
HAL Id: hal-03236475
https://hal.science/hal-03236475v1

Submitted on 26 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Handling Support Cycles in the Logical Encoding of
Argumentation Frameworks with Higher-order Attacks

and Evidential Supports: An Improvement
Marie-Christine Lagasquie-Schiex

To cite this version:
Marie-Christine Lagasquie-Schiex. Handling Support Cycles in the Logical Encoding of Argumenta-
tion Frameworks with Higher-order Attacks and Evidential Supports: An Improvement. [Research
Report] IRIT/RR–2021–04–FR, IRIT - Institut de Recherche en Informatique de Toulouse. 2021.
�hal-03236475�

https://hal.science/hal-03236475v1
https://hal.archives-ouvertes.fr

Handling Support Cycles in the Logical Encoding
of Argumentation Frameworks with

Higher-order Attacks and Evidential Supports:
An Improvement

M-Christine Lagasquie-Schiex

Université de Toulouse, IRIT,
118 route de Narbonne, 31062 Toulouse, France

{lagasq}@irit.fr

Tech. Report
IRIT/RR- -2021- -04- -FR

Avril 2021

Abstract

We propose an improvement of our work published in [25]. This work con-
cerned a logical encoding of argumentation frameworks with higher-order
interactions (i.e. attacks/supports whose targets are arguments or other at-
tacks/supports) with an evidential meaning for supports (such frameworks
are called REBAF). Then this encoding has been used for giving a charac-
terization of REBAF semantics.

We show in the current paper that the encoding proposed in [25] has some
weaknesses when support cycles exist in the REBAF. Our aim is to solve
these weaknesses and so to propose a new characterisation that allows
to take into account support cycles whatever is the type of these support
cycles.

Contents
1 Introduction 1

2 Background on argumentation frameworks 3
2.1 The Standard Abstract Framework 3
2.2 A Framework with Higher-Order Evidential Supports and Attacks . . 4

3 Background on the Logical Description of a REBAF given in [25] 8
3.1 Vocabulary . 8
3.2 Logical theory for describing REBAF 9
3.3 Logical Formalization of REBAF semantics 12

3.3.1 Conflict-freeness . 12
3.3.2 Self-supporting . 12
3.3.3 Defence . 13
3.3.4 Reinstatement . 14
3.3.5 Stability . 14

3.4 Characterizing Semantics of a REBAF 16
3.5 The case of support cycles . 19

4 REBAF with support cycles: analysis of [25] proposition 20
4.1 Support cycles in a REBAF: Basic definitions and examples 20
4.2 Counterexamples of Proposition 6.2 in [25] 22

5 Support cycles in a REBAF: a new proposition 23

6 Conclusion 28

A Proofs 32

i

1 Introduction
Formal argumentation has become an essential paradigm in Artificial Intelligence, e.g.
for reasoning from incomplete and/or contradictory information or for modelling the
interactions between agents [1]. Formal abstract frameworks have greatly eased the
modelling and study of argumentation. The original Dung’s argumentation framework
(AF) [2] consists of a collection of arguments interacting with each other through a
relation reflecting conflicts between them, called attack, and enables to determine ac-
ceptable sets of arguments called extensions.

AF have been extended along different lines, e.g. by enriching them with positive
interactions between arguments (usually expressed by a support relation), or higher-
order interactions (i.e. interactions whose targets are other interactions).

Positive interactions between arguments. They have been first introduced in [3, 4].
In [5], the support relation is left general so that the bipolar framework keeps a high
level of abstraction. The associated semantics are based on the combination of the
attack relation with the support relation which results in new complex attack relations.
However, there is no single interpretation of the support, and a number of researchers
proposed specialized variants of the support relation (deductive support [6], necessary
support [7, 8], evidential support [9, 10]). Each specialization can be associated with
an appropriate modelling using an appropriate complex attack. These proposals have
been developed quite independently, based on different intuitions and with different
formalizations. [11] presents a comparative study in order to restate these proposals
in a common setting, the bipolar argumentation framework (see also [12] for another
survey).

Higher-order interactions. The idea of encompassing attacks to attacks in abstract
argumentation frameworks has been first considered in [13] in the context of an ex-
tended framework handling argument strengths and their propagation. Then, higher-
order attacks have been considered for representing preferences between arguments
(second-order attacks in [14]), or for modelling situations where an attack might be
defeated by an argument, without contesting the acceptability of the source of the at-
tack [15]. Attacks to attacks and supports have been first considered in [16] with higher
level networks, then in [17]; and more generally, [18] proposes an Attack-Support Ar-
gumentation Framework which allows for nested attacks and supports, i.e. attacks and
supports whose targets can be other attacks or supports, at any level.

Here are examples of higher-order interactions in the legal field. The first example
considers only higher-order attacks (this example is borrowed from [19]).

Example 1 The lawyer says that the defendant did not have intention to kill the victim
(argument b). The prosecutor says that the defendant threw a sharp knife towards the
victim (argument a). So, there is an attack from a to b. And the intention to kill should
be inferred. Then the lawyer says that the defendant was in a habit of throwing the
knife at his wife’s foot once drunk. This latter argument (argument c) is better con-
sidered attacking the attack from a to b, than argument a itself. Now the prosecutor’s
argumentation seems no longer sufficient for proving the intention to kill. �

1

The second example is a variant of the first one and considers higher-order attacks
and evidential supports.

Example 2 The prosecutor says that the defendant had intention to kill the victim (ar-
gument b). A witness says that she saw the defendant throwing a sharp knife towards
the victim (argument a). Argument a can be considered as a support for argument b.
The lawyer argues back that the defendant was in a habit of throwing the knife at his
wife’s foot once drunk. This latter argument (argument c) is better considered attacking
the support from a to b, than argument a or b themselves. Once again, the prosecutor’s
argumentation seems no longer sufficient for proving the intention to kill. �

We follow here an evidential understanding of the support relation [9] that allows
to distinguish between two different kinds of arguments: prima-facie and standard
arguments. Prima-facie arguments were already present in [4] as those that are justified
whenever they are not defeated. On the other hand, standard arguments are not directly
assumed to be justified and must inherit support from prima-facie arguments through
a chain of supports. For instance, in Example 2, arguments a and c are considered as
prima-facie arguments while b is regarded as a standard argument. Hence, while a and
c can be accepted as in Dung’s argumentation, bmust inherit support from a: this holds
if c is not accepted, but does not otherwise. Indeed, in the latter, the support from a to
b is defeated by c.

A natural idea that has proven useful to define semantics for these extended frame-
works, known as “flattening technique”, consists in turning the original extended frame-
work into an AF, by introducing meta-arguments and a new simple (first-order) attack
relation involving these meta-arguments [15, 18, 20], or by reducing higher-order at-
tacks to first-order joint attacks [21]. More recently, alternative acceptability semantics
have been defined in a direct way for argumentation frameworks with higher-order
attacks [22] or for higher-order attacks and supports (necessary supports: [23], eviden-
tial supports: [24]). The idea is to specify the conditions under which the arguments
(resp. the interactions) are considered as accepted directly on the extended framework,
without translating the original framework into an AF.

Morever, in [25], a logical encoding of argumentation frameworks with higher-
order attacks and evidential supports (REBAF) has been proposed. This encoding is
able to take into account REBAF without support cycles. And a first proposition has
been presented in order to also handle the case of REBAF with support cycles. Never-
theless we show in the current paper that this proposition has some weaknesses and a
new proposition is given here in order to solve them.

The paper is organized as follows: the necessary background about argumentation
frameworks is given in Section 2; the logical encoding for frameworks with higher-
order attacks and evidential supports (REBAF) is recalled in Section 3; an analysis of
the case of REBAF with support cycles is presented in Section 4 and the new propo-
sition that can handle supports cycles is given in Section 5; Section 6 concludes the
paper. The proofs are given in Appendix A.

2

2 Background on argumentation frameworks
Note that the text (definitions, propositions and examples) of this section is extracted
from [25].

2.1 The Standard Abstract Framework
The standard case handles only one kind of interaction: attacks between arguments.

Definition 1 [26] A Dung’s argumentation framework (AF) is a tuple AF = 〈A,R〉,
where A is a finite and non-empty set of arguments and R ⊆ A×A is a binary attack
relation on the arguments, with (a, b) ∈ R indicates that a attacks b.

A graphical representation can be used for an AF.

Example 3 An attack (a, b) ∈ R is represented by two nodes a, b (in a circle) and a
simple edge from a to b:

a b

�

We recall the definitions1 of some well-known extension-based semantics. Such a
semantics specifies the requirements that a set of arguments should satisfy. The basic
requirements are the following ones:

An extension can “stand together”. This corresponds to the conflict-freeness
principle.

An extension can “stand on its own”, namely is able to counter all the attacks it
receives. This corresponds to the defence principle.

Reinstatement is a kind of dual principle. An attacked argument which is de-
fended by an extension is reinstated by the extension and should belong to it.

Stability: an argument that does not belong to an extension must be attacked by
this extension.

Definition 2 [26] Let AF = 〈A,R〉 and S ⊆ A.

S is conflict-free iff (a, b) 6∈ R for all a, b ∈ S.

a ∈ A is acceptable w.r.t. S (or equivalently S defends a) iff for each b ∈ A with
(b, a) ∈ R, there is c ∈ S with (c, b) ∈ R.

The characteristic function F of AF is defined by: F(S) = {a ∈ A such that a
is acceptable w.r.t. S}.

S is admissible iff S is conflict-free and S ⊆ F(S).

1Where “iff” (resp. “w.r.t.”) stands for “if and only if” (resp. “with respect to”).

3

S is a complete extension of AF iff it is conflict-free and a fixed point of F .

S is the grounded extension of AF iff it is the minimal (w.r.t. ⊆) fixed point2 of
F .

S is a preferred extension of AF iff it is a maximal (w.r.t. ⊆) complete extension.

S is a stable extension of AF iff it is conflict-free and for each a 6∈ S, there is
b ∈ S with (b, a) ∈ R.

Note that the complete (resp. grounded, preferred, stable) semantics satisfies the
conflict-freeness, defence and reinstatement principles.

2.2 A Framework with Higher-Order Evidential Supports and At-
tacks

In this section, we recall the extension of [22] proposed in [24] for handling recursive
attacks and evidence-based supports.

Definition 3 [24] An evidence-based recursive argumentation framework (REBAF) is
a sextuple 〈A,Ra,Re, s, t,P〉 where A, Ra and Re are three (possible infinite) pair-
wise disjunct sets respectively representing arguments, attacks and supports names,
and where P ⊆ A ∪Ra ∪Re is a set representing the prima-facie elements that do
not need to be supported. Functions s : (Ra∪Re) −→ 2A \∅ and t : (Ra∪Re)−→
(A ∪Ra ∪Re) respectively map each attack and support to its source and its target.

Note that the source of attacks and supports is a set of arguments, the set P may
contain several prima-facie elements (arguments, attacks and supports) and no con-
straint on the prima-facie elements is assumed (they can be attacked or supported).
Example 2 (cont’d): The argumentation framework corresponding to the second ex-
ample given in the introduction can be represented as follows (a solid border denotes
prima-facie elements while a dashed border denotes standard elements; supports are
represented by double edges):

a α b

β

c

�

Semantics of REBAF are defined in [24] using the extension of the notion of struc-
ture introduced in [22]. The idea is to characterize which arguments are regarded as
“acceptable”, and which attacks and supports are regarded as “valid”, with respect to
some structure.

Consider a given framework REBAF= 〈A,Ra,Re,s,t,P〉.
2It can be proved that the minimal fixed point of F is conflict-free.

