Armel Nkonjoh Ngomade

Jean Frédéric Myoupo

Vianney Kengne Tchendji

A dominant point-based parallel algorithm that finds all longest common subsequences for a constrained-MLCS problem

Keywords: Constrained-multiple longest common subsequence, Dominant point, Coarse Grained Multicomputer

The work presented in this paper consists of searching for all the longest common subsequences among r sequences of equal length n which exclude a particular string. This problem is named the constrained-multiple longest common subsequence (constrained-MLCS) and is a general case of the constrained-LCS. Due to its importance, particularly in bioinformatics, the constrained-MLCS is widely studied. Thus, the solution proposed here is a coarse-grained multicomputer-based algorithm that uses an existing serial algorithm for local computation and a masterslave paradigm. This solution requires O | |×| | | |×| | local computation time on each processor, O |MLCS| communication rounds and O |Σ| time for preliminary works. |Σ| is the alphabet's size, p is the number of processors used, |D| is the number of dominants generated during the entire resolution process, | | and | | are the number of all common subsequences, and the length of the longest common subsequences respectively. The experiments performed indicate that our proposed algorithm is scalable both with the number of processors and the number of input sequences.

Introduction

With important applications in various fields such as computational biology, information retrieval and file comparison [START_REF] Attwood | Fingerprinting g-protein-coupled receptors[END_REF][START_REF] Imre | Sequence comparison: some theory and some practice[END_REF][START_REF] Smith | Identification of Common Molecular Subsequences[END_REF], the multiple longest common subsequence problem, denoted MLCS problem, is a classic NP-hard problem which consists in finding the longest subsequence shared between two or more sequences. In fact, according to the number of sequences, this problem can be classified into two cases: 2 1. An LCS problem which is searching for the longest common subsequences of exactly two sequences;

2. An MLCS dealing with at least three sequences.

Considerable efforts have been made during the last three decades to find solutions to this problem, but the most significant and applicable contributions deal only with the particular case of two or three sequences [START_REF] Chen | A fast-parallel algorithm for finding the longest common sequence of multiple biosequences[END_REF][START_REF] Hsu | Computing a longest common subsequence for a set of strings[END_REF][START_REF] Lu | Parallel algorithms for the longest common subsequence problem[END_REF][START_REF] Wang | A fast multiple longest common subsequence (mlcs) algorithm[END_REF]. Indeed, with the increasing volume of biological data and the widespread use of sequence analysis tools, an efficient MLCS algorithm, applicable to many sequences, will have a significant impact in bioinformatics.

Many sequential and parallel algorithms have been recently proposed [START_REF] Li | A novel fast and memory efficient parallel mlcs algorithm for long and large-scale sequences alignments[END_REF][START_REF] Peng | A novel efficient graph model for the multiple longest common subsequences (mlcs) problem[END_REF][START_REF] Wang | A fast multiple longest common subsequence (mlcs) algorithm[END_REF][START_REF] Wang | Efficient dominant point algorithms for the multiple longest common subsequence (MLCS) problem[END_REF] for the MLCS problem. Depending on the model on which the solutions are based, these algorithms can be classified into two groups: the dominant point-based and the dynamic programming-based approaches. Using the dominant point-based approach has an enormous advantage over classical dynamic programming approaches because it greatly reduces the size of the search space by orders of magnitude [START_REF] Wang | A fast multiple longest common subsequence (mlcs) algorithm[END_REF]. Although this approach seems suitable, it also suffers from unnecessary and redundant storage, computations, comparison and deletion of multidimensional match points [START_REF] Li | A novel fast and memory efficient parallel mlcs algorithm for long and large-scale sequences alignments[END_REF][START_REF] Peng | A novel efficient graph model for the multiple longest common subsequences (mlcs) problem[END_REF] that hinder its application on long and numerous sequences.

To fill the gaps in the dominant point-based approach, in this work we look at a variant of the MLCS problem called the Constrained-MLCS problem. In fact, our aim is to propose a parallel algorithm based on an ameliorated version of the dominant point approach [START_REF] Peng | A novel efficient graph model for the multiple longest common subsequences (mlcs) problem[END_REF] and also based on the Bridging Coarse Grain BSP/CGM (Bulk Synchronous Parallel/Coarse Grained Multicomputer) model [START_REF] Cheatham | Bulk synchronous parallel computing-a paradigm for transportable software[END_REF][START_REF] Dehne | Scalable parallel computational geometry for coarse grained multicomputers[END_REF][START_REF] Valiant | A bridging model for parallel computation[END_REF]. The CGM seems best suited for designing algorithms that are not too dependent on an individual architecture. A BSP/CGM machine is a set of p processors, each having its own local memory of size m with a connection to a router able to deliver point-to-point messages. A BSP/CGM algorithm alternates between local computations and global communication rounds. A CGM computation/communication round corresponds to a BSP super-step with a communication cost of g × m, where g is the cost of communicating a word in the BSP model. Therefore, an efficient BSP/CGM algorithm must have maximum speedup and must use minimum number of communication rounds [START_REF] Dehne | Scalable parallel computational geometry for coarse grained multicomputers[END_REF].

