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Data from multiple sensors provide independent and complementary information, which may improve the robustness and reliability of scene analysis applications. While there exist many large-scale labelled benchmarks acquired by a single sensor, collecting labelled multi-sensor data is more expensive and time-consuming. In this work, we explore the construction of an accurate multispectral (here, visible & thermal cameras) scene analysis system with minimal annotation efforts via an active learning strategy based on the cross-modality prediction inconsistency. Experiments on multiple multispectral datasets and vision tasks demonstrate the effectiveness of our method. In particular, with only 10% of labelled data on KAIST multispectral pedestrian detection dataset, we obtain comparable performance as other fully supervised State-of-the-Art methods.

INTRODUCTION

The development of deep learning in computer vision greatly enhances the ability of scene analysis and empowers many intelligent vision systems. For example, object detection and semantic segmentation methods have been applied to autonomous driving and automated video surveillance. However, most of these methods are based on RGB images, and their performance may be compromised in many real life situations (such as nighttime or shaded areas). In order to solve these difficult cases, multispectral systems have been introduced, in two types of camera sensors (e.g. RGB and thermal) are combined to provide complementary information under various illumination conditions. RGB cameras extract colour and texture visual details while the thermal ones provide heat maps (based on temperature) of the scenes.

In Fig. 1, we show some image pairs from visible & thermal cameras of identical scenes and their corresponding monospectral pedestrian detection results. In this figure, the image acquisition and the pedestrian detection from the two modalities are completely independent. We split these multispectral image pairs into two categories: pairs with consistent detections (on the left side of Fig. 1) and inconsistent de-

Consistent detections

Inconsistent detections Fig. 1. Exemplary multispectral image pairs and their corresponding mono-spectral pedestrian detection results.

tections (on the right side). From these image pairs, we can observe that the detection results from the two modalities are similar in most cases, which indicates the redundancy for a multispectral system; whereas at least one modality is wrong when the detections are contradictory, which demonstrates the complementarity of multispectral systems. While there exist many large-scale benchmarks acquired by a single sensor, collecting labelled multi-sensor data is more expensive and time-consuming. E.g., acquiring wellaligned multispectral image pairs requires specific equipment, and few open datasets acquired with a similar equipment can be used as supplementary data. We suggest relying on the redundancy and complementarity of different sensors for the adaptive selection of multispectral samples to be annotated. Our proposed active criterion is based on the cross-modality prediction inconsistency, defined by the mutual information between predictions from different modalities. To the best of our knowledge, this is the first work in deep active learning within the context of multispectral scene analysis (including object detection and semantic segmentation).

In Section 2 we review some representative work on multispectral scene analysis and active learning; Section 3 introduces implementation details of our approach; In Section 4, we evaluate our method on three different public multispectral datasets [START_REF] Hwang | Multispectral pedestrian detection: Benchmark dataset and baselines[END_REF][START_REF]Free flir thermal dataset for algorithm training[END_REF][START_REF] Ha | Mfnet: Towards real-time semantic segmentation for autonomous vehicles with multi-spectral scenes[END_REF]; Section 5 concludes the paper.

RELATED WORK

Multispectral pedestrian detection

[4] demonstrated the first application of deep learning-based approach to multispectral pedestrian detection, where a late fusion architecture is adopted for information fusion. Since then, multiple studies [START_REF] König | Fully convolutional region proposal networks for multispectral person detection[END_REF][START_REF] Li | Multispectral pedestrian detection via simultaneous detection and segmentation[END_REF] explore the optimal network architecture for multispectral feature fusion. It turns out that the half-way feature fusion outperforms early or late fusion. Moreover, [START_REF] Zhang | Crossmodality interactive attention network for multispectral pedestrian detection[END_REF][START_REF] Zhang | Guided attentive feature fusion for multispectral pedestrian detection[END_REF] apply attention mechanisms to learn an automatic re-weighting of visible and thermal features in the fusion module; [START_REF] Guan | Fusion of multispectral data through illumination-aware deep neural networks for pedestrian detection[END_REF][START_REF] Li | Illumination-aware faster R-CNN for robust multispectral pedestrian detection[END_REF] utilize illumination information as a guidance for the adaptive fusion of both features; [START_REF] Zhang | Multispectral Fusion for Object Detection with Cyclic Fuse-and-Refine Blocks[END_REF][START_REF] Zhou | Improving multispectral pedestrian detection by addressing modality imbalance problems[END_REF] alleviate the inconsistency between visible and thermal features to facilitate the optimization of a dual-modality network.