4

Definition 4 [24] A triple U = (S,Γ,∆) is said to be a structure of REBAF iff it
satisfies: S ⊆ A, Γ ⊆ Ra and ∆ ⊆ Re.

Intuitively, the set S represents the set of “acceptable” arguments w.r.t. the structure
U , while Γ and ∆ respectively represent the set of “valid attacks” and “valid supports”
w.r.t. U . Any attack3 α ∈ Γ is understood as “non-valid” and, in this sense, it cannot
defeat the element that it is targeting. Similarly, any support β ∈ ∆ is understood as
“non-valid” and it cannot support the element that it is targeting.

The following definitions are extensions of the corresponding ones defined in [22]
in order to take into account the evidential supports.

Definition 5 [24] Given a structure U = (S,Γ,∆),

The sets of defeated elements w.r.t. U are:
Def X(U) def= {x ∈ X|∃α ∈ Γ, s(α) ⊆ S and

t(α) = x}
with X ∈ {A,Ra,Re}

Def (U) def= Def A(U) ∪Def Ra
(U) ∪Def Re

(U)

The set of supported elements Sup(U) is recursively defined as follows:4

Sup(U) def= P∪
{t(α)|∃α ∈ ∆ ∩ Sup(U\{t(α)}),

s(α) ⊆ (S ∩ Sup(U\{t(α)}))}

Note that a standard element is supported if there is a “chain”5 of supported sup-
ports leading to it, rooted in prima-facie arguments. Acceptability is more complex.
Intuitively, an element is acceptable if it supported and in addition, every attack against
it can be considered as “non-valid” because either the source or the attack itself is de-
feated or cannot be supported.
The elements that cannot be supported w.r.t. a structure U are called unsupportable
w.r.t. U . An element is supportable w.r.t. U if there is a support for it which is non-
defeated by U , with its source being non-defeated by U , and the support and its source
being in turn supportable.
The elements that are defeated or unsupportable are called unacceptable.
Then an attack is said unactivable if either some argument in its source or itself is un-
acceptable.

Formally,

The set of unsupportable elements w.r.t. U is:

UnSupp(U) def= Sup(U ′)

with U ′ = (Def A(U),Ra,Def Re
(U)).

3By Γ def
= Ra\Γ we denote the set complement of Γ w.r.t. Ra. Similarly, by ∆ def

= Re\∆ we denote
the set complement of ∆ w.r.t. Re.

4By abuse of notation, we write U\T instead of (S\T,Γ\T,∆\T) with T ⊆ (A ∪Ra ∪Re).
5Strictly speaking, it is not a chain, as each support may itself be the target of a support. However, we

keep the word “chain” for simplicity.

5

The set of unacceptable elements w.r.t. U is:

UnAcc(U) def= Def (U) ∪UnSupp(U)

The set of unactivable attacks w.r.t. U is:
UnAct(U) def= {α ∈ Ra|α ∈ UnAcc(U) or

s(α) ∩UnAcc(U) 6= ∅}

Definition 6 [24] An element x∈A∪Ra∪Re is said to be acceptable w.r.t. a structure
U iff (i) x ∈ Sup(U) and (ii) every attack α ∈ Ra with t(α) = x is unactivable, that
is, α ∈ UnAct(U).

Acc(U) denotes the set containing all arguments, attacks and supports that are ac-
ceptable with respect to U .

The following order relations will help defining preferred structures: for any pair
of structures U = (S,Γ,∆) and U ′ = (S′,Γ′,∆′), we write U ⊆ U ′ iff (S∪Γ∪∆) ⊆
(S′∪Γ′∪∆′). As usual, we say that a structure U is⊆-maximal (resp. ⊆-minimal) iff
every U ′ that satisfies U ⊆ U ′ (resp. U ′ ⊆ U) also satisfies U ′ ⊆ U (resp. U ⊆ U ′).

Definition 7 [24] A structure U = (S,Γ,∆) is:

1. self-supporting iff (S ∪ Γ ∪∆) ⊆ Sup(U),

2. conflict-free iffX∩Def Y (U)=∅ for any (X,Y) ∈ {(S,A), (Γ,Ra), (∆,Re)},

3. admissible iff it is conflict-free and S ∪ Γ ∪∆ ⊆ Acc(U),

4. complete iff it is conflict-free and Acc(U) = S ∪ Γ ∪∆,

5. grounded iff it is a ⊆-minimal complete structure,6

6. preferred iff it is a ⊆-maximal admissible structure,

7. stable7 iff (S ∪ Γ ∪∆) = UnAcc(U).

From the above definitions, it follows that if U is a conflict-free structure, unsup-
portable elements w.r.t. U are not supported w.r.t. U , that is UnSupp(U) ⊆ Sup(U).

Note that every admissible structure is also self-supporting. Moreover, the usual
relations between extensions also hold for structures: every complete structure is also
admissible, every preferred structure is also complete, and every stable structure is also
preferred and so admissible. Other properties of REBAF are described in [24], which
enable to prove for instance that there is a unique grounded structure.

The previous definitions are illustrated on the following examples.

Example 4 Consider two arguments a and b and a support from a to b. Following the
set of prima-facie elements, different behaviours can be described.

6The definition for the grounded extension is not given in [24] but can be easily proposed following the
definition used in the AF case.

7Note that this is also equivalent to U is self-supporting, conflict-free and S ∪ Γ ∪∆ ⊆ UnAcc(U).

6

1. The support and its source are assumed to be prima-facie. The target is not
prima-facie.

a α b

In this case, as α (resp. a) is prima-facie and not attacked, it is acceptable w.r.t.
any structure. In contrast, b is not prime-facie, so b is supported w.r.t. a structure
U implies that U contains the support α and its source a.
As a consequence, the structures ({a},∅, {α}) and ({a, b},∅, {α}) are admis-
sible, whereas the structure ({b},∅, {α}) is not admissible.

2. Only the source of the support is assumed to be prima-facie.

a α b

In this case, for any structure U , α is not supported w.r.t. U . It is the same for b.
So the only admissible structures are U = (∅,∅,∅) and U = ({a},∅,∅).

3. Only the support is assumed to be prima-facie.

a α b

In this case, α is acceptable w.r.t. any structure. However, for any structure U , a
is not supported w.r.t. U . So b cannot be supported. As a consequence, the only
admissible structures are U = (∅,∅,∅) and U = (∅,∅, {α}).

4. The support and its target are assumed to be prima-facie. The source is not
prima-facie.

a α b

In this case, α (resp. b) is acceptable w.r.t. any structure. In contrast, a can-
not be supported. So there are 4 admissible structures: U = (∅,∅,∅), U =
(∅,∅, {α}), U = ({b},∅,∅) and U = ({b},∅, {α}).

�

In the next example, the support is itself the target of an attack.
Example 2 (cont’d): In this framework, neither β nor its source is attacked and β and
its source are prima-facie. So, for any structure U , it holds that neither β nor its source
c is unacceptable w.r.t. U . As a consequence, for any structure U , α is not acceptable
w.r.t. U as α is attacked by β and β is not unactivable w.r.t. U .
As b is not prima-facie, and α is the only support to b, no admissible structure contains
b. As a consequence, there is a unique complete, preferred and stable structure U =
({a, c}, {β},∅). �

Finally, REBAF is a conservative generalization of RAF described in [22] with
the addition of supports and joint attacks. Every RAF can be easily translated into a
corresponding REBAF with no support and where every element (argument or attack)
is prima-facie (see [24]).

7

3 Background on the Logical Description of a REBAF
given in [25]

Note that the text (definitions, propositions and examples) of this section is extracted
from [25].

Here, we recall the logical description of a REBAF proposed in [25], that allows an
explicit representation of arguments, attacks, evidential supports and their properties.
In [25] a variant of REBAF has been considered in which interactions are restricted to
binary interactions (that is for any interaction α, s(α) is a singleton) and the support
relation is assumed to be acyclic. As a consequence, the definitions of Def X(U) and
Sup(U) given in Definition 5 can be simplified as follows:

Definition 8 (Definition 5.1 in [25]) Given a structure U = (S,Γ,∆),

Def X(U) def= {x ∈ X|∃α ∈ Γ, s(α) ∈ S and t(α) = x}withX ∈ {A,Ra,Re}.

Sup(U) def= P ∪ {t(α)|∃α ∈ (∆ ∩ Sup(U)), s(α) ∈ (S ∩ Sup(U))}

Note that this new definition for Sup(U) hides a difficult point of the general case:
indeed, in the general case, Sup(U) is defined recursively in order to avoid elements
that cannot be supported without themselves. Trivially this recursion is useless when
no support cycle exists in the REBAF. That justifies the new definition but that also
explains why this definition cannot be used when support cycles exist.

3.1 Vocabulary
The following unary predicate symbols and unary functions symbols are used with the
following meaning:

Arg(x) means “x is an argument”

Attack(x) means “x is an attack”

ESupport(x) means that “x is an evidential support”

T (x) (resp. S(x)) denotes the target (resp. source) of x, when x denotes an
attack ou a support

PrimaFacie(x) means that “x is a prima-facie element”

Acc(x) (resp. NAcc(x)) means “x is accepted” (resp. “x cannot be accepted”),
when x denotes an argument

V al(α) means “α is valid” when α denotes an attack or a support

The binary equality predicate is also used. Note that the quantifiers ∃ and ∀ range
over some domain D. To restrict them to subsets of D, bounded quantifiers will be
used:
∀x ∈ E (P (x)) means ∀x (x ∈ E → P (x)) or equivalently ∀x(E(x)→ P (x)).
So we will use:

8

∀x ∈ Attack (Φ(x)) (resp. ∃x ∈ Attack (Φ(x)))

∀x ∈ ESupport (Φ(x)) (resp. ∃x ∈ ESupport (Φ(x)))

and ∀x ∈ Arg (Φ(x)) (resp. ∃x ∈ Arg (Φ(x))).

Note that the meaning of NAcc(x) is not “x is not accepted” but rather “x cannot
be accepted” (for instance because x is the target of a valid attack whose source is
accepted). Hence, NAcc(x) is not logically equivalent to ¬Acc(x). However, the
logical theory will enable to deduce ¬Acc(x) from NAcc(x), as shown below.

Then we need symbols for denoting acceptability of elements. Let us recall that
the purpose of [25] was to obtain a logical characterization of structures. As explained
before, intuitively, a structure of REBAF represents the set of acceptable arguments
(attacks and supports) w.r.t. the structure. And following Definition 6, acceptability
w.r.t. a structure requires two conditions, one of them being a support by the structure,
the other one making use of the notion of unsupportability. So the following unary
predicate symbols are introduced in [25]:

Supp for denoting supported elements (argument, attack or support),

UnSupp for denoting unsupportable elements and

eAcc (resp. eV al) for denoting acceptability for arguments (resp. for interac-
tions, attacks or supports).

Note that eAcc(x) (“x is e-accepted”) can be understood as “x is accepted and sup-
ported” and similarly eV al(α) (“α is e-valid”) can be understood as “α is valid and
supported”.

3.2 Logical theory for describing REBAF
In [25], the formulae describing a given REBAF have been partitioned in two sets:

The first set, denoted by Π, contains the formulae describing the general be-
haviour of an attack, possibly recursive, i.e. how an attack interacts with argu-
ments and other attacks related to it, and also the formulae describing the general
behaviour of an evidential support, possibly recursive, i.e. how a support inter-
acts with arguments and other interactions related to it.

The second set, denoted by Π(REBAF), contains the formulae encoding the
specificities of the current framework.