Our main contribution in this paper is to propose a parallel algorithm based on the serial solution of Z. Peng and Y. Wang [START_REF] Peng | A novel efficient graph model for the multiple longest common subsequences (mlcs) problem[END_REF] for the Constrained-MLCS. The motivation to use this particular sequential algorithm is that the data structure (Leveled-DAG) used provides a better optimization of time and space. In fact, existing dominant point-based algorithms have to generate a huge number of nodes and save them all in memory, while the Leveled-DAG approach can timely eliminate all the nodes in the graph that cannot contribute to the construction of MLCS. At any moment, only the nodes in the current level as well as some nodes in the previous levels are saved, therefore, the Leveled-DAG is much smaller than the DAG constructed by the existing dominant point-based algorithms, which can save a lot of memory space and allows to solve larger problems. Our contribution can be summarized as follows:

• We introduce and clearly define a new variant of the MLCS problem.

• We also propose an efficient CGM-based algorithm that searches all the common subsequences between a set of sequences.

• To take the constraint into consideration, we first define a suitable data structure called CSS-graph which is used to store all the previously found common subsequences and we propose an efficient parallel algorithm to construct it and to perform the validation of the constraint.

• We do some analysis of our proposed algorithms resulting in the solution requiring • We perform experiments with sample sequences from a real biological NCBI database [START_REF]Pseudomonas aeruginosa pao1 chromosome, complete genome[END_REF]. The collected results show that our solution is suitable for long sequences and is sufficiently scalable both with the number of input sequences and with the number of processors.

| || | |!""#||$%!"|
This paper is organized as follows: Section 2 is dedicated to introducing key concepts and for presenting recent research related to the MLCS problem. In Section 3, we present and analyze our parallel algorithm to solve the Constrained-MLCS problem. Experimental results and analyses are presented in Section 4. Finally, in Section 5, we summarize the paper and provide directions for future research.

Constrained-MLCS problem and Related works

In this section, we will first provide a formal definition of the MLCS and Constrained-MLCS problems; second, we will describe the dominant point approach used to solve the MLCS problem in the research literature and finally, we review related works on exact and approximate, sequential and parallel algorithms for the MLCS problem.

The Constrained-MLCS problem

The MLCS problem with a string-exclusion constraint, denoted STR-EC-MLCS, consists of searching all common subsequences of several sequences that are of maximum length and which exclude a string.

Definition 1.

Let Σ be a finite set of symbols called an alphabet. A sequence x of length n over the alphabet Σ is defined as:

) = + , + -… + & . The i th character of x is denoted x[i]. A sequence / = + 0 1 + 0 2 … + 0 3 is a subsequence of x if ∀5, 1 ≤ 5 ≤ 8: 1 ≤ : ; ≤ < and ∀=, >, 1 ≤
= ≤ > ≤ 8: : ' ≤ : ? . A substring of x is a subsequence of successive symbols within x.

Definition 2. Let = @ , , -, … , A B be a set of sequences over alphabet Σ. The MLCS problem for set consists in finding all sequences x such that:

i. x is a subsequence of 0 for each i;

ii. x is the longest among all sequences satisfying (i).

In general, there exists more than one MLCS between many sequences.

Definition 3. For a given set of sequences = @ , , -, … , A B and a string Pct, the Constrained-MLCS searches all sequences x such that:

i. x is a subsequence of 0 , 1 ≤ : ≤ C;

ii. x doesn't entirely contain Pct;

iii. x is of maximal length satisfying (i) and (ii).

This problem has already been addressed in the literature [START_REF] Garcia | A coarse-grained multicomputer algorithm for the longest common subsequence problem[END_REF][START_REF] Hirschberg | Algorithms for the longest common subsequence problem[END_REF][START_REF] Lu | Parallel algorithms for the longest common subsequence problem[END_REF][START_REF] Myoupo | Time-efficient parallel algorithms for the longest common subsequence and related problems[END_REF], but it was only for the simple case of two input sequences.

An example of this problem is depicted in Figure 1 where the input sequences are ACTAGCTA, TCAGGTAT and CTAAGTTA.

Notations

Hereafter we will use the following notations:

• MLCS stands for multiple longest common subsequence;

• |MLCS| is the length of the MLCS;

• ST is the table of successors which indicates for a sequence x the position of the next character identical to each symbol of the alphabet after a given position;

• CSSs stands for all common subsequences between multiple sequences;

• STR-EC-MLCS stands for string exclusion multiple longest common subsequence;

• = is the number of sequences in a MLCS;

• D denotes the number of processors used;

• n is the common length of the r sequences;

• (is the set of all dominant points generated during the search process;

• Pct is the constraint string (or sequence) in a Constraint-MLCS problem.

They will be widely used in the following.

The dominant point-based approach

The dominant points approach, introduced by Hischberg [START_REF] Chen | A fast-parallel algorithm for finding the longest common sequence of multiple biosequences[END_REF][START_REF] Masek | A faster algorithm computing string edit distances[END_REF], consists of reducing the search to the exploration of a smaller set of dominant points rather than all the positions in a square matrix as done in the dynamic programming technique. This method has been widely used not only for the LCS problem [START_REF] Apostolico | Fast linear-space computations of longest common subsequences[END_REF][START_REF] Chin | A fast algorithm for computing longest common subsequences of small alphabet size[END_REF][START_REF] Masek | A faster algorithm computing string edit distances[END_REF] but also for the extended case of more than two sequences [START_REF] Chen | A fast-parallel algorithm for finding the longest common sequence of multiple biosequences[END_REF][START_REF] Imre | Sequence comparison: some theory and some practice[END_REF][START_REF] Wang | A fast multiple longest common subsequence (mlcs) algorithm[END_REF].

