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Handling Support Cycles in the Logical Encoding of Argumentation Frameworks with Higher-order Attacks and Evidential Supports: An Improvement

. This work concerned a logical encoding of argumentation frameworks with higher-order interactions (i.e. attacks/supports whose targets are arguments or other attacks/supports) with an evidential meaning for supports (such frameworks are called REBAF). Then this encoding has been used for giving a characterization of REBAF semantics.

 has some weaknesses when support cycles exist in the REBAF. Our aim is to solve these weaknesses and so to propose a new characterisation that allows to take into account support cycles whatever is the type of these support cycles.

Introduction

Formal argumentation has become an essential paradigm in Artificial Intelligence, e.g. for reasoning from incomplete and/or contradictory information or for modelling the interactions between agents [START_REF] Rahwan | Argumentation in Artificial Intelligence[END_REF]. Formal abstract frameworks have greatly eased the modelling and study of argumentation. The original Dung's argumentation framework (AF) [START_REF] Dung | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF] consists of a collection of arguments interacting with each other through a relation reflecting conflicts between them, called attack, and enables to determine acceptable sets of arguments called extensions.

AF have been extended along different lines, e.g. by enriching them with positive interactions between arguments (usually expressed by a support relation), or higherorder interactions (i.e. interactions whose targets are other interactions).

Positive interactions between arguments. They have been first introduced in [START_REF] Karacapilidis | Computer supported argumentation and collaborative decision making: the HERMES system[END_REF][START_REF] Verheij | Deflog: on the logical interpretation of prima facie justified assumptions[END_REF]. In [START_REF] Cayrol | Gradual valuation for bipolar argumentation frameworks[END_REF], the support relation is left general so that the bipolar framework keeps a high level of abstraction. The associated semantics are based on the combination of the attack relation with the support relation which results in new complex attack relations. However, there is no single interpretation of the support, and a number of researchers proposed specialized variants of the support relation (deductive support [START_REF] Boella | Support in abstract argumentation[END_REF], necessary support [START_REF] Nouioua | Bipolar argumentation frameworks with specialized supports[END_REF][START_REF]Argumentation frameworks with necessities[END_REF], evidential support [START_REF] Oren | Semantics for evidence-based argumentation[END_REF][START_REF] Oren | Moving between argumentation frameworks[END_REF]). Each specialization can be associated with an appropriate modelling using an appropriate complex attack. These proposals have been developed quite independently, based on different intuitions and with different formalizations. [START_REF] Cayrol | Bipolarity in argumentation graphs: towards a better understanding[END_REF] presents a comparative study in order to restate these proposals in a common setting, the bipolar argumentation framework (see also [START_REF] Cohen | A survey of different approaches to support in argumentation systems[END_REF] for another survey).

Higher-order interactions. The idea of encompassing attacks to attacks in abstract argumentation frameworks has been first considered in [START_REF] Barringer | Temporal dynamics of support and attack networks : From argumentation to zoology[END_REF] in the context of an extended framework handling argument strengths and their propagation. Then, higherorder attacks have been considered for representing preferences between arguments (second-order attacks in [START_REF] Modgil | Reasoning about preferences in argumentation frameworks[END_REF]), or for modelling situations where an attack might be defeated by an argument, without contesting the acceptability of the source of the attack [START_REF] Baroni | AFRA: Argumentation framework with recursive attacks[END_REF]. Attacks to attacks and supports have been first considered in [START_REF] Gabbay | Fibring argumentation frames[END_REF] with higher level networks, then in [START_REF] Villata | Modelling defeasible and prioritized support in bipolar argumentation[END_REF]; and more generally, [START_REF] Cohen | An approach to abstract argumentation with recursive attack and support[END_REF] proposes an Attack-Support Argumentation Framework which allows for nested attacks and supports, i.e. attacks and supports whose targets can be other attacks or supports, at any level.

Here are examples of higher-order interactions in the legal field. The first example considers only higher-order attacks (this example is borrowed from [START_REF] Arisaka | Voluntary Manslaughter? A Case Study with Meta-Argumentation with Supports[END_REF]).

Example 1 The lawyer says that the defendant did not have intention to kill the victim (argument b). The prosecutor says that the defendant threw a sharp knife towards the victim (argument a). So, there is an attack from a to b. And the intention to kill should be inferred. Then the lawyer says that the defendant was in a habit of throwing the knife at his wife's foot once drunk. This latter argument (argument c) is better considered attacking the attack from a to b, than argument a itself. Now the prosecutor's argumentation seems no longer sufficient for proving the intention to kill.
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The second example is a variant of the first one and considers higher-order attacks and evidential supports.

Example 2

The prosecutor says that the defendant had intention to kill the victim (argument b). A witness says that she saw the defendant throwing a sharp knife towards the victim (argument a). Argument a can be considered as a support for argument b. The lawyer argues back that the defendant was in a habit of throwing the knife at his wife's foot once drunk. This latter argument (argument c) is better considered attacking the support from a to b, than argument a or b themselves. Once again, the prosecutor's argumentation seems no longer sufficient for proving the intention to kill.

We follow here an evidential understanding of the support relation [START_REF] Oren | Semantics for evidence-based argumentation[END_REF] that allows to distinguish between two different kinds of arguments: prima-facie and standard arguments. Prima-facie arguments were already present in [START_REF] Verheij | Deflog: on the logical interpretation of prima facie justified assumptions[END_REF] as those that are justified whenever they are not defeated. On the other hand, standard arguments are not directly assumed to be justified and must inherit support from prima-facie arguments through a chain of supports. For instance, in Example 2, arguments a and c are considered as prima-facie arguments while b is regarded as a standard argument. Hence, while a and c can be accepted as in Dung's argumentation, b must inherit support from a: this holds if c is not accepted, but does not otherwise. Indeed, in the latter, the support from a to b is defeated by c.

A natural idea that has proven useful to define semantics for these extended frameworks, known as "flattening technique", consists in turning the original extended framework into an AF, by introducing meta-arguments and a new simple (first-order) attack relation involving these meta-arguments [START_REF] Baroni | AFRA: Argumentation framework with recursive attacks[END_REF][START_REF] Cohen | An approach to abstract argumentation with recursive attack and support[END_REF][START_REF] Cayrol | Towards a new framework for recursive interactions in abstract bipolar argumentation[END_REF], or by reducing higher-order attacks to first-order joint attacks [START_REF] Gabbay | Semantics for higher level attacks in extended argumentation frames[END_REF]. More recently, alternative acceptability semantics have been defined in a direct way for argumentation frameworks with higher-order attacks [START_REF] Cayrol | Valid attacks in argumentation frameworks with recursive attacks[END_REF] or for higher-order attacks and supports (necessary supports: [START_REF] Cohen | On the acceptability semantics of argumentation frameworks with recursive attack and support[END_REF], evidential supports: [START_REF] Cayrol | Argumentation frameworks with recursive attacks and evidence-based support[END_REF]). The idea is to specify the conditions under which the arguments (resp. the interactions) are considered as accepted directly on the extended framework, without translating the original framework into an AF. Morever, in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF], a logical encoding of argumentation frameworks with higherorder attacks and evidential supports (REBAF) has been proposed. This encoding is able to take into account REBAF without support cycles. And a first proposition has been presented in order to also handle the case of REBAF with support cycles. Nevertheless we show in the current paper that this proposition has some weaknesses and a new proposition is given here in order to solve them.

The paper is organized as follows: the necessary background about argumentation frameworks is given in Section 2; the logical encoding for frameworks with higherorder attacks and evidential supports (REBAF) is recalled in Section 3; an analysis of the case of REBAF with support cycles is presented in Section 4 and the new proposition that can handle supports cycles is given in Section 5; Section 6 concludes the paper. The proofs are given in Appendix A.

Background on argumentation frameworks

Note that the text (definitions, propositions and examples) of this section is extracted from [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF].

The Standard Abstract Framework

The standard case handles only one kind of interaction: attacks between arguments. A graphical representation can be used for an AF. We recall the definitions1 of some well-known extension-based semantics. Such a semantics specifies the requirements that a set of arguments should satisfy. The basic requirements are the following ones: An extension can "stand together". This corresponds to the conflict-freeness principle.

An extension can "stand on its own", namely is able to counter all the attacks it receives. This corresponds to the defence principle.

Reinstatement is a kind of dual principle. An attacked argument which is defended by an extension is reinstated by the extension and should belong to it.

Stability: an argument that does not belong to an extension must be attacked by this extension.

Definition 2 [START_REF] Dung | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF] 

Let AF = A, R and S ⊆ A. S is conflict-free iff (a, b) ∈ R for all a, b ∈ S. a ∈ A is acceptable w.r.t. S (or equivalently S defends a) iff for each b ∈ A with (b, a) ∈ R, there is c ∈ S with (c, b) ∈ R.
The characteristic function F of AF is defined by: F(S) = {a ∈ A such that a is acceptable w.r.t. S}. S is admissible iff S is conflict-free and S ⊆ F(S).

S is a complete extension of AF iff it is conflict-free and a fixed point of F.

S is the grounded extension of AF iff it is the minimal (w.r.t. ⊆) fixed point2 of F.

S is a preferred extension of AF iff it is a maximal (w.r.t. ⊆) complete extension.

S is a stable extension of AF iff it is conflict-free and for each a ∈ S, there is b ∈ S with (b, a) ∈ R.

Note that the complete (resp. grounded, preferred, stable) semantics satisfies the conflict-freeness, defence and reinstatement principles.

A Framework with Higher-Order Evidential Supports and Attacks

In this section, we recall the extension of [START_REF] Cayrol | Valid attacks in argumentation frameworks with recursive attacks[END_REF] proposed in [START_REF] Cayrol | Argumentation frameworks with recursive attacks and evidence-based support[END_REF] for handling recursive attacks and evidence-based supports.

Definition 3 [START_REF] Cayrol | Argumentation frameworks with recursive attacks and evidence-based support[END_REF] An evidence-based recursive argumentation framework (REBAF) is a sextuple A, R a , R e , s, t, P where A, R a and R e are three (possible infinite) pairwise disjunct sets respectively representing arguments, attacks and supports names, and where P ⊆ A ∪ R a ∪ R e is a set representing the prima-facie elements that do not need to be supported. Functions s

: (R a ∪ R e ) -→ 2 A \ ∅ and t : (R a ∪ R e ) -→ (A ∪ R a ∪ R e )
respectively map each attack and support to its source and its target.

Note that the source of attacks and supports is a set of arguments, the set P may contain several prima-facie elements (arguments, attacks and supports) and no constraint on the prima-facie elements is assumed (they can be attacked or supported).