The meaning of an attack is described under the form of constraints on its source
(an argument) and its target (an argument or an attack). Moreover, as attacks may be
attacked by other attacks, some attacks may not be valid. And finally supports must be
taken into account in order to define this “validity”. So we have:

If an attack from an argument to an attack (or a support) is e-valid, then if its
source is e-accepted, its target is not valid.

9

If an attack between two arguments is e-valid and if its source is e-accepted, then
its target cannot be accepted. In that case, the target is not accepted.

An evidential support can be described by the following constraints:

If an element (argument or interaction) is prima-facie, it is supported.

If an element is the target of an evidential support, it is supported if the source of
the support is e-accepted and if the support is itself e-valid.

Using the vocabulary defined above,8 these constraints have been expressed in [25]
by the following formulae:

(1) ∀x ∈ (Attack ∪ ESupport) ∀y ∈ Attack(
(eV al(y) ∧ (ty = x) ∧ eAcc(sy))
→ ¬V al(x)

)
(2) ∀x ∈ Arg ∀y ∈ Attack(

(eV al(y) ∧ (ty = x) ∧ eAcc(sy))
→ NAcc(x)

)
(3) ∀x ∈ Arg (NAcc(x)→ ¬Acc(x))

(1bis) ∀x ∈ (Attack ∪ ESupport ∪Arg)
 PrimaFacie(x) ∨
∃y ∈ ESupport

(eV al(y) ∧ (ty = x) ∧ eAcc(sy))

→ Supp(x)

The following formulae define the e-acceptability (resp. e-validity). Recall that

eAcc(x) (resp. eV al) means “x is accepted (resp. valid) and supported”:

(2bis) ∀x ∈ Arg ((Acc(x) ∧ Supp(x))↔ eAcc(x))

(3bis) ∀x ∈ (Attack ∪ ESupport)
((V al(x) ∧ Supp(x))↔ eV al(x))

Other formulae limit the domain to arguments, attacks, supports.

(4) ∀x (Attack(x)→ ¬Arg(x))

(4bis) ∀x (Attack(x)→ ¬ESupport(x))

(4ter) ∀x (ESupport(x)→ ¬Arg(x))

8In the remainder of the paper, we will write sα (resp. tα) in place of S(α) (resp. T (α)) for simplicity.

10

(5) ∀x (Arg(x) ∨Attack(x) ∨ ESupport(x))

The logical theory Π consists of all the above formulae.
Then the logical encoding of specificities of a given REBAF leads to the set Π(REBAF)
consisting of the following formulae. Let A = {a1, . . . an}, Ra = {α1, . . . , αk},
Re = {αk+1, . . . , αm} and P = {x1, . . . xl}. 9

(6) (sα = a) ∧ (tα = b) for all α ∈ Ra ∪Re with s(α) = a and t(α) = b

(7) ∀x (Arg(x)↔ (x = a1) ∨ . . . ∨ (x = an))

(8) ∀x (Attack(x)↔ (x = α1) ∨ . . . ∨ (x = αk))

(8bis) ∀x (ESupport(x)↔ (x = αk+1) ∨ . . . ∨ (x = αm))

(8ter) ∀x (PrimaFacie(x)↔ (x = x1) ∨ . . . ∨ (x = xl))

(9) ai 6= aj for all ai, aj ∈ A with i 6= j

(10) αi 6= αj for all αi, αj ∈ Ra ∪Re with i 6= j

Given REBAF a higher-order argumentation framework, Σ(REBAF) will denote
the set of first-order logic formulae describing REBAF. And so the logical theory
Σ(REBAF) is the union of Π and Π(REBAF). It is obviously consistent.

In the following examples, using the equality axioms, a simplified version of Σ(REBAF)
is given.10

Example 4 (cont’d): Considering the version 1 of this example, we have:
Σ(REBAF) = {Supp(a) (from (1bis), (8ter)),

Supp(α) (from (1bis),(8ter)),
(eAcc(a) ∧ eV al(α))→ Supp(b) (from (1bis)),
(Supp(a) ∧Acc(a))↔ eAcc(a) (from (2bis)),
(Supp(b) ∧Acc(b))↔ eAcc(b) (from (2bis)),
(Supp(α) ∧ V al(α))↔ eV al(α) (from (3bis))}

Considering the version 2 of this example, we have:
Σ(REBAF) = {Supp(a) (from (1bis), (8ter)),

(eAcc(a) ∧ eV al(α))→ Supp(b) (from (1bis)),
(Supp(a) ∧Acc(a))↔ eAcc(a) (from (2bis)),
(Supp(b) ∧Acc(b))↔ eAcc(b) (from (2bis)),
(Supp(α) ∧ V al(α))↔ eV al(α) (from (3bis))}

9We recall that P ⊆ A ∪Ra ∪Re.
10We omit the formulae issued from (4) to (10) and the tautologies.

11

�

Example 2 (cont’d): Note that this example is a variant of the version 1 of Example 4
in which the attack β targeting α has been added.
Σ(REBAF) = {(eV al(β) ∧ eAcc(c))→ ¬V al(α) (from (1)),

Supp(a) (from (1bis), (8ter)),
Supp(c) (from (1bis), (8ter)),
Supp(α) (from (1bis),(8ter)),
Supp(β) (from (1bis), (8ter)),
(eAcc(a) ∧ eV al(α))→ Supp(b) (from (1bis)),
(Supp(a) ∧Acc(a))↔ eAcc(a) (from (2bis)),
(Supp(b) ∧Acc(b))↔ eAcc(b) (from (2bis)),
(Supp(c) ∧Acc(c))↔ eAcc(c) (from (2bis)),
(Supp(α) ∧ V al(α))↔ eV al(α) (from (3bis)),
(Supp(β) ∧ V al(β))↔ eV al(β) (from (3bis))}

�

3.3 Logical Formalization of REBAF semantics
In presence of higher-order attacks and supports, the conflict-freeness, defence, rein-
statement and stability principles must take into account the fact that acceptability for
an argument or an interaction requires that any attack against it is unactivable. More-
over acceptability requires support.

3.3.1 Conflict-freeness

In [25], the conflict-freeness principle has been formulated as follows:

If there is an e-valid attack between two arguments, these arguments cannot be
jointly e-accepted.

If there is an e-valid attack from an e-accepted argument to an interaction (attack
or support), this interaction cannot be e-valid.

Note that these properties are already expressed in Σ(REBAF) (by the formulae (1),
(2), (3), (2bis), (3bis)).

3.3.2 Self-supporting

The self-supporting principle states that each supported element must receive evidential
support. In [25], it has been formulated as follows:

If an element is supported then, either it is prima-facie, or it is the target of an
e-valid support from an e-accepted source:

(17)

12

∀x ∈ (Attack ∪ ESupport ∪Arg)
Supp(x)

→

 PrimaFacie(x)∨
∃y ∈ ESupport

(eV al(y) ∧ (ty = x) ∧ eAcc(sy))

Supportability is a weaker notion, as elements that are not supportable (i.e. un-
supportable) cannot be supported. An element is unsupportable iff it is not prima-
facie and for each of its supports, either the support itself or its source is defeated,
or the support or its source is in turn unsupportable:

(18)
∀x ∈ (Attack ∪ ESupport ∪Arg)

UnSupp(x)

↔

¬PrimaFacie(x) ∧
∀y ∈ ESupport(ty = x

→

∃β ∈ Attack(tβ ∈ {sy, y}∧

eV al(β) ∧ eAcc(sβ)))
∨ UnSupp(sy)
∨ UnSupp(y))

Formulae (17) and (18) are added to the base Σ(REBAF), thus producing the base

Σss(REBAF).

3.3.3 Defence

As stated in Definition 6, an attacked element is acceptable if (i) it is supported and (ii)
for each attack against it, either the source or the attack itself is defeated (by an e-valid
attack from an e-accepted argument), or the source or the attack itself is unsupportable
(w.r.t. e-valid elements and e-accepted arguments).
So, in [25], the principle corresponding to the previous item (ii) has been expressed by
the following formulae that are associated with formulae (17) and (18):

(11)
∀α ∈ Attack

Acc(tα)

→

∃β ∈ Attack

(tβ ∈ {sα, α} ∧ eV al(β) ∧ eAcc(sβ))
∨ UnSupp(sα)
∨ UnSupp(α)

(12)

13

∀α ∈ Attack ∀δ ∈ (Attack ∪ ESupport)
((δ = tα) ∧ V al(δ))

→

∃β ∈ Attack

(tβ ∈ {sα, α} ∧ eV al(β) ∧ eAcc(sβ))
∨ UnSupp(sα)
∨ UnSupp(α)

Formulae (11) and (12) are added to the base Σss(REBAF), thus producing the
base Σd(REBAF).

3.3.4 Reinstatement

In [25], the reinstatement principle has been expressed by the following formulae that
are be associated with formulae (17) and (18):

(13)
∀c ∈ Arg

∀α ∈ Attack

tα = c→
∃β ∈ Attack(tβ ∈ {sα, α} ∧

eV al(β) ∧ eAcc(sβ))
∨ UnSupp(sα)
∨ UnSupp(α)

→ Acc(c)

(14)
∀δ ∈ (Attack ∪ ESupport)

(∀α ∈ Attack

tα = δ →
∃β ∈ Attack(tβ ∈ {sα, α} ∧

eV al(β) ∧ eAcc(sβ))
∨ UnSupp(sα)
∨ UnSupp(α)

→ V al(δ)

Formulae (13) and (14) are added to the base Σss(REBAF), thus producing the

base Σr(REBAF).

3.3.5 Stability

In [25], the stability principle has been expressed by the three following formulae that
are associated with formulae (17) and (18):11

11Let us recall that a stable structure U = (S,Γ,∆) satisfies: S ∪ Γ ∪∆ ⊆ UnAcc(U).

14

(15) ∀c ∈ Arg ¬Acc(c)
→
(
∃β ∈ Attack(tβ = c ∧

eV al(β) ∧ eAcc(sβ))

)
(16) ∀α ∈ (Attack ∪ ESupport) ¬V al(α)

→
(
∃β ∈ Attack(tβ = α ∧

eV al(β) ∧ eAcc(sβ))

)
(19) ∀x ∈ (Arg ∪Attack ∪ ESupport)

(¬Supp(x)→ UnSupp(x))

Formulae (15), (16) and (19) are added to the base Σss(REBAF), thus producing
the base Σs(REBAF).

Example 4 (cont’d): Considering the version 1, Σss(REBAF) is obtained from Σ(REBAF)
by adding the following formulae:

Supp(b)→ (eAcc(a) ∧ eV al(α))
¬UnSupp(a)
¬UnSupp(α)
Unsupp(b)↔ (UnSupp(a) ∨ UnSupp(α))

As there is no attack, Σd(REBAF) contains nothing more than Σss(REBAF).
And finally Σr(REBAF) is obtained from Σss(REBAF) by adding the formulae:

Acc(a), Acc(b) and V al(α).
Considering the version 2, Σss(REBAF) is obtained from Σ(REBAF) by adding

the following formulae:
Supp(b)→ (eAcc(a) ∧ eV al(α))
¬Supp(α)
¬UnSupp(a)
UnSupp(α)
Unsupp(b)↔ (UnSupp(a) ∨ UnSupp(α))

Once again, Σd(REBAF) contains nothing more than Σss(REBAF).
And Σr(REBAF) is obtained from Σss(REBAF) by adding the formulae: Acc(a),

Acc(b) and V al(α). �

Example 2 (cont’d): Σss(REBAF) is obtained from Σ(REBAF) by adding formulae
among which:

Supp(b)→ (eAcc(a) ∧ eV al(α))
¬UnSupp(a)
¬UnSupp(c)
¬UnSupp(α)
¬UnSupp(β)

Unsupp(b)↔

 (eV al(β) ∧ eAcc(c))
∨ UnSupp(a)
∨ UnSupp(α)

15

Then Σd(REBAF) is obtained from Σss(REBAF) by adding formulae among
which:

V al(α)→ (UnSupp(β) ∨ UnSupp(c))
Σr(REBAF) is obtained from Σss(REBAF) by adding the formulae:

Acc(a)
Acc(b)
Acc(c)
V al(β)
(UnSupp(c) ∨ UnSupp(β))→ V al(α)

Σs(REBAF) is obtained from Σss(REBAF) by adding the formulae:
Acc(a)
Acc(b)
Acc(c)
V al(β)
¬V al(α)→ eV al(β) ∧ eAcc(c)
¬Supp(b)→ UnSupp(b) and also
¬Supp(x)→ UnSupp(x) for x ∈ {a, c, α, β} �

3.4 Characterizing Semantics of a REBAF
[25] proposed characterizations of the REBAF structures under different semantics in

terms of models of the bases Σ(REBAF), Σd(REBAF), Σr(REBAF), Σs(REBAF).
The common idea is that a structure gathers the acceptable elements w.r.t. it.