Multispectral semantic segmentation

MFNet [START_REF] Ha | Mfnet: Towards real-time semantic segmentation for autonomous vehicles with multi-spectral scenes[END_REF] employs two identical backbone networks for visible and thermal feature extraction and a short-cut block to concatenate the extracted features. Based on that, RTFNet [START_REF] Sun | RTFNet: RGB-Thermal Fusion Network for Semantic Segmentation of Urban Scenes[END_REF] integrates residual layers into this network architecture to further boost the performance. FuseNet [START_REF] Hazirbas | Fusenet: incorporating depth into semantic segmentation via fusion-based cnn architecture[END_REF] adopts a similar double feature extraction network for RGB-D semantic segmentation. In this paper, we replace its RGB-D input images by multispectral images for comparison.

Active learning

Labelled data are critical for today's supervised deep learning applications. Active learning, which aims to relieve human labelling efforts, is thus particularly appealing. The active learning protocol usually starts by pre-training a model on a small subset of the labelled dataset D l . Then, several active learning cycles are repeated. Fig. 2(a) illustrates a typical active learning cycle. The model inference is performed on the unlabelled dataset D u to select the most informative samples (i.e., multispectral image pairs in our work). These selected samples are then sent to an external oracle for annotation and appended to the labelled dataset D l , where the model is consequently fine-tuned on. The most important component of an active learning cycle is the scoring function which ranks the informativeness of unlabelled samples.

Most studies on deep active learning in computer vision are based on mono-modal RGB images, including the most recent ones in deep active learning for object detection [START_REF] Kao | Localization-aware active learning for object detection[END_REF][START_REF] Hamed H Aghdam | Active learning for deep detection neural networks[END_REF] and semantic segmentation [START_REF] Casanova | Reinforced active learning for image segmentation[END_REF]. Conversely to these existing works that score the informativeness of a single image, we aim to score a pair of multispectral images according to their relationships. Our work can be seen as complementary to existing methods, and coupling intra-modality (as done with existing methods) and inter-modality (as proposed here) informativeness scoring could lead to further improvements than what is presented in this paper. 

APPROACH

Overview

An overview of our network architecture is given in Fig. 3. It takes a spatially-aligned multispectral image pair as input, then visible and thermal features are extracted independently via the modality-specific feature extraction networks. Afterwards, three prediction branches are used: one based on visible features, one based on thermal features, and the last one based on fused features. These three prediction branches are jointly optimized during the model training phase. Note that in Fig. 3 the prediction networks are used for a pedestrian detection task but can be adapted to other vision tasks such as general object detection or semantic segmentation.

Cross-modality prediction inconsistency

At the selection stage of each active learning cycle, we measure the relevance of labelling a particular image pair by ranking the aforementioned cross-modality prediction inconsistency, i.e., we compare predictions from visible and thermal cameras, then select for labelling the image pairs with the highest prediction difference. More specifically, for each pre-diction p, its inconsistency is defined as:

I = H (p) - 1 2 m∈{v,t} H (p m )
Where p v and p t denote the prediction from visible and thermal prediction branches; p is the average of both predictions; H is the 2-set entropy function calculated as:

H (p) = -p log p -(1 -p) log (1 -p)
For a better understanding of this inconsistency calculation, we plot in Fig. 2(b) the visualization of the inconsistency score with different visible (x-axis) and thermal (y-axis) prediction scores. It can be observed that this inconsistency score varies from 0 (very consistent) to 1 (very different).

Scale-balanced inconsistency aggregation

After obtaining the inconsistency for one prediction (i.e. classification of an anchor box in object detection or classification of a pixel in semantic segmentation), we adopt the scalebalanced strategy for full-images inconsistency aggregation. This is justified because recent deep learning approaches apply feature pyramid for multi-scale thus, if we directly average all predictions for a given image pair, the inconsistency estimation will be dominated by the scale with the most predictions (i.e., the largest feature map in a feature pyramid). Therefore, we first separately average the inconsistency for each pyramid scale, then average the averaged inconsistency across all scales.

EXPERIMENTS

Datasets

KAIST Dataset [START_REF] Hwang | Multispectral pedestrian detection: Benchmark dataset and baselines[END_REF].

This well-known multispectral dataset is built for the pedestrian detection task. In order to tackle the misalignment problem between visible-thermal image pairs, [START_REF] Zhang | Weakly aligned cross-modal learning for multispectral pedestrian detection[END_REF] proposes the "paired" annotations by separately relabelling pedestrians for each modality. We remove unpaired images according to the matching of visible and thermal annotations, thus keeping 11,695 images for training. For a fair comparison with other State-of-the-Art methods, we evaluate our model with the Miss Rate metric (lower is better) under the "reasonable" setting, i.e., a test set that does not contain heavily/partially occluded pedestrians or pedestrians smaller than 55 pixels. FLIR Dataset [START_REF]Free flir thermal dataset for algorithm training[END_REF].