Example 2 (cont'd):

The argumentation framework corresponding to the second example given in the introduction can be represented as follows (a solid border denotes prima-facie elements while a dashed border denotes standard elements; supports are represented by double edges):

a α b β c
Semantics of REBAF are defined in [START_REF] Cayrol | Argumentation frameworks with recursive attacks and evidence-based support[END_REF] using the extension of the notion of structure introduced in [START_REF] Cayrol | Valid attacks in argumentation frameworks with recursive attacks[END_REF]. The idea is to characterize which arguments are regarded as "acceptable", and which attacks and supports are regarded as "valid", with respect to some structure.

Consider a given framework REBAF = A,R a ,R e ,s,t,P .

Definition 4 [24]

A triple U = (S, Γ, ∆) is said to be a structure of REBAF iff it satisfies:

S ⊆ A, Γ ⊆ R a and ∆ ⊆ R e .
Intuitively, the set S represents the set of "acceptable" arguments w.r.t. the structure U , while Γ and ∆ respectively represent the set of "valid attacks" and "valid supports" w.r.t. U . Any attack 3 α ∈ Γ is understood as "non-valid" and, in this sense, it cannot defeat the element that it is targeting. Similarly, any support β ∈ ∆ is understood as "non-valid" and it cannot support the element that it is targeting.

The following definitions are extensions of the corresponding ones defined in [START_REF] Cayrol | Valid attacks in argumentation frameworks with recursive attacks[END_REF] in order to take into account the evidential supports.

Definition 5 [START_REF] Cayrol | Argumentation frameworks with recursive attacks and evidence-based support[END_REF] Given a structure U = (S, Γ, ∆),

The sets of defeated elements w.r.t. U are:

Def X (U ) def = {x ∈ X|∃α ∈ Γ, s(α) ⊆ S and t(α) = x} with X ∈ {A, R a , R e } Def (U ) def = Def A (U ) ∪ Def Ra (U ) ∪ Def Re (U )
The set of supported elements Sup(U ) is recursively defined as follows: 4

Sup(U

) def = P∪ {t(α)|∃α ∈ ∆ ∩ Sup(U \{t(α)}), s(α) ⊆ (S ∩ Sup(U \{t(α)}))}
Note that a standard element is supported if there is a "chain" 5 of supported supports leading to it, rooted in prima-facie arguments. Acceptability is more complex. Intuitively, an element is acceptable if it supported and in addition, every attack against it can be considered as "non-valid" because either the source or the attack itself is defeated or cannot be supported. The elements that cannot be supported w.r.t. a structure U are called unsupportable w.r.t. U . An element is supportable w.r.t. U if there is a support for it which is nondefeated by U , with its source being non-defeated by U , and the support and its source being in turn supportable. The elements that are defeated or unsupportable are called unacceptable. Then an attack is said unactivable if either some argument in its source or itself is unacceptable.

Formally,

The set of unsupportable elements w.r.t. U is:

UnSupp(U ) def = Sup(U ) with U = (Def A (U ), R a , Def Re (U )).
3 By Γ def = Ra\Γ we denote the set complement of Γ w.r.t. Ra. Similarly, by ∆ def = Re\∆ we denote the set complement of ∆ w.r.t. Re. 4 By abuse of notation, we write U \T instead of (S\T, Γ\T, ∆\T ) with T ⊆ (A ∪ Ra ∪ Re). 5 Strictly speaking, it is not a chain, as each support may itself be the target of a support. However, we keep the word "chain" for simplicity.

The set of unacceptable elements w.r.t. U is:

UnAcc(U ) def = Def (U ) ∪ UnSupp(U )
The set of unactivable attacks w.r.t. U is:

UnAct(U ) def = {α ∈ R a |α ∈ UnAcc(U ) or s(α) ∩ UnAcc(U ) = ∅}
Definition 6 [START_REF] Cayrol | Argumentation frameworks with recursive attacks and evidence-based support[END_REF] An element x ∈ A∪R a ∪R e is said to be acceptable w.r.t. a structure U iff (i) x ∈ Sup(U ) and (ii)

every attack α ∈ R a with t(α) = x is unactivable, that is, α ∈ UnAct(U ).
Acc(U ) denotes the set containing all arguments, attacks and supports that are acceptable with respect to U .

The following order relations will help defining preferred structures: for any pair of structures U = (S, Γ, ∆) and U = (S , Γ , ∆ ), we write

U ⊆ U iff (S ∪ Γ ∪ ∆) ⊆ (S ∪ Γ ∪ ∆ ).
As usual, we say that a structure U is ⊆-maximal (resp. ⊆-minimal) iff every U that satisfies U ⊆ U (resp. U ⊆ U ) also satisfies U ⊆ U (resp. U ⊆ U ).

Definition 7 [START_REF] Cayrol | Argumentation frameworks with recursive attacks and evidence-based support[END_REF] A structure U = (S, Γ, ∆) is:

1. self-supporting iff (S ∪ Γ ∪ ∆) ⊆ Sup(U ), 2. conflict-free iff X∩Def Y (U ) = ∅ for any (X, Y ) ∈ {(S, A), (Γ, R a ), (∆, R e )},
3. admissible iff it is conflict-free and S ∪ Γ ∪ ∆ ⊆ Acc(U ), 4. complete iff it is conflict-free and Acc(U ) = S ∪ Γ ∪ ∆, 5. grounded iff it is a ⊆-minimal complete structure, 66. preferred iff it is a ⊆-maximal admissible structure, 7. stable7 iff (S ∪ Γ ∪ ∆) = UnAcc(U ).

From the above definitions, it follows that if U is a conflict-free structure, unsupportable elements w.r.t. U are not supported w.r.t. U , that is UnSupp(U ) ⊆ Sup(U ).

Note that every admissible structure is also self-supporting. Moreover, the usual relations between extensions also hold for structures: every complete structure is also admissible, every preferred structure is also complete, and every stable structure is also preferred and so admissible. Other properties of REBAF are described in [START_REF] Cayrol | Argumentation frameworks with recursive attacks and evidence-based support[END_REF], which enable to prove for instance that there is a unique grounded structure.

The previous definitions are illustrated on the following examples.

Example 4 Consider two arguments a and b and a support from a to b. Following the set of prima-facie elements, different behaviours can be described.

1. The support and its source are assumed to be prima-facie. The target is not prima-facie. In this case, as α (resp. a) is prima-facie and not attacked, it is acceptable w.r.t. any structure. In contrast, b is not prime-facie, so b is supported w.r.t. a structure U implies that U contains the support α and its source a.

As a consequence, the structures ({a}, ∅, {α}) and ({a, b}, ∅, {α}) are admissible, whereas the structure ({b}, ∅, {α}) is not admissible.

2. Only the source of the support is assumed to be prima-facie.

a α b
In this case, for any structure U , α is not supported w.r.t. U . It is the same for b. So the only admissible structures are U = (∅, ∅, ∅) and U = ({a}, ∅, ∅).

3. Only the support is assumed to be prima-facie.

a α b
In this case, α is acceptable w.r.t. any structure. However, for any structure U , a is not supported w.r.t. U . So b cannot be supported. As a consequence, the only admissible structures are U = (∅, ∅, ∅) and U = (∅, ∅, {α}).

4. The support and its target are assumed to be prima-facie. The source is not prima-facie. In this case, α (resp. b) is acceptable w.r.t. any structure. In contrast, a cannot be supported. So there are 4 admissible structures: U = (∅, ∅, ∅), U = (∅, ∅, {α}), U = ({b}, ∅, ∅) and U = ({b}, ∅, {α}).

In the next example, the support is itself the target of an attack. Example 2 (cont'd): In this framework, neither β nor its source is attacked and β and its source are prima-facie. So, for any structure U , it holds that neither β nor its source c is unacceptable w.r.t. U . As a consequence, for any structure U , α is not acceptable w.r.t. U as α is attacked by β and β is not unactivable w.r.t. U . As b is not prima-facie, and α is the only support to b, no admissible structure contains b. As a consequence, there is a unique complete, preferred and stable structure U = ({a, c}, {β}, ∅).

Finally, REBAF is a conservative generalization of RAF described in [START_REF] Cayrol | Valid attacks in argumentation frameworks with recursive attacks[END_REF] with the addition of supports and joint attacks. Every RAF can be easily translated into a corresponding REBAF with no support and where every element (argument or attack) is prima-facie (see [START_REF] Cayrol | Argumentation frameworks with recursive attacks and evidence-based support[END_REF]).

Background on the Logical Description of a REBAF

given in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF] Note that the text (definitions, propositions and examples) of this section is extracted from [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF].

Here, we recall the logical description of a REBAF proposed in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF], that allows an explicit representation of arguments, attacks, evidential supports and their properties. In [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF] a variant of REBAF has been considered in which interactions are restricted to binary interactions (that is for any interaction α, s(α) is a singleton) and the support relation is assumed to be acyclic. As a consequence, the definitions of Def X (U ) and Sup(U ) given in Definition 5 can be simplified as follows: Definition 8 (Definition 5.1 in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF]) Given a structure U = (S, Γ, ∆),

Def X (U ) def = {x ∈ X|∃α ∈ Γ, s(α) ∈ S and t(α) = x} with X ∈ {A, R a , R e }. Sup(U ) def = P ∪ {t(α)|∃α ∈ (∆ ∩ Sup(U )), s(α) ∈ (S ∩ Sup(U ))}
Note that this new definition for Sup(U ) hides a difficult point of the general case: indeed, in the general case, Sup(U ) is defined recursively in order to avoid elements that cannot be supported without themselves. Trivially this recursion is useless when no support cycle exists in the REBAF. That justifies the new definition but that also explains why this definition cannot be used when support cycles exist.

Vocabulary

The following unary predicate symbols and unary functions symbols are used with the following meaning: Arg(x) means "x is an argument" Attack(x) means "x is an attack" ESupport(x) means that "x is an evidential support" T (x) (resp. S(x)) denotes the target (resp. source) of x, when x denotes an attack ou a support P rimaF acie(x) means that "x is a prima-facie element" Acc(x) (resp. N Acc(x)) means "x is accepted" (resp. "x cannot be accepted"), when x denotes an argument V al(α) means "α is valid" when α denotes an attack or a support

The binary equality predicate is also used. Note that the quantifiers ∃ and ∀ range over some domain D. To restrict them to subsets of D, bounded quantifiers will be used:

∀x ∈ E (P (x)) means ∀x (x ∈ E → P (x)) or equivalently ∀x(E(x) → P (x)). So we will use:

∀x ∈ Attack (Φ(x)) (resp. ∃x ∈ Attack (Φ(x))) ∀x ∈ ESupport (Φ(x)) (resp. ∃x ∈ ESupport (Φ(x)))
and ∀x ∈ Arg (Φ(x)) (resp. ∃x ∈ Arg (Φ(x))).