Let REBAF = 〈A,Ra,Re,s,t,P〉. Given I an interpretation of Σ(REBAF), we
define:

SI = {x ∈ A|I(eAcc(x)) = true}

ΓI = {x ∈ Ra|I(eV al(x)) = true}

∆I = {x ∈ Re|I(eV al(x)) = true}

Moreover, let I be a model of Σ(REBAF):

I is a ⊆-maximal model of Σ(REBAF) iff there is no model I ′ of Σ(REBAF)
with (SI ∪ ΓI ∪∆I) ⊂ (SI′ ∪ ΓI′ ∪∆I′).

I is a ⊆-minimal model of Σ(REBAF) iff there is no model I ′ of Σ(REBAF)
with (SI′ ∪ ΓI′ ∪∆I′) ⊂ (SI ∪ ΓI ∪∆I).

The following characterizations are given in [25]:

Proposition 1 (Proposition 6.1 in [25]) Let REBAF = 〈A,Ra,Re,s,t,P〉. Let U =
(S,Γ,∆) be a structure on REBAF.

1. U is conflict-free iff there exists I model of Σ(REBAF) with SI = S, ΓI = Γ
and ∆I = ∆.

16

2. U is admissible iff there exists I model of Σd(REBAF) with S = SI , ΓI = Γ
and ∆I = ∆.

3. U is complete iff there exists I model of Σd(REBAF) ∪ Σr(REBAF) with S =
SI , ΓI = Γ and ∆I = ∆.

4. U is a stable structure iff there exists I model of Σs(REBAF) with SI = S,
ΓI = Γ and ∆I = ∆.

5. U is a preferred structure iff there exists I ⊆-maximal model of Σd(REBAF)
with SI = S, ΓI = Γ and ∆I = ∆.

6. U is the grounded structure iff S = SI , ΓI = Γ and ∆I = ∆ where I is a
⊆-minimal model of Σd(REBAF) ∪ Σr(REBAF).12

The following examples illustrate the above proposition. The first one exemplifies
the use of formula (17). The second one exemplifies the case of an element which is
attacked by a supported and unattacked attack (formulae (12) and (18)). The last two
exemplify the case of an element which is attacked by an unattacked but unsupportable
attack (formulae (11) and (18)).
Example 4 (cont’d): Let consider the version 1. From Σd(REBAF) it can be deduced
that eAcc(b) → eAcc(a) and eAcc(b) → eV al(α). That proves that each model of
Σd(REBAF) satisfying eAcc(b) also satisfies eAcc(a) and eV al(α). In other words,
given I a model of Σd(REBAF), if b ∈ SI then a ∈ SI and α ∈ ∆I . That corresponds
to the fact that the structure ({b},∅, {α}) is not admissible.
Moreover, there is a model of Σd(REBAF) satisfying eAcc(b) (and so eAcc(a) and
eV al(α)). That corresponds to the fact that the structure ({a, b},∅, {α}) is admissible.

Consider now the version 2. From Σd(REBAF), it can be deduced that ¬eV al(α),
¬Supp(b) and ¬eAcc(b). Moreover there exists a model of Σd(REBAF) satisfying
eAcc(a). That corresponds to the fact that the unique non-empty admissible structure
is ({a}, ∅, ∅).
Note that given I a model of Σd(REBAF), it holds that I satisfies ¬Supp(α) and
¬Supp(b). That corresponds to the fact that no admissible structure contains b (resp.
α) because b (resp. α) lacks support. �

Example 2 (cont’d): From Σd(REBAF), it can be deduced that ¬V al(α) then it can
be deduced that ¬eV al(α), ¬Supp(b) and ¬eAcc(b). That corresponds to the fact that
no admissible structure contains b (resp. α, though being supported).
Moreover there is a model of Σd(REBAF) satisfying eAcc(a), eAcc(c) and eV al(β).
That corresponds to the fact that ({a, c},∅, {β}) is an admissible structure. �

Example 5 Consider the following argumentation framework.

12It also holds that U is the grounded structure iff U = (SI ,ΓI ,∆I) where I is a ⊆-minimal model of
Σr(REBAF).

17

b α a

δ β d

c

From formula (11), it holds that the formulaAcc(a)→ (UnSupp(α)∨UnSupp(b))
belongs to Σd(REBAF). So it can be deduced that Acc(a) → UnSupp(α) as b is
prima-facie. Then we can obtain the formula eAcc(a) → UnSupp(α). Moreover,
applying formula (18) yields UnSupp(α) ↔ (eV al(β) ∧ eAcc(d)) as δ and c are
prima-facie. As a consequence, we obtain eAcc(a)→ (eV al(β) ∧ eAcc(d)).
Applying formula (12) yields ¬V al(δ), as β and d are prima-facie, and as a conse-
quence ¬eV al(δ).
Finally, applying formula (17), we obtain eAcc(a) → ¬Supp(α) as α is not prima-
facie, and as a consequence eAcc(a)→ ¬eV al(α).
That corresponds to the fact that if an admissible structure contains a, then it also con-
tains d and β and it does not contain α. Moreover no admissible structure contains
δ.

From Σr(REBAF) it can be deduced that eAcc(d), eV al(β) and UnSupp(α) →
Acc(a). So, from Σd(REBAF)∪Σr(REBAF) it can be deduced that Acc(a) and also
eAcc(a) as a is prima-facie. Σr(REBAF) also allows to deduce eAcc(b) and eAcc(c).
That corresponds to the fact that the unique complete structure is ({a, b, c, d}, {β},∅).
�

Example 6 Consider the following argumentation framework.

b α a

δ β d

c

The same reasoning as the one presented for Example 5 can be used, exchanging
the role of b and α.

So from formulae (11) and (18), we obtain the formula eAcc(a) → (eV al(β) ∧
eAcc(d)).
Then applying formula (12) trivially yields the formula ¬eV al(δ).
Finally, applying formula (17), we obtain eAcc(a)→ ¬eAcc(b).
That corresponds to the fact that if an admissible structure contains a, then it also
contains d and β and it does not contain b. Moreover no admissible structure contains
δ.

18

Considering Σr(REBAF) ∪ Σd(REBAF), we obtain ({a, c, d}, {α, β},∅) as the
unique complete structure. �

3.5 The case of support cycles
The logical representation proposed in [25] and recalled in the previous sections applies
to a restricted variant of REBAF in which two constraints are given: first interactions
are assumed to be binary and secondly there is no cycle of supports. This second
restriction allows a direct encoding of the notions Sup(U) and UnSupp(U) and, in this
case, it is worth to notice that formulae (17) and (18) are enough for checking that any
element is supported without itself. Nevertheless, if this constraint is not satisfied (i.e.
support cycles exist) then the use of these formulae does not prevent the acceptability
of elements that cannot be supported without themselves.

However it could be interesting to see what happens in the case of a REBAF with
support cycles and a first proposition has also been presented in [25] using a basic idea
deduced from the following example.

Example 7 This example corresponds to an even-length support cycle in which inter-
actions are prima-facie and arguments are not.

α

a b

β

The interesting point is that, from Σss (and so from Σd), the following formulae can
be entailed: Supp(a)→ eV al(β)∧ eAcc(b) and Supp(b)→ eV al(α)∧ eAcc(a). So
using formula (2bis) the following formulae can be entailed: Supp(a)→ eAcc(a) and
Supp(b) → eAcc(b). That means that a (resp. b) is supported only if it is accepted;
thus these arguments cannot be supported without themselves.

So, considering an existing model I of Σd with SI = {a, b}, ΓI = ∅ and ∆I =
{α, β}, we obtain a structure (SI ,ΓI ,∆I) that is not admissible since it is not self-
supporting in the sense of Definition 5: there is no chain of supports leading to a (resp.
to b) rooted in a prima-facie argument. Thus, in this case, Proposition 1 cannot be
applied.

Another important point is the fact that, if an element (argument or support) x
cannot be supported without itself, it cannot be supportable w.r.t. a structure.

The above remarks lead to the following definition for “support-founded” interpre-
tations given in [25]:

Definition 9 (Definition 6.1 in [25]) I is a support-founded interpretation iff for each
argument (resp. support) x s.t. Σss(REBAF) entails Supp(x) → eAcc(x) (resp.
Supp(x) → eV al(x)), it holds that I(eAcc(x)) = false (resp. I(eV al(x)) = false)
and I(UnSupp(x)) = true.

19

Then a support-founded model of Σd(REBAF) is a support-founded interpretation
which is a model of Σd(REBAF).

In [25], this definition has been used for characterizing admissible structures of a
given REBAF with support cycles by a subclass of models of Σd(REBAF):

Proposition 2 (Proposition 6.2 in [25]) Let REBAF = 〈A,Ra,Re,s,t,P〉. Let U =
(S,Γ,∆) be a structure on REBAF.

1. U is admissible iff there exists I support-founded model of Σd(REBAF) with
SI = S, ΓI = Γ and ∆I = ∆.

2. U is complete iff there exists I support-founded model of the union (Σd(REBAF)
∪ Σr(REBAF)) with SI = S, ΓI = Γ and ∆I = ∆.

3. U is a preferred structure iff there exists I ⊆-maximal support-founded model of
Σd(REBAF) with SI = S, ΓI = Γ and ∆I = ∆.

4. U is the grounded structure iff S = SI , ΓI = Γ and ∆I = ∆ where I is a
⊆-minimal support-founded model of (Σd(REBAF) ∪ Σr(REBAF)).

Let us illustrate the above results on the previous examples:
Example 7 (cont’d): The support-founded models of Σd yield all the admissible struc-
tures:

(∅,∅,∅)
(∅,∅, {α})
(∅,∅, {β})
(∅,∅, {α, β})

The unique complete structure is (∅,∅, {α, β}).
�

Nevertheless this characterisation has some weaknesses as it is shown in the next
section.

4 REBAF with support cycles: analysis of [25] propo-
sition

In this section, the definition of support-founded models is discussed using examples
and we show that it leads to a characterisation of REBAF semantics that only holds
when considering REBAF with specific cycles.

In order to do that, some formal definitions about supports cycles are first given.

4.1 Support cycles in a REBAF: Basic definitions and examples
Some notions related to directed cycles of supports must be defined before analysing
the impact of such support cycles in the logical computation of structures for the RE-
BAF.

