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Abstract

The k-anonymity concept introduced in (Samarati and
Sweeney 1998) proposes a good trade-off between the pri-
vacy and the utility of the data published for exploitation.
However, minimizing the loss of information throughout the
k-anonymization of a database is known to be NP-Hard (Mey-
erson and Williams 2004). Several previous works defined
metrics to measure and to optimize this process according to
different priorities or different ways of looking at things. In
this paper, we first present a unified modeling of the optimiza-
tion metrics for the k-anonymization of a database. Then, we
propose different new metrics for this optimization problem.
Finally, we evaluate three metrics of the literature and our
new metrics using a greedy algorithm along the anonymiza-
tion process for 21 values of k.

1 Introduction
The amount of daily collected data about individuals is con-
siderable. These data can arise from social networks, com-
mercial or public databases, various sensors or connected
devices activated by individuals (e.g activity trackers, med-
ical sensors). The use of these data is a major concern in
many scopes and it is now clear that big data analysis is rev-
olutionizing the way scientists, analysts, salespersons and
even physicians are working. Moreover, the general public
is, legitimately, more and more worried about the exploita-
tion of their private data. Some recent and massive data
breaches have increased the mistrust of general public to-
wards companies that hold their private data. Furthermore,
lawmakers over the world started to enforce data protection
rules. Therefore, using individuals data implies to provide
guarantees about the users privacy.

A first approach to protect users privacy is to anonymize
or pseudonymize the data (by removing or replacing iden-
tifiers). However, it has been shown that this is not a suffi-
cient guarantee: one can link attributes in the data to external
sources to re-identify the individual (confers linkage attack
in (Sweeney 2002a)). In (Sweeney 2002a), Sweeney devel-
oped the concept of k-anonymity to refine the simple con-
cept of “anonymity”. Instead of ensuring that identifier data
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are removed, k-anonymity ensures that each record is indis-
tinguishable from at least k−1 other records in the data with
respect to a set of attributes.

This principle is really efficient for privacy but it also al-
ters data in such a way that they could be unusable for further
analyses using data mining or machine learning algorithms.
Moreover, k-anonymity has been shown to have flaws and
other privacy principles emerged (Liu, Giannella, and Kar-
gupta 2008). Other approaches have been developed to im-
prove the guarantees of k-anonymization such as in (Holo-
han et al. 2017). There are many possible k-anonymous
versions of a database (possibly exponential in the num-
ber of lines). Among them, some are more data-preserving
than the others. Several studies proposed to optimize the
data utility by limiting the amount of knowledge lost dur-
ing the anonymization process. (Byun et al. 2007), (Xu et al.
2006) and (Li et al. 2006) proposed different quality metrics
and/or k-anonymization “cost” measures. These metrics can
be used during the anonymization operation to lead the data
alteration and permit to limit its impact on the global utility
of the data.

We will focus on this particular task: trying to keep as
much information as possible in the anonymized data set.
Therefore, we consider that a “good” anonymization min-
imizes the information loss and so maximizes the utility
of the data. In this paper, we propose a data generaliza-
tion modeling that eases evaluation, modification and de-
sign of information loss metrics depending on the usage of
the anonymized data. Then, we define four new metrics and
confront them with three information loss metrics of the lit-
erature in a systematic comparison. We present the experi-
mental results obtained by making k-anonymity using these
metrics. We show that our proposed metrics outperform the
metrics of the literature.

The next section briefly presents the k-anonymity concept
and the generalization processes that are used to achieve it.
Section 3 presents a new modeling of the information loss
metrics. Section 4 presents different metrics and a unified
way to formalize them as cost functions. It also presents
our new metrics. Section 5 presents the comparisons of the
different metrics used as local optimization function of a
greedy algorithm performed on a public real database.