This thermal dataset is released for general object detection from thermal images within the Advanced Driver Assistance Systems (ADAS) context. Three categories are involved: car, pedestrian and bicycle. [START_REF] Zhang | Multispectral Fusion for Object Detection with Cyclic Fuse-and-Refine Blocks[END_REF] proposes the multispectral version of FLIR dataset 1 by manually aligning corresponding colour-thermal image pairs, resulting 1 This aligned dataset can be downloaded here: http://shorturl.at/ahAY4 in 4,128 multispectral pairs for training. The usual mean Average Precision (mAP) metric is applied for evaluation. TOKYO Dataset [START_REF] Ha | Mfnet: Towards real-time semantic segmentation for autonomous vehicles with multi-spectral scenes[END_REF]. This dataset provides labelled multispectral image pairs for semantic segmentation within the ADAS context. It contains nine hand-labelled classes. It includes 2,338 multispectral pairs in total. Visible and thermal images are again well aligned. The mean Intersection over Union (mIoU) metric is adopted for evaluation.

Implementation details

Network architecture. We adopt VGG16 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] as the feature extraction network, GAFF [START_REF] Zhang | Guided attentive feature fusion for multispectral pedestrian detection[END_REF] as the multispectral feature fusion network and SSD [START_REF] Liu | SSD: single shot multibox detector[END_REF] as the prediction network for the object detection tasks. For the semantic segmentation task, the prediction branch is simply one layer of convolution whose number of output channels is equal to the number of classes. In order not to change the aspect ratio of the original images, input images are resized to 480×384 or 640×512 for KAIST and FLIR datasets (object detection) and 640 × 480 for TOKYO dataset (semantic segmentation). Random cropping, expanding, flipping are adopted for data augmentation. Active learning setting.

For each active learning experiment, we first randomly initialize a labelled dataset D l with b images and pretrain the model on D l ; then we actively select b images from an unlabelled dataset D u with the most crossmodality prediction inconsistency I for annotation and add these newly labelled images into D l ; afterwards we fine-tune the model with the new D l ; we repeat the previous two steps until the annotation budget B is exhausted. Since semantic segmentation annotations are more difficult to acquire, we set b to 200 and B to 1200 for the object detection tasks, b to 50 and B to 350 for the semantic segmentation task.

Results

Active vs Random.

Fig. 4 plots the performance evolutions along all learning cycles for KAIST Dataset (subfigure a and b), FLIR Dataset (c and d) and TOKYO Dataset (e and f). For all multispectral datasets, all tasks, all evaluation metrics and all input resolutions, our active strategy (green lines in the figure) achieves statistically significant better performance than the random strategy (red lines). Active vs SotA. We list in Tables 1, 2 and 3 the comparisons between our active learning results and other State-ofthe-Art methods for each multispectral dataset. With a small quantity of labelled data, our active models achieve comparable results with fully supervised SotA methods, which demonstrates the effectiveness of the proposed method.

Visualization

We show in Fig. 5 some image pairs selected by our active method. For each dataset, we plot the separate predictions from the visible or thermal cameras, and their cross-modality inconsistency map: our strategy does select some difficult cases where at least one modality makes mistakes. We believe that adding these informative examples into the labelled dataset for fine-tuning is the main reason for improvements.

CONCLUSION

In this paper, we start from the observation of the redundancy and the complementarity of a multispectral system. We build upon these to suggest relying on the cross-modality prediction inconsistency as the criterion to select informative image pairs for labelling within active learning cycles. Extensive experiments on three public multispectral datasets and two scene analysis tasks demonstrate effectiveness of the proposed method. To the best of our knowledge, our work is the first applying deep active learning for multispectral scene analysis. We hope that our method could help reduce manual labelling efforts when setting up multispectral or multi-sensor datasets.