20

Definition 10 Let REBAF = 〈A,Ra,Re,s,t,P〉. A directed cycle of supports (DCS)
in this REBAF is a sequence C = (x0, . . . , xn−1, xn) such that:13

n > 0 and n is the size of the DCS,

∀i = 0 . . . n, xi ∈ A ∪Re,

xn = x0

∀i = 0 . . . n− 1, if xi ∈ A then xi+1 ∈ Re and s(xi+1) = xi,

∀i = 0 . . . n− 1, if xi ∈ Re then xi+1 = t(xi).

A simple DCS C = (x0, . . . , xn−1, xn) is a DCS in which ∀i, j = 0 . . . n − 1, if
i 6= j then xi 6= xj .

An input support of a DCS C = (x0, . . . , xn−1, xn) is:

either a support y ∈ Re such that y 6∈ C and ∃xi ∈ C and xi = t(y),

or an argument y ∈ A such that y 6∈ C and ∃xi ∈ Re ∩C and y = s(xi).

The set of inputs of the DCS C is denoted by CIn and it is partitioned into CIn
A =

CIn ∩A and CIn
Re

= CIn ∩Re.

The previous definition is very general. Let us first consider examples of such a
REBAF.
Example 7 (cont’d): There exists one DCS C = (a, α, b, β, a) with CIn = ∅.

Note that a DCS whose size is n can be represented by n different sequences ob-
tained by a shift to the right or to the left. For instance, in this example, we also have:

C = (α, b, β, a, α) or C = (b, β, a, α, b) �

Example 8 This example corresponds to an odd-length support cycle in which interac-
tions are prima-facie and arguments are not. There exists one DCS C = (a, α, b, β, c,
δ, a) with CIn = ∅.

a α b

δ β

c

Example 9 This example corresponds to a support loop in which the interaction is
prima-facie and the argument is not. There exists one DCS C = (a, α, a) with CIn =
∅.

13By abuse of language, the set of the elements composing C will be also denoted by C. So C will be
used with set operators as ∩ ou ∪ and will be comparable with other sets.

21

a α

Example 10 This example illustrates the fact that a support in a cycle can also be the
target of another support in the cycle. Note that the source of the targeted support
does not belong to the cycle. Here there exists one DCS C = (a, α, β, c, γ, d, δ, a) with
CIn = {b, π}. Note that the source of π is not considered as an input of the cycle.

b e

a α β π

c γ d

δ

Example 11 This example corresponds to a support that targets itself. There exists
one DCS C = (α, α) with CIn = {a}.

a α

4.2 Counterexamples of Proposition 6.2 in [25]
In this section, some counterexamples of Proposition 6.2 in [25] (numbered 2 in the
current paper) are exhibed. Indeed, if several cycles exist and can be agglomerated into
a non-simple directed cycle, Definition 9 is not enough for guaranting that any model
in which an element that cannot be supported without itself is removed. Consider for
instance the following example:

Example 12 In this example, 3 simple DCS exist.

α1 α2 α3

a b c d

β1 β2 β3

22

Here Σss does not entail Supp(x) → eAcc(x) for x = a, or x = b, or x = c, or
x = d. So Definition 9 cannot be used in order to remove models in which a (resp. b, c,
d) is supported by itself. The origin of this problem is the fact that, following Formula
(17), the existence of several supporters for b and c prevents the entailment described
in Definition 9: Σss |= Supp(c) → (eAcc(c) ∨ eAcc(b)) and not Σss |= Supp(c) →
eAcc(c).

Another case showing the weakness of Definition 9 is the following example:

Example 13 This example corresponds to an extension of Example 7: an attacked
argument that supports an even-length support cycle C = (a, α, b, β, a).

α

c π d µ a b

β

Note that CIn = {µ}.
In this example, there exists a model I of Σd with SI = {a, b, c}, ΓI = {π} and

∆I = {α, β, µ}. The structure (SI ,ΓI ,∆I) is not admissible since it is not self-
supporting in the sense of Definition 5: there is no chain of supported supports leading
to a (resp. to b) rooted in a prima-facie argument that belongs to the structure (since d
is attacked and not defended).

In fact, it seems that Proposition 6.2 in [25] can be applied only if the support cycles
in the REBAF are simple DCS without input in the REBAF.

5 Support cycles in a REBAF: a new proposition
Since Definition 9 is not sufficient in the general case, and in order to identify the
elements that cannot be supported without themselves, the main point must be to find
the elements of the REBAF that would be able to play a role for supporting the elements
of a cycle. That leads us to define the impacting support chains for each element
of a REBAF. Unformally an impacting support chain for an element x is a sequence
targeting x, originated in a prima-facie argument and composed alternatively by “an
argument, a support, an argument, a support, . . . ”. Moreover no repetition is authorized
(so any element appears only one time in the sequence); and x cannot belong to the
sequence. So Formally we have:

Definition 11 Let REBAF = 〈A,Ra,Re,s,t,P〉. Let x be an element of this REBAF.
An impacting support chain for x is a sequence ISC = (x0, . . . , xn) with n > 0 and:

∀xi, i ∈ [0 . . . n], xi ∈ (A ∪Re) \ {x}

x0 ∈ A ∩P and xn ∈ Re such that t(xn) = x

23

∀i, j ∈ [0 . . . n], if i 6= j, then xi 6= xj

∀i ∈ [1 . . . n], if xi ∈ Re then xi−1 = s(xi)

∀i ∈ [2 . . . n− 1], if xi ∈ A then xi = t(xi−1)

It is obvious to see that if a DCS has some inputs then these inputs may belong to
some impacting support chains of the elements of the DCS, if they are prima-facie or
if they have at least one impacting support chain.

Another trivial property is the fact that, in a DCS without input and in which none
argument is prima-facie, the elements of the DCS have no impacting support chains.
Example 12 (cont’d): Here, for any element, there is no impacting support chain. �

Example 13 (cont’d): Considering the arguments in the cycle, we have:

for argument a, there is one impacting support chain: (d, µ),

for argument b, there is one impacting support chain: (d, µ, a, α).

�

Example 10 (cont’d): Considering the impacting support chains of some elements of
the DCS, we have for instance:

For argument d, there exist two impacting support chains: (e, π) and (b, β, c, γ).

For argument c, there exists only one impacting support chain: (b, β).

For argument a, there exist two impacting support chains: (e, π, d, δ) and (b, β,
c, γ, d, δ).

For support β, there exists only one impacting support chain: (e, π, d, δ, a, α).

�

Example 14 This example extends Example 10 by adding a second cycle including the
source of the support targeted in the first DCS.

b e

a α β µ π

c γ d

δ

24

C = (a, α, β, c, γ, d, δ, a) with CIn = {b, π} and C′ = (b, β, c, γ, d, µ, b) with
C′In = {α, π} are the two simple DCS.

Considering the impacting support chains of some elements of the DCS, we have
for instance:

For argument d, there exists only one impacting support chain: (e, π).

For argument c, there exists only one impacting support chain: (e, π, d, µ, b, β).

For argument a, there exists only one impacting support chain: (e, π, d, δ).

For support β, there exists only one impacting support chain: (e, π, d, δ, a, α).

In Example 14, it is worth to note that among the inputs of C we can find elements
of C′ (and vice-versa). So any element of C′ could impact the supported status of
the elements of C (and vice-versa). In this case, we must consider both cycles before
deciding if an element can or cannot be supported without itself. This is why we must
study the case where several simple directed cycles exist and can be aggregated (as
in Example 12 or in Example 14). This notion of aggregation is formally defined as
follows:

Definition 12 Let REBAF = 〈A,Ra,Re,s,t,P〉. Let C = (x0, . . . , xn−1, xn) and
C′ = (x′0, . . . , x

′
m−1, x

′
m) be two DCS of this REBAF such that there exist xi ∈ C and

x′j ∈ C′ and xi = x′j .
The aggregation of C and C′ is the directed cycle corresponding to the union of the

sets {x0, . . . , xn−1} and {x′0, . . . , x′m−1}. This aggregation with be denoted by abuse
of language C ∪C′.

Using this notion of aggregation, a maximal DCS of a REBAF can be defined:

Definition 13 Let REBAF = 〈A,Ra,Re,s,t,P〉. Let C = (x0, . . . , xn−1, xn) be a
DCS. C is a maximal DCS iff there does not exist another DCS that could be aggre-
gated with C.

Example 12 (cont’d): In this example, 3 simple DCS exist: C1 = (a, α1, b, β1, a),
C2 = (b, α2, c, β2, b) and C3 = (c, α3, d, β3, c) that can be aggregated together giving
the only one maximal DCS:

C = C1 ∪C2 ∪C3 = (a, α1, b, α2, c, α3, d, β3, c, β2, b, β1, a)
�

Example 14 (cont’d): In this example, the two simple DCS can be aggregated since
they share several elements (β, c, γ, d). And this aggregation is the only maximal DCS
of this REBAF:

C′′ = (a, α, β, c, γ, d, µ, b, β, c, γ, d, δ, a)
�

Example 15 In this example, 3 simple DCS exist:
C1 = (a, α1, b1, β1, a), C2 = (b2, α2, c, β2, b2) and C3 = (c, α3, d, β3, c)

But only two of them can be aggregated: C2 and C3.

25

α1 α2 α3

a b1 δ b γ b2 c d

β1 β2 β3

So two maximal DCS exist:
C = C1 = (a, α1, b1, β1, a)

C′ = C2 ∪C3 = (b2, α2, c, α3, d, β3, c, β2, b2)
Note that, for any element of this REBAF, there is no impacting support chains.

Example 16 This example is an extension of Example 15 with the same DCS but with
some additionnal prima-facie arguments and supports.

α1 α2 α3

a b1 δ b γ b2 c d

β1 e1 π1 π2 e2 β2 β3

Considering the impacting supports chains, we have:

no impacting supports chain for the interactions (but they are all prima-facie);

no impacting supports chain for e1 and e2 (but they are prima-facie);

no impacting supports chain for a and b1 since they cannot be supported without
themselves;

for the other arguments, there are two impacting supports chains, one containing
e1 and π1 and the other containing e2 and π2; for instance for argument d we
have: (e1, π1, b, γ, b2, α2, c, α3) and (e2, π2, b, γ, b2, α2, c, α3).

Study now the use of these impacting support chains in order to identify the models
of Σd we want to remove. The idea is very simple: we keep a model only if, for
each element of a DCS, we can identify in this model a chain of supported supports
leading to this argument; by definition, that means that the model we keep satisfies all
the elements composing at least one impacting support chain for this element.

Moreover we must also take into account the fact that the existence of support
cycles has an impact on the UnSupp predicate. Consider for instance Example 7.
Example 7 (cont’d): Formula (18) gives:

UnSupp(a)→ (UnSupp(β) ∨ UnSupp(b))

26

UnSupp(b)→ (UnSupp(α) ∨ UnSupp(a))
¬UnSupp(α)
¬UnSupp(β)

So 2 models of Σss exist, I1 and I2, with I1(UnSupp(a)) = I1(UnSupp(b)) =
true and I2(UnSupp(a)) = I2(UnSupp(b)) = false.

Nevertheless, considering this REBAF, for any possible structureU ,UnSupp(U) =
{a, b}. So the model I2 does not reflect the reality concerning the “unsupportable” sta-
tus of a and b and should be removed. �

The previous ideas lead to the following improvement of the notion of support-
founded interpretation given in [25]:

Definition 14 Let REBAF= 〈A,Ra,Re,s,t,P〉. I is a support-founded interpretation
iff the two following conditions hold:

1. for each argument (resp. support) x non prima-facie, belonging to a maximal
DCS and such that I(eAcc(x)) = true (resp. I(eV al(x)) = true), there exists
at least one impacting support chain ISC = (x0, . . . , xn) for x that is satis-
fied by I, i.e. ∀xi ∈ ISC, if xi ∈ A then I(eAcc(xi)) = true, otherwise
I(eV al(xi)) = true;

2. for each element x of REBAF, I(UnSupp(x)) = true iff x ∈ UnSupp(UI)
with UI = (SI ,ΓI ,∆I).