Preliminaries: definitions

Definition 4. Over a set of sequences = @ , , -, … , A B, a vector

E = E , , E 2 , … , E C is called a match point if , GE , H = -GE -H = ⋯ = A GE A H = α.
Hereafter match E K will denote the fact that the vector E is a match point over . In Figure 1, LG4H = NG3H = PG3H = A, thus the point v = (4, 3, 3) is a match point. i. E = 8 where is a matrix computed by a dynamic programming technique using the standard recursive formula for the MLCS problem (see [START_REF] Peng | A novel efficient graph model for the multiple longest common subsequences (mlcs) problem[END_REF]);

ii. There is no further match point on the same symbol that dominates v.

We denote (W and (as the set of all k-dominant points and the set of all dominant points respectively.

Definition 7.

A point V in a set B is called the minimal point of B if for all points X ∈ B -@VB, \]ℎ >ℎ_> X ≰ V. We denote by minima (B) the set of all the minimal points of B.

Principle of the method

The key idea of this method is based on the observation that only the dominant points can contribute to the construction of the MLCS. The search space of the dominant point method can be represented as a Direct Acyclic Graph (DAG) in which:

i. A node represents a match point;

ii. The edges 〈V, X〉 represent the fact that q is a successor of z.

This approach consists of constructing the DAG starting from level 0 to level | |.

Therefore, initially, the DAG contains only the source 0,0, … , 0 and the final ∞, ∞, … , ∞ nodes, which don't have incoming and outgoing edges respectively. From here, the DAG is constructed level by level as follows: at the first level, 8 = 0 and (W = @ 0,0, … ,0 B, and with a forward iteration procedure, the (k + 1)-dominants (W , are computed based on the kdominants (W . At the end, the DAG will be fully built and an MLCS will be any longest paths starting from the source node to the final node.

A simple example (case of two sequences) of this method is illustrated in Figure 2 where S1 = AGCTGA and S2 = CAGATCAGAG. In this figure, the nodes in gray and black represent those that have been removed either by the minima operation or because they appear more than one time in the same level. For example, to build level 1, we look for all the successors of the node (0,0) on all the symbols of the alphabet. Here, we have the nodes

A(1,3), G(2,

Related Works

Because of its crucial importance, this problem has received the attention of many researchers. Thus, several sequential and parallel solutions have been proposed. Among these solutions, some just calculate the length of the MLCS and others return the sequences corresponding to the MLCS. It should be noted that the dominant points technique is the most used.

Based on dynamic programming, Hsu and Du [START_REF] Hsu | Computing a longest common subsequence for a set of strings[END_REF] proposed for an MLCS problem with r sequences of equal length n, an algorithm requiring < ' time and space. This algorithm returns a set of sequences which are LCS. To improve this, many other solutions have been

proposed [START_REF] Apostolico | Fast linear-space computations of longest common subsequences[END_REF][START_REF] Garcia | A coarse-grained multicomputer algorithm for the longest common subsequence problem[END_REF][START_REF] Masek | A faster algorithm computing string edit distances[END_REF]. In [START_REF] Garcia | A coarse-grained multicomputer algorithm for the longest common subsequence problem[END_REF], after proposing a CGM-algorithm to compute the length of the LCS, a backtracking method is used to find the corresponding LCS. Even with all these improvements, these solutions are still inefficient for practical use. For the LCS problem, many parallel solutions have been recently proposed [START_REF] Hirschberg | Algorithms for the longest common subsequence problem[END_REF][START_REF] Ukiyama | Parallel multiple alignments and their implementation on cm5[END_REF].

Recently, many dominant point-based solutions have been developed for the special case of two sequences [START_REF] Chin | A fast algorithm for computing longest common subsequences of small alphabet size[END_REF][START_REF] Hunt | A fast algorithm for computing longest common subsequences[END_REF][START_REF] Koji | Algorithms for the longest common subsequence problem for multiple strings based on geometric maxima[END_REF][START_REF] Myoupo | Time-efficient parallel algorithms for the longest common subsequence and related problems[END_REF]. In [START_REF] Koji | Algorithms for the longest common subsequence problem for multiple strings based on geometric maxima[END_REF], three dominant point algorithms for three or more sequences were proposed. One of the algorithms, Algorithm A, which was designed specifically for MLCS problems of three sequences, is much faster than the traditional dynamic programming algorithms for three sequences. However, Algorithm A finds dominant point sets by enumerating points of the same coordinate values in each dimension. As a result, its complexity increases rapidly with the growing number of sequences. The other algorithm, Koji and Imai's algorithm [START_REF] Koji | Algorithms for the longest common subsequence problem for multiple strings based on geometric maxima[END_REF], works for an arbitrary number of strings. Apart from finding the length of the MLCS, these algorithms also proposed methods for recovering all MLCS.

For the MLCS problem, D. Korkin [START_REF] Korkin | A new dominant point-based parallel algorithm for multiple longest common subsequence problem[END_REF] proposed the first parallel MLCS algorithm requiring |Σ||(| time complexity, where |(| is the number of dominant points in the graph. Later, Chen et al. [START_REF] Chen | A fast-parallel algorithm for finding the longest common sequence of multiple biosequences[END_REF] presented an efficient MLCS algorithm named FAST-LCS for DNA in which they introduced a novel data structure called a successor table to obtain the successors of nodes in constant time and they used a pruning operation to eliminate the nondominant nodes in each level. To improve this solution, Wang et al. [START_REF] Wang | A fast multiple longest common subsequence (mlcs) algorithm[END_REF] use the divideand-conquer strategy, which is very suitable for parallelization to eliminate the nondominant nodes and proposed an efficient algorithm named Quick-DPAR. Many other improvements have also been proposed [START_REF] Li | Facc : a novel finite automaton based on cloud computing for the multiple longest common subsequences search[END_REF][START_REF] Li | A novel fast and memory efficient parallel mlcs algorithm for long and large-scale sequences alignments[END_REF][START_REF] Peng | A novel efficient graph model for the multiple longest common subsequences (mlcs) problem[END_REF][START_REF] Jiaoyun | An efficient parallel algorithm for longest common subsequence problem on GPUs[END_REF][START_REF] Yang | A new progressive algorithm for a multiple longest common subsequences problem and its efficient parallelization[END_REF].