Note that the meaning of N Acc(x) is not "x is not accepted" but rather "x cannot be accepted" (for instance because x is the target of a valid attack whose source is accepted). Hence, N Acc(x) is not logically equivalent to ¬Acc(x). However, the logical theory will enable to deduce ¬Acc(x) from N Acc(x), as shown below.

Then we need symbols for denoting acceptability of elements. Let us recall that the purpose of [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF] was to obtain a logical characterization of structures. As explained before, intuitively, a structure of REBAF represents the set of acceptable arguments (attacks and supports) w.r.t. the structure. And following Definition 6, acceptability w.r.t. a structure requires two conditions, one of them being a support by the structure, the other one making use of the notion of unsupportability. So the following unary predicate symbols are introduced in [25]:

Supp for denoting supported elements (argument, attack or support), U nSupp for denoting unsupportable elements and eAcc (resp. eV al) for denoting acceptability for arguments (resp. for interactions, attacks or supports).

Note that eAcc(x) ("x is e-accepted") can be understood as "x is accepted and supported" and similarly eV al(α) ("α is e-valid" ) can be understood as "α is valid and supported".

Logical theory for describing REBAF

In [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF], the formulae describing a given REBAF have been partitioned in two sets:

The first set, denoted by Π, contains the formulae describing the general behaviour of an attack, possibly recursive, i.e. how an attack interacts with arguments and other attacks related to it, and also the formulae describing the general behaviour of an evidential support, possibly recursive, i.e. how a support interacts with arguments and other interactions related to it.

The second set, denoted by Π(REBAF), contains the formulae encoding the specificities of the current framework.

The meaning of an attack is described under the form of constraints on its source (an argument) and its target (an argument or an attack). Moreover, as attacks may be attacked by other attacks, some attacks may not be valid. And finally supports must be taken into account in order to define this "validity". So we have:

If an attack from an argument to an attack (or a support) is e-valid, then if its source is e-accepted, its target is not valid.

If an attack between two arguments is e-valid and if its source is e-accepted, then its target cannot be accepted. In that case, the target is not accepted.

An evidential support can be described by the following constraints:

If an element (argument or interaction) is prima-facie, it is supported.

If an element is the target of an evidential support, it is supported if the source of the support is e-accepted and if the support is itself e-valid.

Using the vocabulary defined above, 8 these constraints have been expressed in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF] by the following formulae:

(1) ∀x ∈ (Attack ∪ ESupport) ∀y ∈ Attack (eV al(y) ∧ (t y = x) ∧ eAcc(s y )) → ¬V al(x) (2) ∀x ∈ Arg ∀y ∈ Attack (eV al(y) ∧ (t y = x) ∧ eAcc(s y )) → N Acc(x) (3) ∀x ∈ Arg (N Acc(x) → ¬Acc(x)) (1bis) ∀x ∈ (Attack ∪ ESupport ∪ Arg)       P rimaF acie(x) ∨ ∃y ∈ ESupport (eV al(y) ∧ (t y = x) ∧ eAcc(s y ))   → Supp(x)    
The following formulae define the e-acceptability (resp. e-validity). Recall that eAcc(x) (resp. eV al) means "x is accepted (resp. valid) and supported":

(2bis) ∀x ∈ Arg ((Acc(x) ∧ Supp(x)) ↔ eAcc(x)) (3bis) ∀x ∈ (Attack ∪ ESupport) ((V al(x) ∧ Supp(x)) ↔ eV al(x))
Other formulae limit the domain to arguments, attacks, supports.

(4) ∀x (Attack(x) → ¬Arg(x)) (4bis) ∀x (Attack(x) → ¬ESupport(x)) (4ter) ∀x (ESupport(x) → ¬Arg(x)) (5) ∀x (Arg(x) ∨ Attack(x) ∨ ESupport(x))
The logical theory Π consists of all the above formulae. Then the logical encoding of specificities of a given REBAF leads to the set Π(REBAF) consisting of the following formulae. Let A = {a 1 , . . . a n }, R a = {α 1 , . . . , α k }, R e = {α k+1 , . . . , α m } and P = {x 1 , . . . x l }.9 

(6) (s α = a) ∧ (t α = b) for all α ∈ R a ∪ R e with s(α) = a and t(α) = b (7) ∀x (Arg(x) ↔ (x = a 1 ) ∨ . . . ∨ (x = a n )) (8) ∀x (Attack(x) ↔ (x = α 1 ) ∨ . . . ∨ (x = α k )) (8bis) ∀x (ESupport(x) ↔ (x = α k+1 ) ∨ . . . ∨ (x = α m )) (8ter) ∀x (P rimaF acie(x) ↔ (x = x 1 ) ∨ . . . ∨ (x = x l )) (9) a i = a j for all a i , a j ∈ A with i = j (10) α i = α j for all α i , α j ∈ R a ∪ R e with i = j
Given REBAF a higher-order argumentation framework, Σ(REBAF) will denote the set of first-order logic formulae describing REBAF. And so the logical theory Σ(REBAF) is the union of Π and Π(REBAF). It is obviously consistent.

In the following examples, using the equality axioms, a simplified version of Σ(REBAF) is given. 10Example 4 (cont'd): Considering the version 1 of this example, we have:

Σ(REBAF) = {Supp(a) (from (1bis), (8ter)), Supp(α) (from (1bis),(8ter)), (eAcc(a) ∧ eV al(α)) → Supp(b) (from (1bis)), (Supp(a) ∧ Acc(a)) ↔ eAcc(a) (from (2bis)), (Supp(b) ∧ Acc(b)) ↔ eAcc(b) (from (2bis)), (Supp(α) ∧ V al(α)) ↔ eV al(α) (from (3bis))}
Considering the version 2 of this example, we have:

Σ(REBAF) = {Supp(a) (from (1bis), (8ter)), (eAcc(a) ∧ eV al(α)) → Supp(b) (from (1bis)), (Supp(a) ∧ Acc(a)) ↔ eAcc(a) (from (2bis)), (Supp(b) ∧ Acc(b)) ↔ eAcc(b) (from (2bis)), (Supp(α) ∧ V al(α)) ↔ eV al(α) (from (3bis))}
Example 2 (cont'd): Note that this example is a variant of the version 1 of Example 4 in which the attack β targeting α has been added.

Σ(REBAF) = {(eV al(β) ∧ eAcc(c)) → ¬V al(α) (from (1)), Supp(a) (from (1bis), (8ter)), Supp(c) (from (1bis), (8ter)), Supp(α) (from (1bis),(8ter)), Supp(β) (from (1bis), (8ter)), (eAcc(a) ∧ eV al(α)) → Supp(b) (from (1bis)), (Supp(a) ∧ Acc(a)) ↔ eAcc(a) (from (2bis)), (Supp(b) ∧ Acc(b)) ↔ eAcc(b) (from (2bis)), (Supp(c) ∧ Acc(c)) ↔ eAcc(c) (from (2bis)), (Supp(α) ∧ V al(α)) ↔ eV al(α) (from (3bis)), (Supp(β) ∧ V al(β)) ↔ eV al(β) (from (3bis))}

Logical Formalization of REBAF semantics

In presence of higher-order attacks and supports, the conflict-freeness, defence, reinstatement and stability principles must take into account the fact that acceptability for an argument or an interaction requires that any attack against it is unactivable. Moreover acceptability requires support.

Conflict-freeness

In [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF], the conflict-freeness principle has been formulated as follows:

If there is an e-valid attack between two arguments, these arguments cannot be jointly e-accepted.

If there is an e-valid attack from an e-accepted argument to an interaction (attack or support), this interaction cannot be e-valid.

Note that these properties are already expressed in Σ(REBAF) (by the formulae (1), ( 2), ( 3), (2bis), (3bis)).

Self-supporting

The self-supporting principle states that each supported element must receive evidential support. In [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF], it has been formulated as follows:

If an element is supported then, either it is prima-facie, or it is the target of an e-valid support from an e-accepted source:

(17) ∀x ∈ (Attack ∪ ESupport ∪ Arg)     Supp(x) →   P rimaF acie(x)∨ ∃y ∈ ESupport (eV al(y) ∧ (t y = x) ∧ eAcc(s y ))      
Supportability is a weaker notion, as elements that are not supportable (i.e. unsupportable) cannot be supported. An element is unsupportable iff it is not primafacie and for each of its supports, either the support itself or its source is defeated, or the support or its source is in turn unsupportable: 17) and ( 18) are added to the base Σ(REBAF), thus producing the base Σ ss (REBAF).

(18) ∀x ∈ (Attack ∪ ESupport ∪ Arg)           U nSupp(x) ↔         ¬P rimaF acie(x) ∧ ∀y ∈ ESupport(t y = x →     ∃β ∈ Attack(t β ∈ {s y , y}∧ eV al(β) ∧ eAcc(s β ))) ∨ U nSupp(s y ) ∨ U nSupp(y))                       Formulae (

Defence

As stated in Definition 6, an attacked element is acceptable if (i) it is supported and (ii) for each attack against it, either the source or the attack itself is defeated (by an e-valid attack from an e-accepted argument), or the source or the attack itself is unsupportable (w.r.t. e-valid elements and e-accepted arguments). So, in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF], the principle corresponding to the previous item (ii) has been expressed by the following formulae that are associated with formulae (17) and (18):

(11) ∀α ∈ Attack       Acc(t α ) →     ∃β ∈ Attack (t β ∈ {s α , α} ∧ eV al(β) ∧ eAcc(s β )) ∨ U nSupp(s α ) ∨ U nSupp(α)           (12) ∀α ∈ Attack ∀δ ∈ (Attack ∪ ESupport)       ((δ = t α ) ∧ V al(δ)) →     ∃β ∈ Attack (t β ∈ {s α , α} ∧ eV al(β) ∧ eAcc(s β )) ∨ U nSupp(s α ) ∨ U nSupp(α)          
Formulae [START_REF] Cayrol | Bipolarity in argumentation graphs: towards a better understanding[END_REF] and ( 12) are added to the base Σ ss (REBAF), thus producing the base Σ d (REBAF).