Let Σx be a base of formulae built over REBAF. A support-founded model of Σx
is a support-founded interpretation which is a model of Σx.

Example 12 (cont’d): In this example there is no impacting support chain for argument
a. So any model I of Σd that satisfies a (i.e. such that I(eAcc(a)) = true) is not
support-founded. And we have the same result for arguments b, c and d. �

Example 13 (cont’d): Let consider argument a. This argument has only one impacting
support chain (d, µ). So any model I of Σd that satisfies a will be support-founded iff
it also satisfies d and µ (i.e we must have I(eAcc(a) = I(eAcc(d) = I(eV al(µ) =
true). �

Using this new definition, we can obtain the following characterization of admis-
sible structures of a given REBAF with support cycles by a subclass of models of
Σd(REBAF):

Proposition 3 Let REBAF = 〈A,Ra,Re,s,t,P〉. Let U = (S,Γ,∆) be a structure on
REBAF.

1. U is admissible iff there exists I support-founded model of Σd(REBAF) (in the
sense of Definition 14) with SI = S, ΓI = Γ and ∆I = ∆.

2. U is complete iff there exists I support-founded model of the union (Σd(REBAF)
∪ Σr(REBAF)) (in the sense of Definition 14) with SI = S, ΓI = Γ and
∆I = ∆.

27

3. U is a preferred structure iff there exists I ⊆-maximal support-founded model of
Σd(REBAF) (in the sense of Definition 14) with SI = S, ΓI = Γ and ∆I = ∆.

4. U is the grounded structure iff S = SI , ΓI = Γ and ∆I = ∆ where I is a ⊆-
minimal support-founded model of (Σd(REBAF) ∪ Σr(REBAF)) (in the sense
of Definition 14).

5. U is stable iff there exists I support-founded model of Σs(REBAF) (in the sense
of Definition 14) with SI = S, ΓI = Γ and ∆I = ∆.

Let us illustrate the above results on the previous examples:
Example 7 (cont’d): Apply Proposition 3 leads to the unique complete, preferred,
stable and grounded structure (∅,∅, {α, β}). �

Example 8 (cont’d): Apply Proposition 3 leads to the unique complete, preferred,
stable and grounded structure (∅,∅, {α, β, δ}). �

Example 9 (cont’d): Apply Proposition 3 leads to the unique complete, preferred,
stable and grounded structure (∅,∅, {α}). �

Example 10 (cont’d): Apply Proposition 3 leads to the unique complete, preferred,
stable and grounded structure ({a, b, c, d, e},∅, {α, β, δ, γ, π}). �

Example 11 (cont’d): Apply Proposition 3 leads to the unique complete, preferred,
stable and grounded structure ({a},∅,∅). �

Example 12 (cont’d): Apply Proposition 3 leads to the unique complete, preferred,
stable and grounded structure (∅,∅, {α1, α2, α3, β1, β2, β3}). �

Example 13 (cont’d): Apply Proposition 3 leads to the unique complete, preferred,
stable and grounded structure ({c}, {π}, {α, β, µ}). �

Example 14 (cont’d): Apply Proposition 3 leads to the unique complete, preferred,
stable and grounded structure ({a, b, c, d, e},∅, {α, β, γ, δ, π, µ}). �

Example 15 (cont’d): Apply Proposition 3 leads to the unique complete, preferred,
stable and grounded structure (∅,∅, {α1, α2, α3, β1, β2, β3, δ, γ}). �

Example 16 (cont’d): Apply Proposition 3 leads to the unique complete, preferred,
stable and grounded structure ({b, b2, c, d, e1, e2},∅, {α1, α2, α3, β1, β2, β3, δ, γ, π1,
π2}). �

6 Conclusion
In this work, we have solved a specific issue concerning the handling of support cycles
in the logical translation of argumentation frameworks with higher-order attacks and
evidential supports (REBAF). A first proposition has been presented in [25]. However,
we have proven in this paper that this proposition does not hold in the general case.

So a new definition for the notion of support-founded models is proposed in this
paper, for providing characterizations of admissible (resp. complete, preferred, stable
and grounded) structures in the presence of all kinds of support cycles.

28

References
[1] I. Rahwan and G. Simari, Argumentation in Artificial Intelligence. Springer,

2009.

[2] P. M. Dung, “On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games,” Artificial Intelli-
gence, vol. 77, pp. 321–357, 1995.

[3] N. Karacapilidis and D. Papadias, “Computer supported argumentation and col-
laborative decision making: the HERMES system,” Information systems, vol. 26,
no. 4, pp. 259–277, 2001.

[4] B. Verheij, “Deflog: on the logical interpretation of prima facie justified assump-
tions,” Journal of Logic in Computation, vol. 13, pp. 319–346, 2003.

[5] C. Cayrol and M.-C. Lagasquie-Schiex, “Gradual valuation for bipolar argumen-
tation frameworks,” in Proc. of ECSQARU. Springer, 2005, pp. 366–377.

[6] G. Boella, D. M. Gabbay, L. van der Torre, and S. Villata, “Support in abstract
argumentation,” in Proc. of COMMA. IOS Press, 2010, pp. 111–122.

[7] F. Nouioua and V. Risch, “Bipolar argumentation frameworks with specialized
supports,” in Proc. of ICTAI. IEEE Computer Society, 2010, pp. 215–218.

[8] ——, “Argumentation frameworks with necessities,” in Proc. of SUM. Springer-
Verlag, 2011, pp. 163–176.

[9] N. Oren and T. J. Norman, “Semantics for evidence-based argumentation,” in
Proc. of COMMA. IOS Press, 2008, pp. 276–284.

[10] N. Oren, C. Reed, and M. Luck, “Moving between argumentation frameworks,”
in Proc. of COMMA. IOS Press, 2010, pp. 379–390.

[11] C. Cayrol and M.-C. Lagasquie-Schiex, “Bipolarity in argumentation graphs: to-
wards a better understanding,” Intl. J. of Approximate Reasoning, vol. 54, no. 7,
pp. 876–899, 2013.

[12] A. Cohen, S. Gottifredi, A. J. García, and G. R. Simari, “A survey of different
approaches to support in argumentation systems,” The Knowledge Engineering
Review, vol. 29, pp. 513–550, 2014.

[13] H. Barringer, D. Gabbay, and J. Woods, “Temporal dynamics of support and at-
tack networks : From argumentation to zoology,” in Mechanizing Mathematical
Reasoning. LNAI 2605, D. Hutter and W. Stephan, Eds. Springer Verlag, 2005,
pp. 59–98.

[14] S. Modgil, “Reasoning about preferences in argumentation frameworks,” Artifi-
cial Intelligence, vol. 173, pp. 901–934, 2009.

29

[15] P. Baroni, F. Cerutti, M. Giacomin, and G. Guida, “AFRA: Argumentation frame-
work with recursive attacks,” Intl. Journal of Approximate Reasoning, vol. 52, pp.
19–37, 2011.

[16] D. M. Gabbay, “Fibring argumentation frames,” Studia Logica, vol. 93, pp. 231–
295, 2009.

[17] S. Villata, G. Boella, D. M. Gabbay, and L. van der Torre, “Modelling defeasible
and prioritized support in bipolar argumentation,” AMAI, vol. 66, no. 1-4, pp.
163–197, 2012.

[18] A. Cohen, S. Gottifredi, A. J. García, and G. R. Simari, “An approach to abstract
argumentation with recursive attack and support,” J. Applied Logic, vol. 13, no. 4,
pp. 509–533, 2015.

[19] R. Arisaka and K. Satoh, “Voluntary Manslaughter? A Case Study with Meta-
Argumentation with Supports,” in Proc. of JSAI-isAI 2016. LNCS, vol 10247.
Springer, 2017, pp. 241–252.

[20] C. Cayrol, A. Cohen, and M.-C. Lagasquie-Schiex, “Towards a new framework
for recursive interactions in abstract bipolar argumentation,” in Proc. of COMMA.
IOS Press, 2016, pp. 191–198.

[21] D. M. Gabbay, “Semantics for higher level attacks in extended argumentation
frames,” Studia Logica, vol. 93, pp. 357–381, 2009.

[22] C. Cayrol, J. Fandinno, L. Fariñas del Cerro, and M.-C. Lagasquie-Schiex, “Valid
attacks in argumentation frameworks with recursive attacks,” in Proc. of Com-
monsense Reasoning, vol. 2052. CEUR Workshop Proceedings, 2017.

[23] A. Cohen, S. Gottifredi, A. J. García, and G. R. Simari, “On the acceptability
semantics of argumentation frameworks with recursive attack and support,” in
Proc. of COMMA. IOS Press, 2016, pp. 231–242.

[24] C. Cayrol, J. Fandinno, L. Fariñas del Cerro, and M.-C. Lagasquie-Schiex, “Ar-
gumentation frameworks with recursive attacks and evidence-based support,” in
Proc. of FoIKS, vol. LNCS 10833. Springer-Verlag, 2018, pp. 150–169.

[25] C. Cayrol and M.-C. Lagasquie-Schiex, “Logical encoding of argumentation
frameworks with higher-order attacks and evidential supports,” International
Journal on Artificial Intelligence Tools, vol. 29, no. 3-4, pp. 2 060 003:1–
2 060 003:50, June 2020.

[26] P. M. Dung, “On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games,” Artificial Intelli-
gence, vol. 77, pp. 321–357, 1995.

[27] M. Caminada, S. Sá, J. Alcântara, and W. Dvořák, “On the equivalence between
logic programming semantics and argumentation semantics,” Int. Journal of Ap-
proximate Reasoning, vol. 58, pp. 87 – 111, 2015.

30

[28] D. M. Gabbay and M. Gabbay, “The attack as strong negation, part I,” Logic
Journal of the IGPL, vol. 23, no. 6, pp. 881–941, 2015.

[29] P. Besnard, S. Doutre, and A. Herzig, “Encoding argument graphs in logic,” in
Proc of IPMU. Springer, 2014, pp. 345–354.

[30] P. Besnard, S. Doutre, V. H. Ho, and D. Longin, “SESAME - A System for Speci-
fying Semantics in Abstract Argumentation,” in Proc. of SAFA, vol. 1672. CEUR
Workshop Proceedings, 2016, pp. 40–51.

[31] D. Grossi, “On the logic of argumentation theory,” in Proc. of AAMAS. IFAA-
MAS, 2010, pp. 409–416.

[32] O. Arieli and M. Caminada, “A QBF-based formalization of abstract argumenta-
tion semantics,” Journal of Applied Logic, vol. 11, no. 2, pp. 229 – 252, 2013.

[33] J. P. Wallner, G. Weissenbacher, and S. Woltran, “Advanced SAT techniques for
abstract argumentation,” in Proc. of CLIMA. Springer, 2013, pp. 138–154.

[34] F. Cerutti, P. E. Dunne, M. Giacomin, and M. Vallati, “Computing preferred ex-
tensions in abstract argumentation: A SAT-based approach,” in Proc. of TAFA,
Revised Selected papers. Springer, 2014, pp. 176–193.

[35] B. Bogaerts, T. Janhunen, and S. Tasharrofi, “Declarative solver development:
Case studies,” in Proc. of KR. AAAI Press, 2016, pp. 74–83.

[36] G. Brewka and S. Woltran, “Abstract dialectical frameworks,” in Proc. of KR.
AAAI Press, 2010, pp. 102–111.