Among these recently proposed solutions, we have chosen as our sequential algorithm for local computation, the solution of Z. Peng and Y. Wang [START_REF] Peng | A novel efficient graph model for the multiple longest common subsequences (mlcs) problem[END_REF] because of its better The construction steps of the new graph are:

Step 0: Compute the entries of the successor tables of each input sequence;

Step 1: Build the first level of the Leveled-DAG: generate all the successors of the initial node as the first level by referring to the successor tables;

Step 2: Build the next level of the Leveled-DAG and delete the outdated nodes (generate and delete). A node is said to be outdated or useless when it can no more contribute to the search process of the MLCS. If there are nodes in the Leveled-DAG that have not been expanded, repeat the following two substeps:

Step 2.1: For each unexpanded node z, generate all its successors (if a successor already exists in the graph, it does not need to be generated several times and only needs a pointer), and if z has no successors, let the final node be its only successor;

Step 2.2: If |D_=>:_d_ V | is the length of the partial LCS of the node z then, for each node z which does not possess an incoming arc (nodes (1, 3), [START_REF] Attwood | Fingerprinting g-protein-coupled receptors[END_REF][START_REF] Attwood | Fingerprinting g-protein-coupled receptors[END_REF] and [START_REF] Cheatham | Bulk synchronous parallel computing-a paradigm for transportable software[END_REF][START_REF] Apostolico | Fast linear-space computations of longest common subsequences[END_REF] in figure 3 at step B), and for each successor s of z do the following: Step 3: Repeat Step 2.2, until only the final node is left in the graph;

• If |D_=>:_d_ V | ≥ |D_=>:_d_ |,
Step 4: Output the partial LCSs saved in the end node, which are the real MLCS of the input sequences. To find the length of the Constrained-LCS, many sequential solutions have been proposed [START_REF] Deorowicz | Bit-parallel algorithm for the constrained longest common subsequence problem[END_REF][START_REF] Tsai | The constrained longest common subsequence problem[END_REF]. For parallel solutions, Deorowicz [START_REF] Deorowicz | Bit-parallel algorithm for the constrained longest common subsequence problem[END_REF] proposed the first bit-parallel algorithm for the STR-IC-LCS problem and recently we proposed a CGM-based algorithm for a string-exclusion LCS [START_REF] Myoupo | Coarse-Grained Multicomputer Based-Parallel Algorithms for the Longest Common Subsequence Problem with a String-25 Exclusion Constraint[END_REF]. To the best of our knowledge, our parallel algorithm, finding all the constrained-MLCS, is the first presented in all the research literature.

CGM Algorithm for the Constrained-MLCS problem

This section describes our proposed parallel algorithm. We first present an efficient CGM algorithm for preliminary works, second, we propose a parallel algorithm using the master-slave paradigm to find all the common subsequences (CSSs) between the input sequences and we finally describe an algorithm to validate all the previously found CSSs according to a constraint.

Preliminaries

For a STR-EC-MLCS problem with r sequences of equal length n, the calculation of the values of the entries of a successor table (ST) for a sequence) = + , + -… + & is performed using equation (1) [START_REF] Peng | A novel efficient graph model for the multiple longest common subsequences (mlcs) problem[END_REF]: hG:, 5H = i:<@i|+ j = K 0 , i > 5, 1 ≤ : ≤ |Σ|, 0 ≤ 5 ≤ <B

where K 0 is the i th symbol in Σ .

From this equation, the following dependency relationships are derived:

i. The computation of the entries of the tables ST for two sequences Si and Sj is independent with j ≠ i and 1 ≤ :, 5 ≤ =;

ii. When calculating the entries of a table ST, the computation of the values corresponding to each symbol of the alphabet is mutually independent. Formally, the computation of each hG:, 5H for 1 ≤ : ≤ |Σ| is independent to hG8, 5H for 1 ≤ 8 ≤ |Σ| with k ≠ i;

iii. The computation of each hG:, 5H for a sequence of size n with 1 ≤ 5 ≤ < depends on the symbols present in the sequence in positions 5 + 1, 5 + 2, ⋯ , <.

Based on these dependencies, because our algorithm runs on a parallel computer with p processors, and in order to ensure load balancing among processors, we propose two distribution schemes:

Scheme 1: Equally distribute the sequences on processors. This formally consists of assigning to a processor i, the ⌈=/D⌉ th sequences. This distribution is easy to implement but has the drawback of leaving some processors idle if = < D;

Scheme 2: If = < D, then we assign a sequence to several processors as follows: we first assign a sequence to ⌊D/=⌋ processors. If = × ⌊D/=⌋ < D, then add a processor to the previous ⌊D/=⌋ starting with the first block of processors. Although it is difficult to implement, this distribution scheme reduces the processor's idle time and ensures much better load balancing.