2 k-anonymity and data generalization
PPDP (Privacy Preserving Data Publishing) (Fung et al.
2010) is a field of research aimed at giving individuals con-
fidence that their data will be protected when the database is
published. There are two main kinds of approaches in PPDP:
partition-based approaches (Sweeney 2002a) and the differ-
ential privacy (Dwork 2011). We focus here on the former,
particularly the k-anonymity concept.

Considering a flat database (named table in the follow-
ing) of n lines and m columns of attributes, we distinguish
three types of attributes: identifier attributes, quasi-identifier
attributes and sensible data. The identifier attributes are
uniquely linked to an individual (e.g. Social Security Num-
ber, driver licence number, ...). To achieve any anonymiza-
tion of the table, these data must be deleted. The quasi-
identifier attributes (Dalenius 1986) (also named QID) do
not reveal information on their own but, associated with each
other or linked to external sources of information, one may
be able to link individuals to records (the linkage attack).
They are sufficiently distinctive to identify someone. Finally,
the sensible values can not be used to identify individuals
and are generally the reason of being of the table (examples
for a medical table: disease, vital parameters...)

The k-anonymization process consists in generalizing the
values of the table, such that the combination of values in
the quasi-identifier attributes can be found at least k times in
the table. Considering the subset of attributes Q of the table
exclusively composed of the quasi-identifiers, the set of lines
where all values of Q are identical is an Equivalence Class.

By choosing k, we specify the anonymity level that we
can provide: the bigger is k, the harder it is to find an indi-
vidual in the table. The probability to link an individual with

a record is then
1

k
.

Each attribute has a domain of definition (for example
{Male, Female}, {cat, lion, tiger, dog, ...}, {1, 2, 3, ...}).
We define a generalization of an attribute’s value as the sub-
stitution of the original value with a subset of the domain of
definition that contains this value. Thus, we can build a hi-
erarchy of generalizations from the single possible values to
the complete domain, with intermediate generalization steps
with growing subsets of the domain. Figure 1 presents an
example of such a generalization hierarchy.

cat lion tiger

felidae

dog wolf

canine

dolphin whale

cetaceans

mammals

Figure 1: Example of generalization hierarchy

Using such hierarchies for all the quasi-identifiers, from
one table, we can compute many k-anonymized table ver-
sions. Among these possibilities, some are quite data-
preserving while others have lost almost all the utility of the

original table. Thus, we need to minimize the information
loss to preserve data utility.

Even considering hierarchies of height 1 as the unique
way to generalize data (from single value to complete do-
main), to find an optimal anonymization algorithm is a NP-
hard problem (Meyerson and Williams 2004). Many works
have been done these years to improve the k-anonymity
partition-based approaches. Sweeney and Samarati pro-
posed MinGen (Sweeney 2002b) an optimal algorithm that
produced a k-anonymous version of a table (not feasible
because of the amount of computation). In (LeFevre, De-
Witt, and Ramakrishnan 2005), LeFevre et al. presented a
practical framework for single dimensional global recoding
called Incognito. Even though it was faster than previous
algorithms (as (Xu et al. 2006)), it generates too much in-
formation loss on the data. With Mondrian (LeFevre, De-
Witt, and Ramakrishnan 2006), LeFevre and her team im-
proved the results of Incognito by doing multi-dimensional
global recoding. Nevertheless, it only deals with numer-
ical attributes. After that, we notice the emergence of
clustering-based anonymization algorithms inspired by what
is done in the clustering research field. We can cite MDAV
(Domingo-Ferrer and Torra 2005), k−member (Byun et al.
2007) or OKA (Lin and Wei 2008).

To evaluate the quality of their solutions, researchers also
studied data quality metrics or information loss metrics. In
2002, Iyengar proposed the General Information Loss met-
ric (Iyengar 2002). With the Discernability metric (Bayardo
and Agrawal 2005), Bayardo and Agrawal wanted to min-
imize the sizes of the equivalence classes. LeFevre used
CAVG in (LeFevre, DeWitt, and Ramakrishnan 2006) to
measure the distance between the anonymized table and a
solution with all equivalence classes of size k. There also
exists metrics from clustering optimization for numerical at-
tributes such as the Euclidian metric.