Methods

Miss Rate (lower, better) All Day Night ACF [START_REF] Hwang | Multispectral pedestrian detection: Benchmark dataset and baselines[END_REF] 47.32% 42.57% 56.17% Halfway Fusion [START_REF] Liu | Multispectral deep neural networks for pedestrian detection[END_REF] 25.75% 24.88% 26.59% Fusion RPN+BF [START_REF] König | Fully convolutional region proposal networks for multispectral person detection[END_REF] 18.29% 19.57% 16.27% IAF R-CNN [START_REF] Li | Illumination-aware faster R-CNN for robust multispectral pedestrian detection[END_REF] 15.73% 14.55% 18.26% IATDNN+IASS [START_REF] Guan | Fusion of multispectral data through illumination-aware deep neural networks for pedestrian detection[END_REF] 14.95% 14.67% 15.72% CIAN [START_REF] Zhang | Crossmodality interactive attention network for multispectral pedestrian detection[END_REF] 14.12% 14.77% 11.13% MSDS-RCNN [START_REF] Li | Multispectral pedestrian detection via simultaneous detection and segmentation[END_REF] 11.34% 10.53% 12.94% AR-CNN [START_REF] Zhang | Weakly aligned cross-modal learning for multispectral pedestrian detection[END_REF] 9.34% 9.94% 8.38% MBNet [START_REF] Zhou | Improving multispectral pedestrian detection by addressing modality imbalance problems[END_REF] 8.13% [START_REF] Ha | Mfnet: Towards real-time semantic segmentation for autonomous vehicles with multi-spectral scenes[END_REF] 39.7% 36.1% 36.8% FuseNet [START_REF] Hazirbas | Fusenet: incorporating depth into semantic segmentation via fusion-based cnn architecture[END_REF] 45.6% 41.0% 43.9% RTFNet [START_REF] Sun | RTFNet: RGB-Thermal Fusion Network for Semantic Segmentation of Urban Scenes[END_REF] 53.2% 45.8% 54.8% Ours (full dataset) 53.6% 46.8% 53.3% Ours (17.99% of data) 51.0% 46.6% 48.9% 

Fig. 2 .

 2 Fig. 2. Active learning loop diagram (a) and cross-modality prediction inconsistency visualization (b).

Fig. 3 .

 3 Fig. 3. Overview of the proposed model for deep active multispectral scene analysis. The blue and green mono-modal branches are used for data informativeness ranking while the purple one provides the final detection results.
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 45 Fig. 4. Experimental results of models trained by the proposed active learning strategy (green lines) and random selection strategy (red lines) on KAIST Dataset (a, b), FLIR Dataset (c, d) and TOKYO Dataset (e, f). Black dotted lines indicate fully supervised results.

Table 1 .

 1 Miss Rate comparisons on KAIST Dataset.

			8.28%	7.86%
	Ours (full dataset)	8.86% 10.01%	6.77%
	Ours (10.26% of data)	9.32% 10.13%	7.70%
	Methods	mAP	AP50	AP75
	CFR [11]	-72.4%	-
	GAFF [8]	37.3% 72.7% 30.9%
	Ours (full dataset)	37.0% 72.1% 31.2%
	Ours (29.07% of data) 35.1% 71.0% 30.6%

Table 2 .

 2 mAP comparisons on FLIR Dataset.

	Methods	mIoU (higher, better) All Day Night
	MFNet	

Table 3 .

 3 mIoU comparisons on TOKYO Dataset.

	Miss Rate (%)	100 300 500 700 900 1100 1300 Number of images 10 12 14 16 18 20 19.29 16.92 14.64 13.14 11.90 11.79 19.29 14.05 12.85 11.40 11.01 10.48 10.21 Random selection Active learning 1.71 3.42 5.13 6.84 8.55 10.26 Proportion in dataset (%)	Miss Rate (%)	Number of images 100 300 500 700 900 1100 1300 8 10 12 14 16 18 14.62 12.61 11.41 10.48 9.88 12.76 8.86 11.07 10.46 9.99 9.32 18.63 Active learning Random selection 18.63 1.71 3.42 5.13 6.84 8.55 10.26 Proportion in dataset (%)
			(a) KAIST 480x384			(b) KAIST 640x512
			4.84 9.69 14.53 19.38 24.22 29.07 Proportion in dataset (%)			4.84 9.69 14.53 19.38 24.22 29.07 Proportion in dataset (%)
	mAP (%)	100 300 500 700 900 1100 1300 Number of images 29 31 33 35 29.9 32.1 33.1 34.1 34.4 34.4 29.9 31.1 32.5 33.2 33.8 34.1 35.1 Active learning Random selection	mAP (%)	Number of images 100 300 500 700 900 1100 1300 29 31 33 35 37 28.8 32.2 33.2 37.0 34.9 35.1 33.9 33.8 32.9 31.2 31.7 32.2 Active learning Random selection
			(c) FLIR 480x384			(d) FLIR 640x512
	recall (%)	40 43 46 49 52 55 58 61	25 75 125 175 225 275 325 375 Number of images 42.4 48.8 51.1 52.0 53.7 55.3 55.7 45.3 48.9 49.8 52.0 52.5 53.5 60.6 Active learning Random selection 2.57 5.14 7.71 10.28 12.85 15.42 17.99 Proportion in dataset (%) mIoU (%)	40 42 44 46 48 50 52 54	Number of images 25 75 125 175 225 275 325 375 40.6 44.5 46.4 47.6 42.4 Random selection Active learning 45.3 46.2 47.8 48.3 49.2 49.2 50.5 51.0 53.6 2.57 5.14 7.71 10.28 12.85 15.42 17.99 Proportion in dataset (%)
			(e) TOKYO recall		

(f) TOKYO mIoU