In our algorithm, we use the first scheme, because, in practice, the number of input sequences is usually greater than the number of processors. With this, in order to have the tables of successors of all the sequences, after the computation phase, all the processors will perform a global communication of all-to-all type. An overview of this solution is given in

Parallel solution finding all common subsequences of the Constrained-MLCS problem

Among the existing sequential and parallel solutions for the MLCS problem, those based on the classical dominant point approach suffer from too much time and space consumption [START_REF] Wang | A fast multiple longest common subsequence (mlcs) algorithm[END_REF][START_REF] Wang | Efficient dominant point algorithms for the multiple longest common subsequence (MLCS) problem[END_REF]. Therefore, our aim here is to propose a parallel algorithm based on the efficient serial algorithm presented in [START_REF] Peng | A novel efficient graph model for the multiple longest common subsequences (mlcs) problem[END_REF]. Indeed, the main ideas for our solution are the following:

1. We will use the Leveled-DAG presented in [START_REF] Peng | A novel efficient graph model for the multiple longest common subsequences (mlcs) problem[END_REF] but since our goal is to have all common subsequences, we will no longer remove all outdated nodes (nodes that can no longer contribute to the search process of other CSSs).

2. At the last level (the level where all MLCS are found), all CSSs found since level 1 are returned in the form of a graph (this representation optimizes the memory space necessary to store these CSSs because their identical prefixes are recorded in a single copy).

Definition 8. When solving the MLCS problem using the dominant point approach, a subproblem can be defined as being the search of all the successors of a match point.

From this definition, the level k of a subproblem is defined as the length of the common subsequence that it generates. These subproblems can be represented as a multilevel acyclic graph defined as follows:

Definition 9. The DAG used to solve the MLCS problem is a graph in which:

1. A node is represented by: a. A match point E E , , E 2 , … , E C ; b. The symbol having produced the match point E;

c. The subsequence(s) generated by the point E.

2. An edge represents the operation of calculating a successor from another match. Indeed, if E , and E -are two match points associated with symbols K , and K -respectively, then the edge E , → E 2 represents the generation of subsequence K , K -;

3. The nodes that never have incoming and outgoing edges are respectively the initial and the final node;

4. The dependencies between the nodes are defined as follows:

a. Two nodes which are not connected by an edge are mutually independent; b. The evaluation of one node may depend on the evaluation of another node of the same and the previous level. An example of this is shown in figure 3 where the evaluation of the node [START_REF] Dehne | Scalable parallel computational geometry for coarse grained multicomputers[END_REF][START_REF] Rick | New algorithms for the longest common subsequence problem[END_REF] depends on the node of the same level (4, 3) and on the node of the previous level (5, 4); c. A node no longer having an incoming edge can no longer contribute to the search process of subsequences of other nodes and thus can be saved with all its generated subsequences.

From this definition, searching all CSSs consists in constructing the DAG starting from the initial node and ending at the final node by generating new nodes, saving the CSSs and removing the outdated nodes.

From the definition of the DAG the following characteristics emerge:

• The DAG has an unknown form: Given these characteristics, it is therefore a challenge for us to evaluate in parallel the nodes of a graph whose form is unknown and in which dependencies exist between the nodes of the same and the previous level. This form requires a supervisor during the parallelization process because it will be necessary to synchronize the data so that each processor works on correct and updated data.

for two sets v = @v , , v -,
This algorithm uses the master-slave model. On a parallel machine having p processors, the processor D x will be the master, and the rest yD , , D -, … , D z, { the slaves. The roles of each type of processor are as follows:

•

Master processor:

Generate the first points of correspondence (the successors of the initial node);

Distribute all these nodes on slave processors;

Combine the partial results of slave processors after each step;

Based on the partial results, rebuild the next level by deleting the duplicates and reassigning the CSSs to the corresponding nodes.

•

Slave processor:

Determine, using a specific algorithm, the nodes on which it will perform calculations;

Generate all the successors of each node assigned to it. In the case where a successor already exists, it is no longer generated and we just perform a redirection from the node to this successor.

Algorithm 2:

Local algorithm for the master processor The CGM-based algorithm can therefore be summarized in three steps:

Step 1: The master processor generates the successors of the initial node and distributes them on all slave processors.

Step 2: Construction of the next level as follows:

Step 2.1: For each unexpanded node (node for which the successors have not been generated) generate its successors. If it has no successors then the final node is taken as its only successor.

Step 2.2: If |z| denotes the length of the common subsequence of a node z, then for each node z having no incoming arc and for each successor s of z, do the following: In Algorithm 3:

• If |V| ≥ | |
• The function compute_nb_node (E) is used to calculate the number of nodes on which a processor will perform its jobs. In the case where this number is zero, the indexed processor will be waiting during the corresponding step;

• During the first communication phase, the processors having performed local calculations will communicate their results to the others;

• The second communication phase consists in sending to the master processor by the slave processors, information which accelerates the process of saving the CSSs.

To optimize memory space, the slave processors will perform local deletions and only the supervisor will keep all found CSSs that are the results from algorithms 2 and 3.

Coarse-Grained algorithm validating all common subsequences

This parallel algorithm works on a set of p processors and can be summarized as follows:

• Definition of a data structure which will optimize the storage space used by all common subsequences. This backup will be done only on the master processor during the process of backing up CSSs;

• Distribute the constraint on each processor;

• Group all the common subsequences according to their level (a level k groups the CSSs of length k); • Validate the CSSs in parallel level after level starting by the levels of the maximum length;

• If one or more sequences of a level k respect the constraint, then the validation process is completed and the CSSs of the current level can be returned as MLCS.