[37] F. Dupin de Saint-Cyr, P. Bisquert, C. Cayrol, and M.-C. Lagasquie-Schiex, “Ar-
gumentation update in YALLA (Yet Another Logic Language for Argumenta-
tion),” Intl. J. of Approximate Reasoning, vol. 75, pp. 57 – 92, 2016.

[38] C. Beierle, F. Brons, and N. Potyka, “A software system using a SAT solver for
reasoning under complete, stable, preferred, and grounded argumentation seman-
tics,” in Proc. of KI. Springer, 2015, pp. 241–248.

[39] J. M. Lagniez, E. Lonca, and J. G. Mailly, “Coquiaas: A constraint-based quick
abstract argumentation solver,” in Proc. of ICTAI. IEEE Computer Society,
2015, pp. 928–935.

[40] C. Cayrol and M.-C. Lagasquie-Schiex, “The Grafix website,” http://www.irit.fr/
grafix.

A Proofs
We recalled here a notation and some lemmas given in [25] that will be useful for our
proof.

31

http://www.irit.fr/grafix
http://www.irit.fr/grafix

Notation 1 (Notation Appendix A.1 in [25]) Let U = (S,Γ,∆) be a structure of
REBAF, and x ∈ A ∪Ra ∪Re. x will be said to be defended by U , iff every attack
α ∈ Ra with t(α) = x is unactivable w.r.t. U . Defended(U) will denote the set of
elements that are defended by U .
Note that x ∈ Acc(U) iff x ∈ Sup(U) and x ∈ Defended(U).

Lemma 1 (Lemma 7 in [24] and Lemma Appendix A.1 in [25]) Any conflict-free
self-supporting structure U satisfies:

Acc(U) ⊆ UnAcc(U) ⊆ Def(U).

Lemma 2 (Lemma Appendix A.2 in [25]) Any stable structureU satisfies: Sup(U) =
UnSupp(U).

Lemma 3 (Lemma Appendix A.3, in [25]) Let U = (S,Γ,∆) be a structure and
x /∈ P be the target of a support y such that y ∈ ∆ ∩ Sup(U) and sy ∈ S ∩ Sup(U).
Then, there exists a support z such that tz = x, z ∈ ∆ ∩ Sup(U \ {x}) and sz ∈
S ∩ Sup(U \ {x}) and so x ∈ Sup(U).

Proof of Proposition 3.14

Let REBAF = 〈A,Ra,Re, s, t,P〉.

1. (admissibility)

⇒ Assume that the structure U = (S,Γ,∆) is admissible. Let us define an
interpretation I of Σd(REBAF). The idea is to define I by successively
adding constraints that I should satisfy:

For all x ∈ A ∪Ra ∪Re,
I(Arg(x)) = true iff x ∈ A,
I(Attack(x)) = true iff x ∈ Ra and
I(ESupport(x)) = true iff x ∈ Re.

For all x ∈ A ∪Ra ∪Re, I(PrimaFacie(x)) = true iff x ∈ P.
For all x ∈ A ∪Ra ∪Re, I(Supp(x)) = true iff x ∈ Sup(U).
For all x ∈ A∪Ra∪Re, I(UnSupp(x)) = true iff x ∈ UnSupp(U).
For all x ∈ A, I(Acc(x)) = true iff x ∈ S or (x /∈ S, x /∈ Sup(U)
and x ∈ Defended(U)).
For all x ∈ A, I(NAcc(x)) = true iff I(Acc(x)) = false.
For all x ∈ Ra (resp. ∈ Re), I(V al(x)) = true iff x ∈ Γ (resp. ∆)
or (x /∈ Γ (resp. ∆), x /∈ Sup(U) and x ∈ Defended(U)).

14This proof is inspired by the proof of Proposition 6.1 in [25] (numbered Proposition 1 in the current
paper).

32

For all x ∈ A, I(eAcc(x)) = true iff
(I(Acc(x)) = true and I(Supp(x)) = true).

For all x ∈ Ra ∪Re, I(eV al(x)) = true iff
(I(V al(x)) = true and I(Supp(x)) = true).

Note that in the current case, Sup(U) refers to Definition 5.
We have to prove that SI = S, ΓI = Γ, ∆I = ∆, and that I is a support-
founded model of Σd(REBAF). And for proving that I is a support-
founded model of Σd(REBAF) it is sufficient to prove that I satisfies the
formulae (1), (2), (3), (1bis), (2bis), (3bis) and (17), (18), (11), (12) and
that is a support-founded interpretation.15

F Let x ∈ SI . By definition of SI , I(eAcc(x)) = true, that is I(Acc(x)) =
true and I(Supp(x)) = true. By definition of I(Acc) and I(Supp) it fol-
lows that x ∈ S. Conversely, given x ∈ S, it holds that I(Acc(x)) = true.
As U is admissible, U is self-supporting, so x ∈ Sup(U), then it holds that
I(Supp(x)) = true. As a consequence, I(eAcc(x)) = true and x ∈ SI .
Proving that ΓI = Γ and ∆I = ∆ is similar.
F Obviously I satisfies formulae (3), (2bis), (3bis).
F Let us first consider formula (2). Let y ∈ Ra and x ∈ A with x = ty ,
I(eV al(y)) = true and I(eAcc(sy)) = true. Then sy ∈ S and y ∈ Γ. Let
us assume that I(NAcc(x)) = false. Then I(Acc(x)) = true, by definition
of I(NAcc). As U is admissible, U is conflict-free, so x cannot belong to
S, and, by definition of I(Acc), it follows that x ∈ Defended(U) and
so y ∈ UnAct(U), that is y or sy belongs to UnAcc(U). However, y
and sy being elements of the admissible structure U , due to Lemma 1, we
obtain a contradiction. Hence, we have proved that I(NAcc(x)) = true
and formula (2) is satisfied by I. Proving that formula (1) is satisfied by I
is similar.
F Let us first consider formula (17). Let x such that I(Supp(x)) = true.
By definition of I(Supp), x ∈ Sup(U). By definition of Sup(U), either
x ∈ P or x is the target of a support α such that α ∈ ∆, α ∈ Sup(U \{x}),
sα ∈ S and sα ∈ Sup(U \ {x}). In the first case, formula (17) is trivially
satisfied by I. In the second case, as S = SI and ∆ = ∆I it holds
that I(eAcc(sα)) = true and I(eV al(α)) = true. Hence formula (17) is
satisfied by I.
F Let us consider formula (1bis). In the case when I(PrimaFacie(x)) =
true, x ∈ P, so x ∈ Sup(U), hence I(Supp(x)) = true and formula
(1bis) is satisfied. Let us consider the case when x 6∈ P and x is the target
of a support y such that I(eAcc(sy)) = true and I(eV al(y)) = true. We
have to prove that I(Supp(x)) = true. As SI = S and ∆I = ∆ it holds
that y ∈ ∆ and sy ∈ S. Moreover, as U is admissible, U is self-supporting,
so y and sy belong to Sup(U). From Lemma 3, it follows that x ∈ Sup(U)
hence I(Supp(x)) = true. So formula (1bis) is satisfied by I.

15By definition, formulae (4) to (10) are satisfied by I.

33

F Let us now consider formula (18). Consider x such that I(UnSupp(x))
= true. By definition of I(UnSupp), x ∈ UnSupp(U). And, since
UnSupp(U) = Sup(U ′) (where U ′ = (Def A(U),Ra,Def Re

(U))), x ∈
Sup(U ′). So x /∈ P and using the contrapositive of Lemma 3, applied to
the structure U ′, it follows that for each support leading to x, either the
support or its source is defeated by U , or the support or its source is itself
not supported by U ′, hence belongs to UnSupp(U). So the “only if” part
of formula (18) is satisfied by I.
For the “if” part, let us consider x such that x /∈ P and for each support
leading to x, either the support or its source is defeated by (SI ,ΓI ,∆I) =
U , or the support or its source belongs to UnSupp(U) = Sup(U ′). As
U ′ \ {x} ⊆ U ′, it holds that Sup(U ′) ⊆ Sup(U ′ \ {x}). Hence, from
Definition 5, it holds that x /∈ Sup(U ′), that is x ∈ UnSupp(U) and so
I(UnSupp(x)) = true. So formula (18) s satisfied by I.
F Let us now consider formula (11). Let α ∈ Ra and x ∈ A such that
x = tα and I(Acc(x)) = true. By definition of I(Acc), either x ∈ S
or (x /∈ S, x /∈ Sup(U) and x ∈ Defended(U)). As U is admissible,
in both cases, it holds that α ∈ UnAct(U). Then the fact that I satisfies
formula (11) follows directly from the definition of UnAct(U), the defini-
tion of I(Unsupp) and the fact that for an argument (resp. an attack) x,
I(eAcc(x)) = true (resp. I(eV al(x)) = true) iff x ∈ S (resp. x ∈ Γ).
Proving that formula (12) is satisfied by I is similar.
F Finally, we have to prove that I is support-founded.
Condition 2 of Definition 14 is trivially satisfied.
Consider now Condition 1. Let x ∈ A such that x is non prima-facie
and there exists a DCS C containing x. Assume that I(eAcc(x)) = true.
So x ∈ U and, since U is admissible (so self-supporting) and x non prima-
facie, then there exists at least one chain of supported supports (x0, . . . , xn)
leading to x and originated in x0 that is prima-facie with any xi belonging
to U . Moreover, for all xi, we have xi ∈ Sup(U). So following the
definition of I we have either I(eAcc(xi)) = true or I(eV al(xi)) = true
depending of the nature of xi (argument or support). Thus there exists an
impacting support chain (x0, . . . , xn) for x that is satisfied by I. So I is a
support-founded model. The proof for x ∈ Re is similar.

⇐ Let I be a support-founded model of Σd(REBAF). We have to prove that
the structure U = (SI ,ΓI ,∆I) is admissible.
F Let prove that U is conflict-free w.r.t. REBAF. If it is not the case, there
exist x ∈ SI ∪ ΓI ∪∆I and y ∈ ΓI , with sy ∈ SI and ty = x.
By definition, it holds that I(eAcc(sy)) = true and I(eV al(y)) = true.
Moreover, in the case when x ∈ SI , it holds that I(eAcc(x)) = true
and so I(Acc(x)) = true (as I satisfies formula (2bis)). Then it holds
that I(NAcc(x)) = false (as I satisfies formula (3)). As a consequence,
formula (2) is falsified.
In the case when x ∈ ΓI ∪ ∆I , it holds that I(eV al(x)) = true and

34

so I(V al(x)) = true (as I satisfies formula (3bis)). As a consequence,
formula (1) is falsified.
In both cases, there is a contradiction with I being a model of Σ(REBAF).
F Let us prove that U is self-supporting. Assume that x ∈ SI (resp.
x ∈ ΓI ∪ ∆I). By definition, it holds that I(eAcc(x)) = true (resp.
I(eV al(x)) = true). As I satisfies formula (2bis), I(Supp(x)) = true.
As I satisfies formula (17), it holds that either x ∈ P or x is the target
of a support xn of source xn−1 such that xn ∈ ∆I and xn−1 ∈ SI . In
the first case, it holds that x ∈ Sup(U). In the other case, it holds that
I(eAcc(xn−1)) = true and I(eV al(xn)) = true, and formula (17) can still
be used, thus enabling to build a chain of supports. As U is finite and I is
support founded, this process will end with x1 ∈ P and x0 = s(x1) ∈ P.
And so it can still be proved that x ∈ Sup(U) w.r.t. Definition 5. Hence U
is self-supporting.
F It remains to prove that, given x an element of the structure, if x is the
target of an attack α, then α is unactivable w.r.t. U . Assume that x ∈ SI
is the target of an attack α. By definition, it holds that I(eAcc(x)) = true.
It follows that I(Acc(x)) = true. As I satisfies formula (11), it follows
that either there exists an attack β targeting α (or sα) with β ∈ ∆I and
sβ ∈ SI , or I satisfies UnSupp(α) (or I satisfies UnSupp(sα)).

