in figure 10 shows that the percentage of communication time
increases with the length of the sequences. This augmentation is explained by the fact that the
number of communication rounds depends on the number of levels of the DAG, which is a
function of the size of the CSSs between the input sequences. Thus, the probability to have

long CSSs increases with the size of the sequences.

Figure 11.a: Percentage of local computation and communication according to the number of

sequence number using 32 processors.

21



Figure 11.b. Percentage of communication and local computation based on the size of the
sequences on 32 processors

Figure 11: Computation time vs Communication time

Figures 11.a and 11.b illustrate the percentages of communication and computation with
two configurations (with different sizes and numbers of sequences). These figures show us
that there is more communication when the size of the sequences increases than when the
number of sequences increases. This result is in agreement with our theoretical predictions

(O(|MLCS))).
Figure 12. Load difference between 8 processors using r € {3,4,5 ..., 900} input sequences.

For 8 processors, Figure 12 illustrates each of their computation loads. It shows that the
master processor (supervisor) has a maximum load compared to the slave processors. This is
justified by the fact that during the CSSs search process, a part of the DAG data
synchronization work, the supervisor backups the CSSs and rebuilds them during the
validation process. This figure also shows that the processor’s load sufficiently decreases
from one slave processor to another. This is due to the uncertainty of generating new nodes
from one level to another. It can also be noted that the higher the rank of a processor, the
lower its load. Indeed, during the construction process of the DAG, if the number of nodes of
a level is lower than the number of processors, then our distribution scheme of the tasks to

processors will attribute only one node to a processor starting with the processor rank 1.

5. Concluding remarks

In this paper, we propose a parallel solution based on the sequential algorithm of Peng
and Wang [22]. The solution proposed here is subdivided into two steps: we first propose an
algorithm that searches all the common subsequences between the input sequences, and we
then present a second algorithm that searches among all the subsequences for those that

exclude the constraint and remain of maximum length. The analysis of this solution reveals

|D|x|X|+ |CSSs|x|MLCS]|
p

that it requires O ( ) local computation time on each processor, O(|MLCS|)

. . nr|x . ..
communication rounds and O (%) time for preliminary work.

Experimental results indicate that the proposed solution is efficient and sufficiently

scalable on large numbers of input sequences with long sequences. Despite its efficiency, our
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algorithm can be improved by implementing another distribution scheme that ensures better
load balancing between processors. Additionally, reducing the latency time of processors will
greatly reduce the runtime of our solution. This algorithm can also be optimized by
parallelizing the work of the master processor (using a multicores processor as a master).
Further research should be conducted on a general case of this problem, for example, by

considering the string-inclusion case rather than the string-exclusion case.
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