Data structure used to store all CSSs

The idea here is motivated by the fact that during the process of searching for CSSs, CSSs of length k are found directly after searching for all common subsequences of length k-1. Thus, subsequences of length k-1 are prefixes of subsequences of length k. The structure defined here is a graph whose preview is given in Figure 6 for the sequences ACTAGCTA, TCAGGTAT and CTAAGTTA.

Parallelization constraints

The previous data structure results in the following constraints:

• A level k is evaluated only if all CSSs of the nodes of the level k+1 have all been validated and none of them respects the constraint;

• The evaluation of nodes belonging to the same level and of two CSSs belonging to the same nodes are mutually independent;

• The number of nodes to evaluate on a level is not predictable. Additionally, the evaluation costs of two nodes (the number of CSSs to validate) of the same level can be different.

To ensure load balancing between processors, we will not distribute nodes but, a set of CSSs. In Figure 6, a CSS of length k will be represented by the path from the source node to one node in level k. For example, the CSS "CAGA" is represented by the path @ 2,2,1 → v 4,3,3 → ~ 5,4,5 → v 8,7,8 B. The evaluation of one level consists in finding all CSSs generated by nodes of the level and distributes them on each slave processor. Thus, to evaluate level 5, two processors will validate in parallel "TAGTA" and "CAGTA". With "TA" as a constraint, these two sequences will not respect it. Therefore, level 4 can be evaluated, and during the evaluation, the set of CSSs of this level will be equally distributed on processors and will be processed simultaneously. At the end of this level, only "CAGA" will respect the constraint and the validation process will be stopped.

Parallel algorithm

This solution is based on the previous parallelization constraints and is summarized in the five next steps:

1. The master processor distributes the graph to the others processors; Proof: This result is derived from Lemmas 1, 2 and 3.

Results and discussion

In this section, we present and analyze the results obtained from the implementation of our algorithms in order to validate our theoretical predictions.

Simulation environment

The following configurations were made during the experiments:

• C was used as a programming language;

• The MPI library (OpenMPI version 3.1.1) provided inter-processor communication;

• Tests of our programs were carried out on the Dophin cluster of the MATRICS platform of the University of Picardy Jules Verne that has the following configuration:

i. Sixty computation nodes with 28 cores each (1680 cores in total). Forty-eight nodes called thin nodes with 128 GB of RAM and 12 thick nodes with 512 GB of RAM;

ii. Each node is composed of 2 processors where a processor is an Intel Xeon E5-2680 V4 processor (35 MB Cache, 2.40 GHz);

iii. 2 login nodes that are not intended to perform calculations but to provide the job submission environment;

iv. The operating system used was CentOS Linux version 7.4.1708;

v. One NFS server (85 TB) with 10 Gbits;

vi. A BeeGFS (300 TB) 100 Gbits Distributed File System.

vii. All nodes are interconnected with Omni-Path links providing 100Gbps throughput.

• The data (sets of input sequences) used are actual biological data from the NCBI (National Center for Biotechnology Information) database [START_REF]Pseudomonas aeruginosa pao1 chromosome, complete genome[END_REF]. The constraint is generated randomly according to date sizes.

During these experiments, we conducted 3 types of tests:

1. The first consists in varying the number of processors (or MPI processes) used for a fixed number of input sequences (the size of these sequences being identic). Thus, this number varies from 1 to 128 for a number of 100, 500, 900 and 1000 sequences of length 100;

2. The second uses 32 processors and varies the number of input sequences of fixed sizes from 3 to 900;

3. In the third test, the number of input sequences and the number of processors is fixed at 10 and 16 respectively. Only the size of the input sequences varies from 100 to 40000.

The communication time in this work is the sum of the effective data transfer time and processor idleness. The execution time is obtained by averaging the results of 5 sets of tests. With 100, 500 and 900 sequences of length 100, Figure 7 shows the final execution time of our algorithm with different numbers of processors. This figure shows that for a reduced number of processors (less than 32), the speed-up rapidly increases Additionally, for a number of processors greater than 32, the speedup doesn't increase drastically. This is due to irregularities that occur during the generation of the DAG's nodes, which cause some processors to be idle during the resolution process. It can therefore be concluded from this figure that our solution is sufficiently scalable with the number of processors and input sequences. An evaluation of the memory used by our algorithm is depicted in figure 8.a. The results here is the mean of the memory used by each processor during the resolution. The first observation here is that on a single processor, memory consumption of our algorithm is high (≈ 60Gb for only 50 inputs sequences of length 100). We can also observe that by increasing the number of processors, we are decreasing considerably the memory used by each. The highly memory consumption is justified by the fact that the increase of the number input sequences implies an increase not only of the number of nodes per level in the graph but also the space taken by a node. Figure 9 shows that the communication time does not increase according to the number of input sequences. This is justified by the fact that the number of communication rounds does not depend on the number of input sequences but rather on the size of the resulting MLCS.