Reinstatement

In [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF], the reinstatement principle has been expressed by the following formulae that are be associated with formulae [START_REF] Villata | Modelling defeasible and prioritized support in bipolar argumentation[END_REF] and (18):

(13) ∀c ∈ Arg                   ∀α ∈ Attack       t α = c →     ∃β ∈ Attack(t β ∈ {s α , α} ∧ eV al(β) ∧ eAcc(s β )) ∨ U nSupp(s α ) ∨ U nSupp(α)                   → Acc(c)           (14) ∀δ ∈ (Attack ∪ ESupport)                   (∀α ∈ Attack       t α = δ →     ∃β ∈ Attack(t β ∈ {s α , α} ∧ eV al(β) ∧ eAcc(s β )) ∨ U nSupp(s α ) ∨ U nSupp(α)                   → V al(δ)          
Formulae (13) and ( 14) are added to the base Σ ss (REBAF), thus producing the base Σ r (REBAF).

Stability

In [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF], the stability principle has been expressed by the three following formulae that are associated with formulae (17) and (18):11 

(15) ∀c ∈ Arg   ¬Acc(c) → ∃β ∈ Attack(t β = c ∧ eV al(β) ∧ eAcc(s β ))   (16) ∀α ∈ (Attack ∪ ESupport)   ¬V al(α) → ∃β ∈ Attack(t β = α ∧ eV al(β) ∧ eAcc(s β ))   (19) ∀x ∈ (Arg ∪ Attack ∪ ESupport) (¬Supp(x) → U nSupp(x))
Formulae ( 15), ( 16) and ( 19) are added to the base Σ ss (REBAF), thus producing the base Σ s (REBAF). The common idea is that a structure gathers the acceptable elements w.r.t. it.

Let REBAF = A,R a ,R e ,s,t,P . Given I an interpretation of Σ(REBAF), we define:

S I = {x ∈ A|I(eAcc(x)) = true} Γ I = {x ∈ R a |I(eV al(x)) = true} ∆ I = {x ∈ R e |I(eV al(x)) = true}
Moreover, let I be a model of Σ(REBAF):

I is a ⊆-maximal model of Σ(REBAF) iff there is no model I of Σ(REBAF) with (S I ∪ Γ I ∪ ∆ I ) ⊂ (S I ∪ Γ I ∪ ∆ I ). I is a ⊆-minimal model of Σ(REBAF) iff there is no model I of Σ(REBAF) with (S I ∪ Γ I ∪ ∆ I ) ⊂ (S I ∪ Γ I ∪ ∆ I ).
The following characterizations are given in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF]:

Proposition 1 (Proposition 6.1 in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF]) Let REBAF = A,R a ,R e ,s,t,P . Let U = (S, Γ, ∆) be a structure on REBAF. The following examples illustrate the above proposition. The first one exemplifies the use of formula [START_REF] Villata | Modelling defeasible and prioritized support in bipolar argumentation[END_REF]. The second one exemplifies the case of an element which is attacked by a supported and unattacked attack (formulae (12) and ( 18)). The last two exemplify the case of an element which is attacked by an unattacked but unsupportable attack (formulae (11) and ( 18 Applying formula (12) yields ¬V al(δ), as β and d are prima-facie, and as a consequence ¬eV al(δ). Finally, applying formula (17), we obtain eAcc(a) → ¬Supp(α) as α is not primafacie, and as a consequence eAcc(a) → ¬eV al(α). That corresponds to the fact that if an admissible structure contains a, then it also contains d and β and it does not contain α. Moreover no admissible structure contains δ.

From Σ r (REBAF) it can be deduced that eAcc(d), eV al(β) and U nSupp(α) → Acc(a). So, from Σ d (REBAF) ∪ Σ r (REBAF) it can be deduced that Acc(a) and also eAcc(a) as a is prima-facie. Σ r (REBAF) also allows to deduce eAcc(b) and eAcc(c). That corresponds to the fact that the unique complete structure is ({a, b, c, d}, {β}, ∅). Then applying formula (12) trivially yields the formula ¬eV al(δ). Finally, applying formula (17), we obtain eAcc(a) → ¬eAcc(b). That corresponds to the fact that if an admissible structure contains a, then it also contains d and β and it does not contain b. Moreover no admissible structure contains δ.

Considering Σ r (REBAF) ∪ Σ d (REBAF), we obtain ({a, c, d}, {α, β}, ∅) as the unique complete structure.

The case of support cycles

The logical representation proposed in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF] and recalled in the previous sections applies to a restricted variant of REBAF in which two constraints are given: first interactions are assumed to be binary and secondly there is no cycle of supports. This second restriction allows a direct encoding of the notions Sup(U ) and UnSupp(U ) and, in this case, it is worth to notice that formulae [START_REF] Villata | Modelling defeasible and prioritized support in bipolar argumentation[END_REF] and (18) are enough for checking that any element is supported without itself. Nevertheless, if this constraint is not satisfied (i.e. support cycles exist) then the use of these formulae does not prevent the acceptability of elements that cannot be supported without themselves.

However it could be interesting to see what happens in the case of a REBAF with support cycles and a first proposition has also been presented in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF] using a basic idea deduced from the following example. The interesting point is that, from Σ ss (and so from Σ d ), the following formulae can be entailed: Supp(a) → eV al(β) ∧ eAcc(b) and Supp(b) → eV al(α) ∧ eAcc(a). So using formula (2bis) the following formulae can be entailed: Supp(a) → eAcc(a) and Supp(b) → eAcc(b). That means that a (resp. b) is supported only if it is accepted; thus these arguments cannot be supported without themselves.

So, considering an existing model I of Σ d with S I = {a, b}, Γ I = ∅ and ∆ I = {α, β}, we obtain a structure (S I , Γ I , ∆ I ) that is not admissible since it is not selfsupporting in the sense of Definition 5: there is no chain of supports leading to a (resp. to b) rooted in a prima-facie argument. Thus, in this case, Proposition 1 cannot be applied.

Another important point is the fact that, if an element (argument or support) x cannot be supported without itself, it cannot be supportable w.r.t. a structure.

The above remarks lead to the following definition for "support-founded" interpretations given in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF]: Definition 9 (Definition 6.1 in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF]) I is a support-founded interpretation iff for each argument (resp. support) x s.t. Σ ss (REBAF) entails Supp(x) → eAcc(x) (resp. Supp(x) → eV al(x)), it holds that I(eAcc(x)) = false (resp. I(eV al(x)) = false) and I(U nSupp(x)) = true.

Then a support-founded model of Σ d (REBAF) is a support-founded interpretation which is a model of Σ d (REBAF).

In [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF], this definition has been used for characterizing admissible structures of a given REBAF with support cycles by a subclass of models of Σ d (REBAF):

Proposition 2 (Proposition 6.2 in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF]) Let REBAF = A,R a ,R e ,s,t,P . Let U = (S, Γ, ∆) be a structure on REBAF. Nevertheless this characterisation has some weaknesses as it is shown in the next section.

REBAF with support cycles: analysis of [25] proposition

In this section, the definition of support-founded models is discussed using examples and we show that it leads to a characterisation of REBAF semantics that only holds when considering REBAF with specific cycles.

In order to do that, some formal definitions about supports cycles are first given.

Support cycles in a REBAF: Basic definitions and examples

Some notions related to directed cycles of supports must be defined before analysing the impact of such support cycles in the logical computation of structures for the RE-BAF.

Definition 10 Let REBAF = A,R a ,R e ,s,t,P . A directed cycle of supports (DCS) in this REBAF is a sequence C = (x 0 , . . . , x n-1 , x n ) such that: 13n > 0 and n is the size of the DCS,

∀i = 0 . . . n, x i ∈ A ∪ R e , x n = x 0 ∀i = 0 . . . n -1, if x i ∈ A then x i+1 ∈ R e and s(x i+1 ) = x i , ∀i = 0 . . . n -1, if x i ∈ R e then x i+1 = t(x i ). A simple DCS C = (x 0 , . . . , x n-1 , x n ) is a DCS in which ∀i, j = 0 . . . n -1, if i = j then x i = x j .
An input support of a DCS C = (x 0 , . . . , x n-1 , x n ) is:

either a support y ∈ R e such that y ∈ C and ∃x i ∈ C and x i = t(y),

or an argument y ∈ A such that y ∈ C and ∃x i ∈ R e ∩ C and y = s(x i ).

The set of inputs of the DCS C is denoted by C In and it is partitioned into 4.2 Counterexamples of Proposition 6.2 in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF] In this section, some counterexamples of Proposition 6.2 in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF] (numbered 2 in the current paper) are exhibed. Indeed, if several cycles exist and can be agglomerated into a non-simple directed cycle, Definition 9 is not enough for guaranting that any model in which an element that cannot be supported without itself is removed. Consider for instance the following example: Here Σ ss does not entail Supp(x) → eAcc(x) for x = a, or x = b, or x = c, or x = d. So Definition 9 cannot be used in order to remove models in which a (resp. b, c, d) is supported by itself. The origin of this problem is the fact that, following Formula (17), the existence of several supporters for b and c prevents the entailment described in Definition 9: Σ ss |= Supp(c) → (eAcc(c) ∨ eAcc(b)) and not Σ ss |= Supp(c) → eAcc(c).

C In A = C In ∩ A and C In Re = C In ∩ R e .
Another case showing the weakness of Definition 9 is the following example: In fact, it seems that Proposition 6.2 in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF] can be applied only if the support cycles in the REBAF are simple DCS without input in the REBAF.

Support cycles in a REBAF: a new proposition

Since Definition 9 is not sufficient in the general case, and in order to identify the elements that cannot be supported without themselves, the main point must be to find the elements of the REBAF that would be able to play a role for supporting the elements of a cycle. That leads us to define the impacting support chains for each element of a REBAF. Unformally an impacting support chain for an element x is a sequence targeting x, originated in a prima-facie argument and composed alternatively by "an argument, a support, an argument, a support, . . . ". Moreover no repetition is authorized (so any element appears only one time in the sequence); and x cannot belong to the sequence. So Formally we have:

Definition 11 Let REBAF = A,R a ,
R e ,s,t,P . Let x be an element of this REBAF. An impacting support chain for x is a sequence ISC = (x 0 , . . . , x n ) with n > 0 and:

∀x i , i ∈ [0 . . . n], x i ∈ (A ∪ R e ) \ {x} x 0 ∈ A ∩ P and x n ∈ R e such that t(x n ) = x ∀i, j ∈ [0 . . . n], if i = j, then x i = x j ∀i ∈ [1 . . . n], if x i ∈ R e then x i-1 = s(x i ) ∀i ∈ [2 . . . n -1], if x i ∈ A then x i = t(x i-1 )
It is obvious to see that if a DCS has some inputs then these inputs may belong to some impacting support chains of the elements of the DCS, if they are prima-facie or if they have at least one impacting support chain.