In the first case, it holds that α (resp. sα) belongs to Def(U).
In the second case, we prove that α (resp. sα) belongs to UnSupp(U).
For that purpose, we must prove that for any element x, if I satisfies
UnSupp(x), then x ∈ UnSupp(U), or equivalently, if x ∈ Sup(U ′)
then I does not satisfy UnSupp(x). Let us consider x ∈ Sup(U ′).
There is a chain of supports leading to x, rooted in prima-facie ele-
ments such that each support (and its source) in the chain is not de-
feated by U . As I satisfies formula (18), the contrapositive of the
“only if” part of formula (18) can be used for proving that each sup-
ported element y in this chain is such that I(UnSupp(y)) = false.
The proof starts with the prima-facie elements of the set, and goes on
by induction. Thus it can be proved that I(UnSupp(x)) = false.

So, in both cases, α is unactivable w.r.t. U .
The same reasoning can be done for x ∈ ΓI ∪ ∆I using formula (12).
Hence, we can prove that U is admissible.

2. (complete semantics)

⇒ Assume that the structure U = (S,Γ,∆) is complete. Let us build an
interpretation I of Σd(REBAF) ∪ Σr(REBAF):

We keep the same interpretation as the one used in Item 1 of the current
proof except for Acc, V al.
For all x ∈ A, I(Acc(x)) = true iff x ∈ S or (x /∈ S and x ∈
Defended(U)).

35

For all x ∈ Ra (resp. ∈ Re), I(V al(x)) = true if and only x ∈ Γ
(resp. ∆) or (x /∈ Γ (resp. ∆) and x ∈ Defended(U)).

We have to prove that SI = S, ΓI = Γ and ∆I = ∆, and that I is a
support-founded model of Σd(REBAF) ∪ Σr(REBAF).
F Note that if U is complete, for all x ∈ A ∪ Ra ∪ Re, if x /∈ S and
x ∈ Defended(U) then x /∈ Sup(U). So the above constraint expressed
for the definition of I(Acc) (resp. I(V al)), x /∈ S and x ∈ Defended(U),
is stronger than the one used for defining a model of an admissible structure
(x /∈ S, x /∈ Sup(U) and x ∈ Defended(U)).
Due to the above remark and the proof of Item 1 of this proof, it holds that I
satisfies SI = S, ΓI = Γ, ∆I = ∆, and that I is a model of Σd(REBAF).
F Now let prove that I satisfies formulae (13) and (14). Let us con-
sider formula (13). Let x ∈ A such that for each attack α targeting x,
either I(UnSupp(α)) = true, or I(UnSupp(sα)) = true, or α (or sα)
is attacked by β with β ∈ ΓI and sβ ∈ SI . Due to the definition of
I(UnSupp), for each attack α targeting x, either α ∈ UnSupp(U), or
sα ∈ UnSupp(U), or α (or sα) belongs to Def(U). In other words, for
each attack α targeting x, α ∈ UnAct(U), so x ∈ Defended(U). Now, by
definition of I(Acc), it holds that I(Acc(x)) = true. We have proved that
I satisfies formula (13). Proving that I satisfies formula (14) is similar.
So I is a model of Σd(REBAF) ∪ Σr(REBAF).
F It remains to prove that I is support-founded. For that purpose, the proof
written in Item 1 of the current proof can be used as U is self-supporting.

⇐ Let I be a support-founded model of Σd(REBAF) ∪ Σr(REBAF). We
have to prove that the structure U = (SI ,ΓI ,∆I) is complete. For that
purpose, it is enough to prove that Acc(U) is included in SI ∪ ΓI ∪∆I .
Consider x ∈ A ∩ Acc(U). So x ∈ Sup(U) and x ∈ Defended(U).
The first condition implies that I(Supp(x)) = true, as I satisfies for-
mula (1bis) and following the definition of Sup(U). The second condi-
tion means that for each attack α targeting x, either α ∈ UnSupp(U), or
sα ∈ UnSupp(U), or α (or sα) belongs to Def(U) (i.e. α –or sα– is
attacked by β ∈ U with sβ ∈ U). So, since I is a support-founded models
(so Condition 2 of the definition of a support-founded model holds) and the
fact that if an element β (resp. sβ) belongs to the structure then I(eV al(β))
(resp. I(eAcc(sβ))) is also true, the premisse of formula (13) is true, and
as I satisfies formula (13), it follows that I(Acc(x)) = true. As I satisfies
formula (2bis) it holds that I(eAcc(x)) = true, so x ∈ SI . Similarly, it
can be proved that for all x ∈ Ra ∩ Acc(U) (resp. x ∈ Re ∩ Acc(U)),
x ∈ ΓI (resp. x ∈ ∆I). We have proved that U is a complete structure.
The proof is similar for any support or attack in Acc(U).

3. (preferred semantics) Let I be an interpretation of a set of formulae Σx. Let
UI denote the structure (SI ,ΓI ,∆I). It is easy to see that I is a ⊆-maximal

36

support-founded model of Σx iff the structure UI is ⊆-maximal among all the
structures of the formUJ = (SJ ,ΓJ ,∆J), whereJ denotes a support-founded
model of Σx. Then taking Σx = Σd(REBAF), it follows that the preferred struc-
tures correspond to the structures UI where I is a ⊆-maximal support-founded
model of Σd(REBAF).

4. (grounded semantics) Let I be an interpretation of a set of formulae Σx. Let
UI denote the structure (SI ,ΓI ,∆I). It is easy to see that I is a ⊆-minimal
support-founded model of Σx iff the structure UI is ⊆-minimal among all the
structures of the form UJ , where J denotes a support-founded model of Σx.
Taking Σx = Σd(REBAF)∪Σr(REBAF), it follows that the grounded structure
correspond to the structure UI where I is a ⊆-minimal support-founded model
of Σd(REBAF) ∪ Σr(REBAF).

5. (stable semantics)

⇒ Assume that the structure U = (S,Γ,∆) is stable. Let us define an inter-
pretation I of Σs(REBAF) as follows:

Once again, we keep the same interpretation as the one used in Item 1
of the current proof except for Acc, V al.
For all x ∈ A, I(Acc(x)) = true iff x ∈ S or x /∈ Def(U).
For all x ∈ Ra (resp. ∈ Re), I(V al(x)) = true iff x ∈ Γ (resp. ∆)
or x /∈ Def(U).

We have to prove that SI = S, ΓI = Γ and ∆I = ∆, and that I is
a support-founded model of Σs(REBAF). And, for proving that I is a
support-founded model of Σs(REBAF) it is sufficient to prove that I sat-
isfies formulae (1), (2), (3), (1bis), (2bis), (3bis) and (17), (18), (15), (16),
(19) and that I is support-founded.
F Let x ∈ SI . By definition, I(Acc(x)) = true and I(Supp(x)) = true.
By definition of I(Acc) and I(Supp), it follows that x ∈ Sup(U) and
(x ∈ S or x /∈ Def(U)). Following Lemma 2, x /∈ UnSupp(U) and (x ∈
S or x /∈ Def(U)). If x /∈ S, as U is stable, it follows that x ∈ Def(U)
or x ∈ UnSupp(U). We obtain a contradiction, hence x ∈ S.
Conversely, given x ∈ S, it holds that I(Acc(x)) = true. As U is stable, U
is self-supporting, so x ∈ Sup(U), then it holds that I(Supp(x)) = true.
As a consequence, I(eAcc(x)) = true and x ∈ SI . Proving that ΓI = Γ
and ∆I = ∆ is similar.
F Obviously I satisfies formulae (3), (2bis), (3bis).
F Let us first consider formula (2). Let y ∈ Ra and x ∈ A with x = ty ,
I(eV al(y) = true and I(eAcc(sy) = true. Then sy ∈ S and y ∈ Γ, and
it holds that x ∈ Def(U). As U is stable, U is conflict-free, so x cannot
belong to S. Hence we have x /∈ S and x ∈ Def(U), or equivalently
I(Acc(x)) = false, by definition of I(Acc) and then I(NAcc(x)) = true,

37

by definition of I(NAcc). We have proved that I satisfies formula (2).
Proving that formula (1) is satisfied by I is similar.
F Proving that I satisfies formulae (1bis), (17), (18) can be done with
exactly the same reasoning as the one used in Item 1 of the current proof.
F Let us now consider formula (15). Let x ∈ A such that I(Acc(x)) =
false. By definition of I(Acc), it holds that x /∈ S and x ∈ Def(U).
So, there is y ∈ Γ with x = ty and sy ∈ S. Hence, there is y ∈ ΓI
with x = ty and sy ∈ SI , or equivalently, there is y ∈ Ra with x = ty
and I(eV al(y)) = true and I(eAcc(sy)) = true. We have proved that I
satisfies formula (15). Proving that formula (16) is satisfied by I is similar.
F Lastly, we consider formula (19). Let x ∈ A ∪ Ra ∪ Re such that
I(Supp(x)) = false. By definition of I(Supp), x /∈ Sup(u). Due to
Lemma 2, it follows that x ∈ UnSupp(U), hence I(UnSupp(x)) = true,
by definition of I(UnSupp). We have proved that I satisfies formula (19).
So I is a model of Σs(REBAF).
F It remains to prove that I is support-founded. For that purpose, the proof
written in Item 1 of the current proof can be used as U is self-supporting.

⇐ Let I be a support-founded model of Σs(REBAF). We have to prove that
the structure U = (SI ,ΓI ,∆I) is stable.
As noted in Definition 7, it is sufficient to prove that U is conflict-free, self-
supporting and satisfies U ⊆ UnAcc(U).
As Σs(REBAF) contains Σ(REBAF), from Proposition 1, we know that
the structure U is conflict-free. Moreover, Σs(REBAF) contains formulae
(17), (18). So, with exactly the same reasoning as the one used in Item 1
for the admissible case, it can be proved that U is self-supporting.
It remains to prove that U ⊆ UnAcc(U). Let x ∈ A such that x ∈ U .
So x /∈ SI and by definition of SI , I(eAcc(x)) = false. As I satisfies
formula (2bis), it follows that I(Acc(x)) = false or I(Supp(x)) = false.
In the case when I(Acc(x)) = false, as I satisfies formula (15), it follows
that x ∈ Def(U). If I(Acc(x)) = true, it holds that I(Supp(x)) =
false. As I satisfies formula (19), it follows that I(UnSupp(x)) = true,
so x ∈ UnSupp(U) (following Condition 2 of Definition 14 since I is
support-founded). In both cases, we have that x ∈ UnAcc(U). We have
proved that U is stable.

38

	Introduction
	Background on argumentation frameworks
	The Standard Abstract Framework
	A Framework with Higher-Order Evidential Supports and Attacks

	Background on the Logical Description of a REBAF given in CLS20
	Vocabulary
	Logical theory for describing REBAF
	Logical Formalization of REBAF semantics
	Conflict-freeness
	Self-supporting
	Defence
	Reinstatement
	Stability

	Characterizing Semantics of a REBAF
	The case of support cycles

	REBAF with support cycles: analysis of CLS20 proposition
	Support cycles in a REBAF: Basic definitions and examples
	Counterexamples of Proposition 6.2 in CLS20

	Support cycles in a REBAF: a new proposition
	Conclusion
	Proofs