Results

This communication time is approximately 20% of the execution time, and this is due to the idleness of processors caused by a possible unbalanced load, the master-slave alternation and the quantity of data share between processors. Ensuring load balancing is a major task for our algorithm. From figure 9, it appears that the processors work much more than they communicate. For 8 processors, Figure 12 illustrates each of their computation loads. It shows that the master processor (supervisor) has a maximum load compared to the slave processors. This is justified by the fact that during the CSSs search process, a part of the DAG data synchronization work, the supervisor backups the CSSs and rebuilds them during the validation process. This figure also shows that the processor's load sufficiently decreases from one slave processor to another. This is due to the uncertainty of generating new nodes from one level to another. It can also be noted that the higher the rank of a processor, the lower its load. Indeed, during the construction process of the DAG, if the number of nodes of a level is lower than the number of processors, then our distribution scheme of the tasks to processors will attribute only one node to a processor starting with the processor rank 1.

Concluding remarks

In this paper, we propose a parallel solution based on the sequential algorithm of Peng and Wang [START_REF] Peng | A novel efficient graph model for the multiple longest common subsequences (mlcs) problem[END_REF]. The solution proposed here is subdivided into two steps: we first propose an algorithm that searches all the common subsequences between the input sequences, and we then present a second algorithm that searches among all the subsequences for those that exclude the constraint and remain of maximum length. The analysis of this solution reveals Experimental results indicate that the proposed solution is efficient and sufficiently scalable on large numbers of input sequences with long sequences. Despite its efficiency, our algorithm can be improved by implementing another distribution scheme that ensures better load balancing between processors. Additionally, reducing the latency time of processors will greatly reduce the runtime of our solution. This algorithm can also be optimized by parallelizing the work of the master processor (using a multicores processor as a master).

Further research should be conducted on a general case of this problem, for example, by considering the string-inclusion case rather than the string-exclusion case.

 and &'| | for the preliminary works. In this analysis, p, n, r denote respectively, the number of processors used, the length and the number of sequences and |(|, | |, | |, |Σ| are the number of dominant points generated by the sequences, the number of common subsequences, the length of the longest common multiple subsequences and the size of the alphabet respectively.

Figure 1 .

 1 Figure 1. Illustration of the MLCS and the Constrained-MLCS problems with input sequences ACTAGCTA, TCAGGTAT, CTAAGTTA and a constraint string Pct =TA.

 3), C(3,1) and T[START_REF] Chen | A fast-parallel algorithm for finding the longest common sequence of multiple biosequences[END_REF][START_REF] Chin | A fast algorithm for computing longest common subsequences of small alphabet size[END_REF] among which G(2,3) and T[START_REF] Chen | A fast-parallel algorithm for finding the longest common sequence of multiple biosequences[END_REF][START_REF] Chin | A fast algorithm for computing longest common subsequences of small alphabet size[END_REF] are not minimal nodes because (1, 2) ≤ (2, 3) and (1, 2) ≤ (4, 5). In level 2, the node (4,5) is duplicated, thus, one should be removed (CT[START_REF] Chen | A fast-parallel algorithm for finding the longest common sequence of multiple biosequences[END_REF][START_REF] Chin | A fast algorithm for computing longest common subsequences of small alphabet size[END_REF]). It should be noted that the final node is the successor of nodes having no successors. In this figure, the nodes in dark gray are nodes leading to the MLCS.

Figure 2 .

 2 Figure 2. A DAG constructed using the dominant point method using sequences S1 = AGCTGA and S2 = CAGATCAGAG.

 optimization of time and space. This solution consists in setting up a leveled-DAG that collects the partial MLCS until reaching the complete MLCS. The preliminary work consists in constructing the tables of successors. The entire execution process for sequences ACTAGCTA and TCAGGTAT of their solution is depicted on Figure3. In this figure, the match point and the corresponding symbol are shown in each node. The partial LCSs are shown by strings near the nodes. The white nodes are newly generated and will be expanded later and the green ones are outdated and will be removed right away. The red nodes with incoming edges are left from the previous levels and cannot be removed at present. Steps (A), (B) and (C) generate the first, second and third level of nodes respectively. In step (D), no new node is created any more.Step (E) deletes the remaining outdated nodes and in step (F), only the end node is left.

 delete the partial LCSs of s. Append the corresponding symbol of s to each partial LCS of z, and then save all the appended partial LCSs as the new partial LCSs of s; • If |D_=>:_d_ V | ≥ |D_=>:_d_ | -1, then append the corresponding symbol of s to each partial LCS of z, and add all the appended partial LCSs to the existing partial LCSs of s. Delete node z (as well as its partial LCSs) from the graph.

Figure 3 .

 3 Figure 3. The Leveled-DAG constructed for sequences ACTAGCTA and TCAGGTAT.

Figure 4

 4 Figure 4 below.

Figure 4 .Algorithm 1 :⌉i th sequences 3 4 5 For j from 1 to n do 6

 413456 Figure 4. Overview of preliminary work.

•

 … , v ' B and w = @w , , w -, … , w ' B of r sequences each, in the case where |v , | = |w , |, |v -| = |w -|, … , |v ' | = |w ' |, the DAG generated by the set A may be different from the one generated by the set B; Uncertainty of generation of new nodes: the transition from one level to another does not involve the generation of new nodes. With this DAG, it is impossible to exactly calculate the number of nodes generated by a level.

Step 3 :

 3 then replace all CSSs of s by CSSs of z which have been concatenated with the corresponding s; • If |V| ≥ | | -1 then append the CSSs of z with the corresponding symbol of s and add them to the CSSs of s; • Save the CSSs of z. Repeat Step 2 until the final node remains the single unexpanded node in the graph. Algorithms 2 and 3 describe respectively the work of the master and slave processors during each step of the search process of all the CSSs. In Algorithm 2, the procedure Generate_Next generates the successors of a node. It should also be noted that the sending phase of the successors of the initial node is a one-to-all communication.