Another trivial property is the fact that, in a DCS without input and in which none argument is prima-facie, the elements of the DCS have no impacting support chains. Example 12 (cont'd): Here, for any element, there is no impacting support chain. For argument c, there exists only one impacting support chain: (b, β).

For argument a, there exist two impacting support chains: (e, π, d, δ) and (b, β, c, γ, d, δ).

For support β, there exists only one impacting support chain: (e, π, d, δ, a, α). Considering the impacting support chains of some elements of the DCS, we have for instance: For argument d, there exists only one impacting support chain: (e, π).

For argument c, there exists only one impacting support chain: (e, π, d, µ, b, β).

For argument a, there exists only one impacting support chain: (e, π, d, δ).

For support β, there exists only one impacting support chain: (e, π, d, δ, a, α).

In Example 14, it is worth to note that among the inputs of C we can find elements of C (and vice-versa). So any element of C could impact the supported status of the elements of C (and vice-versa). In this case, we must consider both cycles before deciding if an element can or cannot be supported without itself. This is why we must study the case where several simple directed cycles exist and can be aggregated (as in Example 12 or in Example 14). This notion of aggregation is formally defined as follows:

Definition 12 Let REBAF = A,R a ,R e ,s,t,P . Let C = (x 0 , . . . , x n-1 , x n ) and C = (x 0 , . . . , x m-1 , x m ) be two DCS of this REBAF such that there exist x i ∈ C and x j ∈ C and x i = x j .

The aggregation of C and C is the directed cycle corresponding to the union of the sets {x 0 , . . . , x n-1 } and {x 0 , . . . , x m-1 }. This aggregation with be denoted by abuse of language C ∪ C .

Using this notion of aggregation, a maximal DCS of a REBAF can be defined: Definition 13 Let REBAF = A,R a ,R e ,s,t,P . Let C = (x 0 , . . . , x n-1 , x n ) be a DCS. C is a maximal DCS iff there does not exist another DCS that could be aggregated with C.

Example 12 (cont'd): In this example, 3 simple DCS exist:

C 1 = (a, α 1 , b, β 1 , a), C 2 = (b, α 2 , c, β 2 , b) and C 3 = (c, α 3 , d, β 3 , c
) that can be aggregated together giving the only one maximal DCS: So two maximal DCS exist:

C = C 1 ∪ C 2 ∪ C 3 = (a, α 1 , b, α 2 , c, α 3 , d, β 3 , c, β 2 , b, β 1 ,
C = C 1 = (a, α 1 , b 1 , β 1 , a) C = C 2 ∪ C 3 = (b 2 , α 2 , c, α 3 , d, β 3 , c, β 2 , b 2 )
Note that, for any element of this REBAF, there is no impacting support chains.

Example 16

This example is an extension of Example 15 with the same DCS but with some additionnal prima-facie arguments and supports.

α1 α2 α3 a b1 δ b γ b2 c d β1 e1 π1 π2 e2 β2 β3
Considering the impacting supports chains, we have:

no impacting supports chain for the interactions (but they are all prima-facie);

no impacting supports chain for e 1 and e 2 (but they are prima-facie); no impacting supports chain for a and b 1 since they cannot be supported without themselves;

for the other arguments, there are two impacting supports chains, one containing e 1 and π 1 and the other containing e 2 and π 2 ; for instance for argument d we have:

(e 1 , π 1 , b, γ, b 2 , α 2 , c, α 3 ) and (e 2 , π 2 , b, γ, b 2 , α 2 , c, α 3 ).
Study now the use of these impacting support chains in order to identify the models of Σ d we want to remove. The idea is very simple: we keep a model only if, for each element of a DCS, we can identify in this model a chain of supported supports leading to this argument; by definition, that means that the model we keep satisfies all the elements composing at least one impacting support chain for this element.

Moreover we must also take into account the fact that the existence of support cycles has an impact on the U nSupp predicate. Consider for instance Example 7. Nevertheless, considering this REBAF, for any possible structure U , U nSupp(U ) = {a, b}. So the model I 2 does not reflect the reality concerning the "unsupportable" status of a and b and should be removed.

The previous ideas lead to the following improvement of the notion of supportfounded interpretation given in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF]: 

Definition 14 Let REBAF = A,R a ,R e ,

Conclusion

In this work, we have solved a specific issue concerning the handling of support cycles in the logical translation of argumentation frameworks with higher-order attacks and evidential supports (REBAF). A first proposition has been presented in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF]. However, we have proven in this paper that this proposition does not hold in the general case.

So a new definition for the notion of support-founded models is proposed in this paper, for providing characterizations of admissible (resp. complete, preferred, stable and grounded) structures in the presence of all kinds of support cycles. For all x ∈ A, I(eAcc(x)) = true iff (I(Acc(x)) = true and I(Supp(x)) = true). For all x ∈ R a ∪ R e , I(eV al(x)) = true iff (I(V al(x)) = true and I(Supp(x)) = true). Note that in the current case, Sup(U ) refers to Definition 5. We have to prove that S I = S, Γ I = Γ, ∆ I = ∆, and that I is a supportfounded model of Σ d (REBAF). And for proving that I is a supportfounded model of Σ d (REBAF) it is sufficient to prove that I satisfies the formulae (1), ( 2), ( 3), (1bis), (2bis), (3bis) and ( 17), ( 18), ( 11), [START_REF] Cohen | A survey of different approaches to support in argumentation systems[END_REF] and that is a support-founded interpretation. 15Let x ∈ S I . By definition of S I , I(eAcc(x)) = true, that is I(Acc(x)) = true and I(Supp(x)) = true. By definition of I(Acc) and I(Supp) it follows that x ∈ S. Conversely, given x ∈ S, it holds that I(Acc(x)) = true. As U is admissible, U is self-supporting, so x ∈ Sup(U ), then it holds that I(Supp(x)) = true. As a consequence, I(eAcc(x)) = true and x ∈ S I . Proving that Γ I = Γ and ∆ I = ∆ is similar.

Obviously I satisfies formulae (3), (2bis), (3bis).

Let us first consider formula (2). Let y ∈ R a and x ∈ A with x = t y , I(eV al(y)) = true and I(eAcc(s y )) = true. Then s y ∈ S and y ∈ Γ. Let us assume that I(N Acc(x)) = false. Then I(Acc(x)) = true, by definition of I(N Acc). As U is admissible, U is conflict-free, so x cannot belong to S, and, by definition of I(Acc), it follows that x ∈ Def ended(U ) and so y ∈ U nAct(U ), that is y or s y belongs to U nAcc(U ). However, y and s y being elements of the admissible structure U , due to Lemma 1, we obtain a contradiction. Hence, we have proved that I(N Acc(x)) = true and formula (2) is satisfied by I. Proving that formula (1) is satisfied by I is similar.

Let us first consider formula [START_REF] Villata | Modelling defeasible and prioritized support in bipolar argumentation[END_REF]. Let x such that I(Supp(x)) = true. By definition of I(Supp), x ∈ Sup(U ). By definition of Sup(U ), either x ∈ P or x is the target of a support α such that α ∈ ∆, α ∈ Sup(U \{x}), s α ∈ S and s α ∈ Sup(U \ {x}). In the first case, formula (17) is trivially satisfied by I. In the second case, as S = S I and ∆ = ∆ I it holds that I(eAcc(s α )) = true and I(eV al(α)) = true. Hence formula (17) is satisfied by I.

Let us consider formula (1bis). In the case when I(P rimaF acie(x)) = true, x ∈ P, so x ∈ Sup(U ), hence I(Supp(x)) = true and formula (1bis) is satisfied. Let us consider the case when x ∈ P and x is the target of a support y such that I(eAcc(s y )) = true and I(eV al(y)) = true. We have to prove that I(Supp(x)) = true. As S I = S and ∆ I = ∆ it holds that y ∈ ∆ and s y ∈ S. Moreover, as U is admissible, U is self-supporting, so y and s y belong to Sup(U ). From Lemma 3, it follows that x ∈ Sup(U ) hence I(Supp(x)) = true. So formula (1bis) is satisfied by I.

Let us now consider formula [START_REF] Cohen | An approach to abstract argumentation with recursive attack and support[END_REF]. Consider x such that I(U nSupp(x)) = true. By definition of I(U nSupp), x ∈ U nSupp(U ). And, since U nSupp(U ) = Sup(U ) (where U = (Def A (U ), R a , Def Re (U ))), x ∈ Sup(U ). So x / ∈ P and using the contrapositive of Lemma 3, applied to the structure U , it follows that for each support leading to x, either the support or its source is defeated by U , or the support or its source is itself not supported by U , hence belongs to U nSupp(U ). So the "only if" part of formula (18) is satisfied by I. For the "if" part, let us consider x such that x / ∈ P and for each support leading to x, either the support or its source is defeated by (S I , Γ I , ∆ I ) = U , or the support or its source belongs to U nSupp(U ) = Sup(U ). As U \ {x} ⊆ U , it holds that Sup(U ) ⊆ Sup(U \ {x}). Hence, from Definition 5, it holds that x / ∈ Sup(U ), that is x ∈ U nSupp(U ) and so I(U nSupp(x)) = true. So formula (18) s satisfied by I.

Let us now consider formula [START_REF] Cayrol | Bipolarity in argumentation graphs: towards a better understanding[END_REF]. Let α ∈ R a and x ∈ A such that x = t α and I(Acc(x)) = true. By definition of I(Acc), either x ∈ S or (x / ∈ S, x / ∈ Sup(U ) and x ∈ Defended (U )). As U is admissible, in both cases, it holds that α ∈ U nAct(U ). Then the fact that I satisfies formula [START_REF] Cayrol | Bipolarity in argumentation graphs: towards a better understanding[END_REF] follows directly from the definition of U nAct(U ), the definition of I(U nsupp) and the fact that for an argument (resp. an attack) x, I(eAcc(x)) = true (resp. I(eV al(x)) = true) iff x ∈ S (resp. x ∈ Γ). Proving that formula (12) is satisfied by I is similar.

Finally, we have to prove that I is support-founded. Condition 2 of Definition 14 is trivially satisfied. Consider now Condition 1. Let x ∈ A such that x is non prima-facie and there exists a DCS C containing x. Assume that I(eAcc(x)) = true. So x ∈ U and, since U is admissible (so self-supporting) and x non primafacie, then there exists at least one chain of supported supports (x 0 , . . . , x n ) leading to x and originated in x 0 that is prima-facie with any x i belonging to U . Moreover, for all x i , we have x i ∈ Sup(U ). So following the definition of I we have either I(eAcc(x i )) = true or I(eV al(x i )) = true depending of the nature of x i (argument or support). Thus there exists an impacting support chain (x 0 , . . . , x n ) for x that is satisfied by I. So I is a support-founded model. The proof for x ∈ R e is similar.

⇐ Let I be a support-founded model of Σ d (REBAF). We have to prove that the structure U = (S I , Γ I , ∆ I ) is admissible.

Let prove that U is conflict-free w.r.t. REBAF. If it is not the case, there exist x ∈ S I ∪ Γ I ∪ ∆ I and y ∈ Γ I , with s y ∈ S I and t y = x. By definition, it holds that I(eAcc(s y )) = true and I(eV al(y)) = true. Moreover, in the case when x ∈ S I , it holds that I(eAcc(x)) = true and so I(Acc(x)) = true (as I satisfies formula (2bis)). Then it holds that I(N Acc(x)) = false (as I satisfies formula (3)). As a consequence, formula (2) is falsified. In the case when x ∈ Γ I ∪ ∆ I , it holds that I(eV al(x)) = true and so I(V al(x)) = true (as I satisfies formula (3bis)). As a consequence, formula (1) is falsified. In both cases, there is a contradiction with I being a model of Σ(REBAF).

Let us prove that U is self-supporting. Assume that x ∈ S I (resp.

x ∈ Γ I ∪ ∆ I ). By definition, it holds that I(eAcc(x)) = true (resp. I(eV al(x)) = true). As I satisfies formula (2bis), I(Supp(x)) = true. As I satisfies formula [START_REF] Villata | Modelling defeasible and prioritized support in bipolar argumentation[END_REF], it holds that either x ∈ P or x is the target of a support x n of source x n-1 such that x n ∈ ∆ I and x n-1 ∈ S I . In the first case, it holds that x ∈ Sup(U ). In the other case, it holds that I(eAcc(x n-1 )) = true and I(eV al(x n )) = true, and formula (17) can still be used, thus enabling to build a chain of supports. As U is finite and I is support founded, this process will end with x 1 ∈ P and x 0 = s(x 1 ) ∈ P. And so it can still be proved that x ∈ Sup(U ) w.r.t. Definition 5. Hence U is self-supporting.

It remains to prove that, given x an element of the structure, if x is the target of an attack α, then α is unactivable w.r.t. U . Assume that x ∈ S I is the target of an attack α. By definition, it holds that I(eAcc(x)) = true. It follows that I(Acc(x)) = true. As I satisfies formula [START_REF] Cayrol | Bipolarity in argumentation graphs: towards a better understanding[END_REF], it follows that either there exists an attack β targeting α (or s α ) with β ∈ ∆ I and s β ∈ S I , or I satisfies U nSupp(α) (or I satisfies U nSupp(s α )).

In the first case, it holds that α (resp. s α ) belongs to Def (U ).

In the second case, we prove that α (resp. s α ) belongs to U nSupp(U ).

For that purpose, we must prove that for any element x, if I satisfies U nSupp(x), then x ∈ U nSupp(U ), or equivalently, if x ∈ Sup(U ) then I does not satisfy U nSupp(x). Let us consider x ∈ Sup(U ).

There is a chain of supports leading to x, rooted in prima-facie elements such that each support (and its source) in the chain is not defeated by U . As I satisfies formula [START_REF] Cohen | An approach to abstract argumentation with recursive attack and support[END_REF], the contrapositive of the "only if" part of formula (18) can be used for proving that each supported element y in this chain is such that I(U nSupp(y)) = false. The proof starts with the prima-facie elements of the set, and goes on by induction. Thus it can be proved that I(U nSupp(x)) = false. So, in both cases, α is unactivable w.r.t. U . The same reasoning can be done for x ∈ Γ I ∪ ∆ I using formula [START_REF] Cohen | A survey of different approaches to support in argumentation systems[END_REF]. Hence, we can prove that U is admissible. For all x ∈ R a (resp. ∈ R e ), I(V al(x)) = true if and only x ∈ Γ (resp. ∆) or (x / ∈ Γ (resp. ∆) and x ∈ Defended (U )). We have to prove that S I = S, Γ I = Γ and ∆ I = ∆, and that I is a support-founded model of Σ d (REBAF) ∪ Σ r (REBAF).

Note that if U is complete, for all x ∈ A ∪ R a ∪ R e , if x / ∈ S and x ∈ Defended (U ) then x / ∈ Sup(U ). So the above constraint expressed for the definition of I(Acc) (resp. I(V al)), x / ∈ S and x ∈ Defended (U ), is stronger than the one used for defining a model of an admissible structure (x / ∈ S, x / ∈ Sup(U ) and x ∈ Defended (U )). Due to the above remark and the proof of Item 1 of this proof, it holds that I satisfies S I = S, Γ I = Γ, ∆ I = ∆, and that I is a model of Σ d (REBAF). Now let prove that I satisfies formulae (13) and [START_REF] Modgil | Reasoning about preferences in argumentation frameworks[END_REF]. Let us consider formula [START_REF] Barringer | Temporal dynamics of support and attack networks : From argumentation to zoology[END_REF]. Let x ∈ A such that for each attack α targeting x, either I(U nSupp(α)) = true, or I(U nSupp(s α )) = true, or α (or s α ) is attacked by β with β ∈ Γ I and s β ∈ S I . Due to the definition of I(U nSupp), for each attack α targeting x, either α ∈ U nSupp(U ), or s α ∈ U nSupp(U ), or α (or s α ) belongs to Def (U ). In other words, for each attack α targeting x, α ∈ U nAct(U ), so x ∈ Defended (U ). Now, by definition of I(Acc), it holds that I(Acc(x)) = true. We have proved that I satisfies formula [START_REF] Barringer | Temporal dynamics of support and attack networks : From argumentation to zoology[END_REF]. Proving that I satisfies formula (14) is similar. So I is a model of Σ d (REBAF) ∪ Σ r (REBAF).

It remains to prove that I is support-founded. For that purpose, the proof written in Item 1 of the current proof can be used as U is self-supporting.

⇐ Let I be a support-founded model of Σ d (REBAF) ∪ Σ r (REBAF). We have to prove that the structure U = (S I , Γ I , ∆ I ) is complete. For that purpose, it is enough to prove that Acc(U ) is included in S I ∪ Γ I ∪ ∆ I . Consider x ∈ A ∩ Acc(U ). So x ∈ Sup(U ) and x ∈ Defended (U ).

The first condition implies that I(Supp(x)) = true, as I satisfies formula (1bis) and following the definition of Sup(U ). The second condition means that for each attack α targeting x, either α ∈ U nSupp(U ), or s α ∈ U nSupp(U ), or α (or s α ) belongs to Def (U ) (i.e. α -or s α -is attacked by β ∈ U with s β ∈ U ). So, since I is a support-founded models (so Condition 2 of the definition of a support-founded model holds) and the fact that if an element β (resp. s β ) belongs to the structure then I(eV al(β)) (resp. I(eAcc(s β ))) is also true, the premisse of formula (13) is true, and as I satisfies formula (13), it follows that I(Acc(x)) = true. As I satisfies formula (2bis) it holds that I(eAcc(x)) = true, so x ∈ S I . Similarly, it can be proved that for all x ∈ R a ∩ Acc(U ) (resp. x ∈ R e ∩ Acc(U )),

x ∈ Γ I (resp. x ∈ ∆ I ). We have proved that U is a complete structure. The proof is similar for any support or attack in Acc(U ).

3. (preferred semantics) Let I be an interpretation of a set of formulae Σ x . Let U I denote the structure (S I , Γ I , ∆ I ). It is easy to see that I is a ⊆-maximal

Definition 1 [

 1 26] A Dung's argumentation framework (AF) is a tuple AF = A, R , where A is a finite and non-empty set of arguments and R ⊆ A × A is a binary attack relation on the arguments, with (a, b) ∈ R indicates that a attacks b.

Example 3

 3 An attack (a, b) ∈ R is represented by two nodes a, b (in a circle) and a simple edge from a to b: a b

Example 4 (

 4 cont'd): Considering the version 1, Σ ss (REBAF) is obtained from Σ(REBAF) by adding the following formulae: Supp(b) → (eAcc(a) ∧ eV al(α)) ¬U nSupp(a) ¬U nSupp(α) U nsupp(b) ↔ (U nSupp(a) ∨ U nSupp(α)) As there is no attack, Σ d (REBAF) contains nothing more than Σ ss (REBAF). And finally Σ r (REBAF) is obtained from Σ ss (REBAF) by adding the formulae: Acc(a), Acc(b) and V al(α). Considering the version 2, Σ ss (REBAF) is obtained from Σ(REBAF) by adding the following formulae: Supp(b) → (eAcc(a) ∧ eV al(α)) ¬Supp(α) ¬U nSupp(a) U nSupp(α) U nsupp(b) ↔ (U nSupp(a) ∨ U nSupp(α)) Once again, Σ d (REBAF) contains nothing more than Σ ss (REBAF). And Σ r (REBAF) is obtained from Σ ss (REBAF) by adding the formulae: Acc(a), Acc(b) and V al(α). Example 2 (cont'd): Σ ss (REBAF) is obtained from Σ(REBAF) by adding formulae among which: Supp(b) → (eAcc(a) ∧ eV al(α)) ¬U nSupp(a) ¬U nSupp(c) ¬U nSupp(α) ¬U nSupp(β) U nsupp(b) ↔   (eV al(β) ∧ eAcc(c)) ∨ U nSupp(a) ∨ U nSupp(α)   Then Σ d (REBAF) is obtained from Σ ss (REBAF) by adding formulae among which:V al(α) → (U nSupp(β) ∨ U nSupp(c)) Σ r (REBAF) is obtained from Σ ss (REBAF) by adding the formulae:Acc(a) Acc(b) Acc(c) V al(β) (U nSupp(c) ∨ U nSupp(β)) → V al(α) Σ s (REBAF)is obtained from Σ ss (REBAF) by adding the formulae: Acc(a) Acc(b) Acc(c) V al(β) ¬V al(α) → eV al(β) ∧ eAcc(c) ¬Supp(b) → U nSupp(b) and also ¬Supp(x) → U nSupp(x) for x ∈ {a, c, α, β} 3.4 Characterizing Semantics of a REBAF [25] proposed characterizations of the REBAF structures under different semantics in terms of models of the bases Σ(REBAF), Σ d (REBAF), Σ r (REBAF), Σ s (REBAF).

1 .