Algorithm 3 : 15 2 3 5 For i from 1 to nb_node do 6 Foreach symbol α ∈Σ do 7 13 EndFigure 5

 3153567135 Figure 5 is an illustration of the overall process of our parallel algorithm searching all existing CSSs between the sequences ACTAGCTA, TCAGGTAT and CTAAGTTA. In this illustration, we have 4 processors among which 1 is a supervisor and 3 are slaves. In figures 5.a and 5.b, the green and red nodes represent the initial and the final node respectively. The step (E1) is the generation of the successors of the initial node by the supervisor. (E2) is the parallel generation of the successors of nodes of the previous level. (E3) represents the first synchronization by the supervisor. (E4) is the second local computation on slave processors and (E5) is the corresponding synchronization phase on the master. The third local computation and synchronization are represented by (E6) and (E7) respectively. After (E7), the master processor will no longer synchronize data because only one node remains in the DAG. Step (E9) shows how only active slave processors compute the last subproblem. This last step exists to create links between the last unexpanded node and the final node.

Figure 5 .a

 5 Figure 5.a First five steps to find the CSSs between three sequences with four processors.

Figure 5 .

 5 Figure 5.b. Last ending steps for the search process of CSSs of three sequences using 4 processors.

Figure 5 .Lemma 2 :

 52 Figure 5. Entire search process of all existing CSSs between ACTAGCTA, TCAGGTAT and CTAAGTTA sequences with 4 processors. Lemma 2: On p processors, the overall search process requires | |×|}| local computation time and | | communication rounds.

Figure 6 .

 6 Figure 6. Data structure storing all CSSs.

Figure 7 .

 7 Figure 7. Execution times using D ∈ @2, 4, 5, 8, 16, 32, 64, 80, 115, 120, 128 B processors with 100, 500 and 900 sequences respectively.

Figure 8 .

 8 Figure 8.a. Memory used for D ∈ @1, 4, 16, 128B and = ∈ @3, 4, … , 900B.

Figure 8 .

 8 Figure 8.b. Evolution of speedup for D ∈ @2, 4, 16, 32, 64, 128 B for r=100 and n=100.

Figure 8 .

 8 Figure 8. Evaluation of memory used and speedup of our algorithm.

Figure 8 .

 8 Figure 8.b gives the speedup of our algorithm. For recall, if Ts and Tp are respectively the sequential execution time and the execution time on p processors, the speedup = Ts / Tpand the efficiency = speedup / p. We can observe in this figure that the speedup is increasing according to the number of processors used. This is a proof of the sufficient scalability of our algorithm with the number of processors.

Figure 9 .

 9 Figure 9. Communication, computation and execution times for D = 32 and = ∈ @3, 4, … , 900B.

Figure 10 :

 10 Figure 10: Communication time, local computation and execution times for D = 16, = = 10 with an input sequence length < ∈ @100, 200, … , 9000B.The results presented in figure10shows that the percentage of communication time increases with the length of the sequences. This augmentation is explained by the fact that the number of communication rounds depends on the number of levels of the DAG, which is a function of the size of the CSSs between the input sequences. Thus, the probability to have long CSSs increases with the size of the sequences.

Figure 11 .

 11 Figure 11.a: Percentage of local computation and communication according to the number of sequence number using 32 processors.

Figure 11 .Figure 11 :

 1111 Figure 11.b. Percentage of communication and local computation based on the size of the sequences on 32 processors Figure 11: Computation time vs Communication time

Figure 12 .

 12 Figure 12. Load difference between 8 processors using = ∈ @3, 4, 5 … , 900B input sequences.

 .a and 2.b described above. The complexity analysis of this algorithm and the global solution is presented in lemma 3 and theorem 1 respectively.

	of Steps 2Lemma 3: Algorithm 4 requires	|!""#|×|$%!"| local computation time and	|	|
	communication rounds, where p is the number of processors used.
	Proof: This proof is similar to that of Lemma 2.
	Theorem 1: Our solution for the MLCS problem with a string exclusion constraint requires
	| |×| | |!""#|×|$%!"|	local computation time on each processor,	|	|
	communication rounds and	&'|Σ| time for preliminary work.
	2. Evaluate the level |	|. The evaluation of a level consists in looking for all the
	CSSs generated by nodes of the level and then for each CSS to carry out a validation;
	a. To evaluate a level k, we search all nodes of the level by assigning them
	indexes. For each node, we memorize the number nb of CSSs that it has
	generated;			
	b. When this number is known, each processor calculates the number of CSSs
	that it will evaluate, say	∑ &ƒ . The distribution here is linear starting from the
	lowest indexed nodes.	
	c. After the local calculations (validation of the CSSs), if there exists among the
	validated CSSs those that respect the constraint, then, the corresponding
	processor will carry out a one-to-all communication in order to notify the other
	processors that an MLCS has already been found.
	3. If after Step 2, no CSSs validate the constraint, then the |	| -1 th level is
	evaluated;			

Acknowledgement

We thank the anonymous reviewers whose valuable comments and suggestions have significantly improved the presentation and the readability of this work.

End while End

Algorithm 4 is the executed pseudo code on a processor of rank k. In this algorithm, the procedure validate(0 , Pct) verifies if 0 contains the constraint string Pct. This verification is performed using simple comparisons. The procedure compute_nb_ css(G, j) finds the number of CSSs to be validated by a processor on a level according to the principle