 1 U is conflict-free iff there exists I model of Σ(REBAF) with S I = S, Γ I = Γ and ∆ I = ∆. 2. U is admissible iff there exists I model of Σ d (REBAF) with S = S I , Γ I = Γ and ∆ I = ∆. 3. U is complete iff there exists I model of Σ d (REBAF) ∪ Σ r (REBAF) with S = S I , Γ I = Γ and ∆ I = ∆. 4. U is a stable structure iff there exists I model of Σ s (REBAF) with S I = S, Γ I = Γ and ∆ I = ∆. 5. U is a preferred structure iff there exists I ⊆-maximal model of Σ d (REBAF) with S I = S, Γ I = Γ and ∆ I = ∆. 6. U is the grounded structure iff S = S I , Γ I = Γ and ∆ I = ∆ where I is a ⊆-minimal model of Σ d (REBAF) ∪ Σ r (REBAF). 12

Example 5 c

 5 )). Example 4 (cont'd): Let consider the version 1. From Σ d (REBAF) it can be deduced that eAcc(b) → eAcc(a) and eAcc(b) → eV al(α). That proves that each model of Σ d (REBAF) satisfying eAcc(b) also satisfies eAcc(a) and eV al(α). In other words, given I a model of Σ d (REBAF), if b ∈ S I then a ∈ S I and α ∈ ∆ I . That corresponds to the fact that the structure ({b}, ∅, {α}) is not admissible. Moreover, there is a model of Σ d (REBAF) satisfying eAcc(b) (and so eAcc(a) and eV al(α)). That corresponds to the fact that the structure ({a, b}, ∅, {α}) is admissible. Consider now the version 2. From Σ d (REBAF), it can be deduced that ¬eV al(α), ¬Supp(b) and ¬eAcc(b). Moreover there exists a model of Σ d (REBAF) satisfying eAcc(a). That corresponds to the fact that the unique non-empty admissible structure is ({a}, ∅, ∅). Note that given I a model of Σ d (REBAF), it holds that I satisfies ¬Supp(α) and ¬Supp(b). That corresponds to the fact that no admissible structure contains b (resp. α) because b (resp. α) lacks support. Example 2 (cont'd): From Σ d (REBAF), it can be deduced that ¬V al(α) then it can be deduced that ¬eV al(α), ¬Supp(b) and ¬eAcc(b). That corresponds to the fact that no admissible structure contains b (resp. α, though being supported). Moreover there is a model of Σ d (REBAF) satisfying eAcc(a), eAcc(c) and eV al(β). That corresponds to the fact that ({a, c}, ∅, {β}) is an admissible structure. Consider the following argumentation framework. From formula (11), it holds that the formula Acc(a) → (U nSupp(α)∨U nSupp(b)) belongs to Σ d (REBAF). So it can be deduced that Acc(a) → U nSupp(α) as b is prima-facie. Then we can obtain the formula eAcc(a) → U nSupp(α). Moreover, applying formula (18) yields U nSupp(α) ↔ (eV al(β) ∧ eAcc(d)) as δ and c are prima-facie. As a consequence, we obtain eAcc(a) → (eV al(β) ∧ eAcc(d)).

Example 6 c

 6 Consider the following argumentation framework. The same reasoning as the one presented for Example 5 can be used, exchanging the role of b and α. So from formulae (11) and (18), we obtain the formula eAcc(a) → (eV al(β) ∧ eAcc(d)).

Example 7

 7 This example corresponds to an even-length support cycle in which interactions are prima-facie and arguments are not.

1 .

 1 U is admissible iff there exists I support-founded model of Σ d (REBAF) with S I = S, Γ I = Γ and ∆ I = ∆. 2. U is complete iff there exists I support-founded model of the union (Σ d (REBAF) ∪ Σ r (REBAF)) with S I = S, Γ I = Γ and ∆ I = ∆. 3. U is a preferred structure iff there exists I ⊆-maximal support-founded model of Σ d (REBAF) with S I = S, Γ I = Γ and ∆ I = ∆. 4. U is the grounded structure iff S = S I , Γ I = Γ and ∆ I = ∆ where I is a ⊆-minimal support-founded model of (Σ d (REBAF) ∪ Σ r (REBAF)). Let us illustrate the above results on the previous examples: Example 7 (cont'd): The support-founded models of Σ d yield all the admissible structures: (∅, ∅, ∅) (∅, ∅, {α}) (∅, ∅, {β}) (∅, ∅, {α, β}) The unique complete structure is (∅, ∅, {α, β}).

Example 8 Example 9 α 10 Example 11

 891011 The previous definition is very general. Let us first consider examples of such a REBAF. Example 7 (cont'd): There exists one DCS C = (a, α, b, β, a) with C In = ∅. Note that a DCS whose size is n can be represented by n different sequences obtained by a shift to the right or to the left. For instance, in this example, we also have: C = (α, b, β, a, α) or C = (b, β, a, α, b) This example corresponds to an odd-length support cycle in which interactions are prima-facie and arguments are not. There exists one DCS C = (a, α, b, β, c, δ, a) with C In = ∅. This example corresponds to a support loop in which the interaction is prima-facie and the argument is not. There exists one DCS C = (a, α, a) with C In = ∅. a Example This example illustrates the fact that a support in a cycle can also be the target of another support in the cycle. Note that the source of the targeted support does not belong to the cycle. Here there exists one DCS C = (a, α, β, c, γ, d, δ, a) with C In = {b, π}. Note that the source of π is not considered as an input of the cycle. This example corresponds to a support that targets itself. There exists one DCS C = (α, α) with C In = {a}. a α

Example 12

 12 In this example, 3 simple DCS exist.

Example 13

 13 This example corresponds to an extension of Example 7: an attacked argument that supports an even-length support cycle C = (a, α, b, β, a).

β

  Note that C In = {µ}. In this example, there exists a model I of Σ d with S I = {a, b, c}, Γ I = {π} and ∆ I = {α, β, µ}. The structure (S I , Γ I , ∆ I ) is not admissible since it is not selfsupporting in the sense of Definition 5: there is no chain of supported supports leading to a (resp. to b) rooted in a prima-facie argument that belongs to the structure (since d is attacked and not defended).

Example 13 (

 13 cont'd): Considering the arguments in the cycle, we have: for argument a, there is one impacting support chain: (d, µ), for argument b, there is one impacting support chain: (d, µ, a, α). Example 10 (cont'd): Considering the impacting support chains of some elements of the DCS, we have for instance: For argument d, there exist two impacting support chains: (e, π) and (b, β, c, γ).

Example 14

 14 This example extends Example 10 by adding a second cycle including the source of the support targeted in the first DCS.

C

  = (a, α, β, c, γ, d, δ, a) with C In = {b, π} and C = (b, β, c, γ, d, µ, b) with C In = {α, π} are the two simple DCS.

  a) Example 14 (cont'd): In this example, the two simple DCS can be aggregated since they share several elements (β, c, γ, d). And this aggregation is the only maximal DCS of this REBAF: C = (a, α, β, c, γ, d, µ, b, β, c, γ, d, δ, a) Example 15 In this example, 3 simple DCS exist: C 1 = (a, α 1 , b 1 , β 1 , a), C 2 = (b 2 , α 2 , c, β 2 , b 2 ) and C 3 = (c, α 3 , d, β 3 , c) But only two of them can be aggregated: C 2 and C 3 .

  Example 7 (cont'd): Formula (18) gives: U nSupp(a) → (U nSupp(β) ∨ U nSupp(b)) U nSupp(b) → (U nSupp(α) ∨ U nSupp(a)) ¬U nSupp(α) ¬U nSupp(β) So 2 models of Σ ss exist, I 1 and I 2 , with I 1 (U nSupp(a)) = I 1 (U nSupp(b)) = true and I 2 (U nSupp(a)) = I 2 (U nSupp(b)) = false.

1 .

 1 s,t,P . I is a support-founded interpretation iff the two following conditions hold:1. for each argument (resp. support) x non prima-facie, belonging to a maximal DCS and such that I(eAcc(x)) = true (resp. I(eV al(x)) = true), there exists at least one impacting support chain ISC = (x 0 , . . . , x n ) for x that is satisfied byI, i.e. ∀x i ∈ ISC, if x i ∈ A then I(eAcc(x i )) = true, otherwise I(eV al(x i )) = true; 2. for each element x of REBAF, I(U nSupp(x)) = true iff x ∈ U nSupp(U I ) with U I = (S I , Γ I , ∆ I ).Let Σ x be a base of formulae built over REBAF. A support-founded model of Σ x is a support-founded interpretation which is a model of Σ x . Example 12 (cont'd): In this example there is no impacting support chain for argument a. So any model I of Σ d that satisfies a (i.e. such that I(eAcc(a)) = true) is not support-founded. And we have the same result for arguments b, c and d. Example 13 (cont'd): Let consider argument a. This argument has only one impacting support chain (d, µ). So any model I of Σ d that satisfies a will be support-founded iff it also satisfies d and µ (i.e we must have I(eAcc(a) = I(eAcc(d) = I(eV al(µ) = true).Using this new definition, we can obtain the following characterization of admissible structures of a given REBAF with support cycles by a subclass of models of Σ d (REBAF):Proposition 3 Let REBAF = A,R a ,R e ,s,t,P . Let U = (S, Γ, ∆) be a structure on REBAF. U is admissible iff there exists I support-founded model of Σ d (REBAF) (in the sense of Definition 14) with S I = S, Γ I = Γ and ∆ I = ∆. 2. U is complete iff there exists I support-founded model of the union (Σ d (REBAF) ∪ Σ r (REBAF)) (in the sense of Definition 14) with S I = S, Γ I = Γ and ∆ I = ∆. 3. U is a preferred structure iff there exists I ⊆-maximal support-founded model of Σ d (REBAF) (in the sense of Definition 14) with S I = S, Γ I = Γ and ∆ I = ∆. 4. U is the grounded structure iff S = S I , Γ I = Γ and ∆ I = ∆ where I is a ⊆minimal support-founded model of (Σ d (REBAF) ∪ Σ r (REBAF)) (in the sense of Definition 14). 5. U is stable iff there exists I support-founded model of Σ s (REBAF) (in the sense of Definition 14) with S I = S, Γ I = Γ and ∆ I = ∆. Let us illustrate the above results on the previous examples: Example 7 (cont'd): Apply Proposition 3 leads to the unique complete, preferred, stable and grounded structure (∅, ∅, {α, β}). Example 8 (cont'd): Apply Proposition 3 leads to the unique complete, preferred, stable and grounded structure (∅, ∅, {α, β, δ}). Example 9 (cont'd): Apply Proposition 3 leads to the unique complete, preferred, stable and grounded structure (∅, ∅, {α}). Example 10 (cont'd): Apply Proposition 3 leads to the unique complete, preferred, stable and grounded structure ({a, b, c, d, e}, ∅, {α, β, δ, γ, π}). Example 11 (cont'd): Apply Proposition 3 leads to the unique complete, preferred, stable and grounded structure ({a}, ∅, ∅). Example 12 (cont'd): Apply Proposition 3 leads to the unique complete, preferred, stable and grounded structure (∅, ∅, {α 1 , α 2 , α 3 , β 1 , β 2 , β 3 }). Example 13 (cont'd): Apply Proposition 3 leads to the unique complete, preferred, stable and grounded structure ({c}, {π}, {α, β, µ}). Example 14 (cont'd): Apply Proposition 3 leads to the unique complete, preferred, stable and grounded structure ({a, b, c, d, e}, ∅, {α, β, γ, δ, π, µ}). Example 15 (cont'd): Apply Proposition 3 leads to the unique complete, preferred, stable and grounded structure (∅, ∅, {α 1 , α 2 , α 3 , β 1 , β 2 , β 3 , δ, γ}). Example 16 (cont'd): Apply Proposition 3 leads to the unique complete, preferred, stable and grounded structure ({b, b 2 , c, d, e 1 , e 2 }, ∅, {α 1 , α 2 , α 3 , β 1 , β 2 , β 3 , δ, γ, π 1 , π 2 }).

⇒

  Assume that the structure U = (S, Γ, ∆) is complete. Let us build an interpretation I of Σ d (REBAF) ∪ Σ r (REBAF):We keep the same interpretation as the one used in Item 1 of the current proof except for Acc, V al. For all x ∈ A, I(Acc(x)) = true iff x ∈ S or (x / ∈ S and x ∈ Defended (U )).

Where "iff" (resp. "w.r.t.") stands for "if and only if" (resp. "with respect to").

It can be proved that the minimal fixed point of F is conflict-free.

The definition for the grounded extension is not given in[START_REF] Cayrol | Argumentation frameworks with recursive attacks and evidence-based support[END_REF] but can be easily proposed following the definition used in the AF case.

Note that this is also equivalent to U is self-supporting, conflict-free and S ∪ Γ ∪ ∆ ⊆ U nAcc(U ).

In the remainder of the paper, we will write sα (resp. tα) in place of S(α) (resp. T (α)) for simplicity.

We recall that P ⊆ A ∪ Ra ∪ Re.

We omit the formulae issued from (4) to[START_REF] Oren | Moving between argumentation frameworks[END_REF] and the tautologies.

Let us recall that a stable structure U = (S, Γ, ∆) satisfies: S ∪ Γ ∪ ∆ ⊆ U nAcc(U ).

It also holds that U is the grounded structure iff U = (S I , Γ I , ∆ I ) where I is a ⊆-minimal model of Σr(REBAF).

By abuse of language, the set of the elements composing C will be also denoted by C. So C will be used with set operators as ∩ ou ∪ and will be comparable with other sets.

This proof is inspired by the proof of Proposition 6.1 in[START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF] (numbered Proposition 1 in the current paper).

By definition, formulae (4) to (10) are satisfied by I.

Notation 1 (Notation Appendix A.1 in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF]) Let U = (S, Γ, ∆) be a structure of REBAF, and x ∈ A ∪ R a ∪ R e . x will be said to be defended by U , iff every attack α ∈ R a with t(α) = x is unactivable w.r.t. U . Defended (U ) will denote the set of elements that are defended by U . Note that x ∈ Acc(U ) iff x ∈ Sup(U ) and x ∈ Defended (U ).

Lemma 1 (Lemma 7 in [START_REF] Cayrol | Argumentation frameworks with recursive attacks and evidence-based support[END_REF] and Lemma Appendix A.1 in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF]) Any conflict-free self-supporting structure U satisfies:

Lemma 2 (Lemma Appendix A.2 in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF]) Any stable structure U satisfies:

Lemma 3 (Lemma Appendix A.3, in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF]) Let U = (S, Γ, ∆) be a structure and x / ∈ P be the target of a support y such that y ∈ ∆ ∩ Sup(U ) and s y ∈ S ∩ Sup(U ). Then, there exists a support z such that t z = x, z ∈ ∆ ∩ Sup(U \ {x}) and s z ∈ S ∩ Sup(U \ {x}) and so x ∈ Sup(U ).

Proof of Proposition 3. 14 Let REBAF = A, R a , R e , s, t, P .

(admissibility)

⇒ Assume that the structure U = (S, Γ, ∆) is admissible. Let us define an interpretation I of Σ d (REBAF). The idea is to define I by successively adding constraints that I should satisfy:

support-founded model of Σ x iff the structure U I is ⊆-maximal among all the structures of the form U J = (S J , Γ J , ∆ J ), where J denotes a support-founded model of Σ x . Then taking Σ x = Σ d (REBAF), it follows that the preferred structures correspond to the structures U I where I is a ⊆-maximal support-founded model of Σ d (REBAF).

(grounded semantics)

Let I be an interpretation of a set of formulae Σ x . Let U I denote the structure (S I , Γ I , ∆ I ). It is easy to see that I is a ⊆-minimal support-founded model of Σ x iff the structure U I is ⊆-minimal among all the structures of the form U J , where J denotes a support-founded model of Σ x .

Taking Σ x = Σ d (REBAF)∪Σ r (REBAF), it follows that the grounded structure correspond to the structure U I where I is a ⊆-minimal support-founded model of Σ d (REBAF) ∪ Σ r (REBAF).

(stable semantics)

⇒ Assume that the structure U = (S, Γ, ∆) is stable. Let us define an interpretation I of Σ s (REBAF) as follows:

Once again, we keep the same interpretation as the one used in Item 1 of the current proof except for Acc, V al.

∈ Def (U ). We have to prove that S I = S, Γ I = Γ and ∆ I = ∆, and that I is a support-founded model of Σ s (REBAF). And, for proving that I is a support-founded model of Σ s (REBAF) it is sufficient to prove that I satisfies formulae (1), ( 2), (3), (1bis), (2bis), (3bis) and (17), ( 18), ( 15), ( 16), [START_REF] Arisaka | Voluntary Manslaughter? A Case Study with Meta-Argumentation with Supports[END_REF] and that I is support-founded. Let x ∈ S I . By definition, I(Acc(x)) = true and I(Supp(x)) = true. By definition of I(Acc) and I(Supp), it follows that x ∈ Sup(U ) and (x ∈ S or x / ∈ Def (U )). Following Lemma 2, x / ∈ U nSupp(U ) and (x ∈ S or x / ∈ Def (U )). If x / ∈ S, as U is stable, it follows that x ∈ Def (U ) or x ∈ U nSupp(U ). We obtain a contradiction, hence x ∈ S. Conversely, given x ∈ S, it holds that I(Acc(x)) = true. As U is stable, U is self-supporting, so x ∈ Sup(U ), then it holds that I(Supp(x)) = true. As a consequence, I(eAcc(x)) = true and x ∈ S I . Proving that Γ I = Γ and ∆ I = ∆ is similar.

Obviously I satisfies formulae (3), (2bis), (3bis).

Let us first consider formula (2). Let y ∈ R a and x ∈ A with x = t y , I(eV al(y) = true and I(eAcc(s y ) = true. Then s y ∈ S and y ∈ Γ, and it holds that x ∈ Def (U ). As U is stable, U is conflict-free, so x cannot belong to S. Hence we have x / ∈ S and x ∈ Def (U ), or equivalently I(Acc(x)) = false, by definition of I(Acc) and then I(N Acc(x)) = true, by definition of I(N Acc). We have proved that I satisfies formula [START_REF] Dung | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF]. Proving that formula (1) is satisfied by I is similar.

Proving that I satisfies formulae (1bis), ( 17), ( 18) can be done with exactly the same reasoning as the one used in Item 1 of the current proof.

Let us now consider formula [START_REF] Baroni | AFRA: Argumentation framework with recursive attacks[END_REF]. Let x ∈ A such that I(Acc(x)) = false. By definition of I(Acc), it holds that x / ∈ S and x ∈ Def (U ). So, there is y ∈ Γ with x = t y and s y ∈ S. Hence, there is y ∈ Γ I with x = t y and s y ∈ S I , or equivalently, there is y ∈ R a with x = t y and I(eV al(y)) = true and I(eAcc(s y )) = true. We have proved that I satisfies formula [START_REF] Baroni | AFRA: Argumentation framework with recursive attacks[END_REF]. Proving that formula [START_REF] Gabbay | Fibring argumentation frames[END_REF] is satisfied by I is similar.

Lastly, we consider formula [START_REF] Arisaka | Voluntary Manslaughter? A Case Study with Meta-Argumentation with Supports[END_REF]. Let x ∈ A ∪ R a ∪ R e such that I(Supp(x)) = false. By definition of I(Supp), x / ∈ Sup(u). Due to Lemma 2, it follows that x ∈ U nSupp(U ), hence I(U nSupp(x)) = true, by definition of I(U nSupp). We have proved that I satisfies formula [START_REF] Arisaka | Voluntary Manslaughter? A Case Study with Meta-Argumentation with Supports[END_REF]. So I is a model of Σ s (REBAF).

It remains to prove that I is support-founded. For that purpose, the proof written in Item 1 of the current proof can be used as U is self-supporting.

⇐ Let I be a support-founded model of Σ s (REBAF). We have to prove that the structure U = (S I , Γ I , ∆ I ) is stable.

As noted in Definition 7, it is sufficient to prove that U is conflict-free, selfsupporting and satisfies U ⊆ U nAcc(U ).

As Σ s (REBAF) contains Σ(REBAF), from Proposition 1, we know that the structure U is conflict-free. Moreover, Σ s (REBAF) contains formulae (17), [START_REF] Cohen | An approach to abstract argumentation with recursive attack and support[END_REF]. So, with exactly the same reasoning as the one used in Item 1 for the admissible case, it can be proved that U is self-supporting. It remains to prove that U ⊆ U nAcc(U ). Let x ∈ A such that x ∈ U . So x / ∈ S I and by definition of S I , I(eAcc(x)) = false. As I satisfies formula (2bis), it follows that I(Acc(x)) = false or I(Supp(x)) = false. In the case when I(Acc(x)) = false, as I satisfies formula [START_REF] Baroni | AFRA: Argumentation framework with recursive attacks[END_REF], it follows that x ∈ Def (U ). If I(Acc(x)) = true, it holds that I(Supp(x)) = false. As I satisfies formula [START_REF] Arisaka | Voluntary Manslaughter? A Case Study with Meta-Argumentation with Supports[END_REF], it follows that I(U nSupp(x)) = true, so x ∈ U nSupp(U ) (following Condition 2 of Definition 14 since I is support-founded). In both cases, we have that x ∈ U nAcc(U ). We have proved that U is stable.