3 k-anonymity and our metrics modeling
To build a k-anonymous table, we need to merge the differ-
ent equivalence classes until they have all a size of at least
k lines. Merging two classes simply consists in generalizing
their respective attributes values until they are the same in
the two classes.

Let G be the generalization graph of an attribute of the ta-
ble. G is a directed tree (or hierarchy) of nodes from the sin-
gle possible values of the attribute (no generalization) to the
root representing the complete set of possible values (maxi-
mum generalization). The leaves of G are the possible values
of the attribute. The internal nodes are generalization of their
children nodes (i.e. a subset of the domain of definition). The
level of a node is the maximum distance in term of number
of edges, from a leaf to the node, assuming the level of a leaf
is 0.

Figure 2 shows an example of an attribute generalization
tree. The attribute have 6 possible values (a, b, c, d, e and f ).
a, b and c are generalized in A, d and e are generalized in B
and f is generalized in ∗ (all the possible values). Finally, A
and B are generalized in ∗.

In order to favor some generalizations or to avoid some
others, we can label the edges of the graph G with “costs”.



level = 0

level = 1

level = 2 ∗

A B

a b c d e f

Figure 2: The generalization hierarchy of a table attribute Q

For n a node in the hierarchy and m its father, we denote by
ω(n,m) the cost of the edge (n,m). These weights can be
arbitrarily chosen or deduced from the graph itself. Figure 3
presents an example of a weighted generalization hierarchy.

∗

A B

a b c d e f

ω(A, ∗) ω(B, ∗)

ω(f, ∗)

ω(a,A) ω(b, A) ω(c, A) ω(d,B) ω(e,B)

Figure 3: Generalization hierarchy of attribute Q

Using these hierarchies, one for each attribute Q, we can
compute cost matrices CostQ for generalizations in the hi-
erarchy GQ as follows.

We denote by wn→m the weight of the path from n to m.
wn→m =

∑
(i,j)

ω(i, j) with (i, j) every edges on the path

from n to m. wn→m is not defined if there is no path from
n to m in the directed graph GQ. We denote by LCA(n,m)
the Lowest Common Ancestor (Aho, Hopcroft, and Ullman
1976) of n and m in GQ.

Then, we define CostQ(n,m) = wn→LCA(n,m), the el-
ementary cost of generalizing n to a set that also contains
m. Indeed, to generalize two attribute values such that they
are in the same subset consists in finding the smallest subset
that contains the both values. In GQ, this subset is located
on the Lowest Common Ancestor node. So, when m is the
immediate neighbor of n,CostQ(n,m) = ω(n,m); when n
belongs to a higher levelm in GQ,CostQ(n,m) = wn→n =
0. Figure 4 presents the different cases in our example.

Figure 4 presents different generalizations costs:
for the merge of a and ∗ (in red), LCA(a, ∗) = ∗,
CostQ(a, ∗) = wa→∗ = ω(a,A) + ω(A, ∗) and
CostQ(∗, a) = ω(∗, ∗) = 0; for the merge of a and c (in
green), LCA(a, c) = A, CostQ(a, c) = wa→A = ω(a,A)
and CostQ(c, a) = wc→A = ω(c, A); for the merge of e
and B (in blue), LCA(B, e) = B, CostQ(e,B) = ω(e,B)

∗
LCA(a, ∗)

A

LCA(a, c)

BLCA(B, e)

a b c d e f

w a→
∗

w
∗→
∗

w
c→

Aw a→
A

w
B→

B

w
e→

B

Figure 4: Costs computation examples for the attribute Q

and CostQ(B, e) = ω(B,B) = 0.

The cost matrix of our previous example CostQ is then:
∗ A B a b c d e f

∗
A

B

a

b

c

d

e

f



0 0 0 0 0 0 0 0 0

wA→∗ 0 wA→∗ 0 0 0 wA→∗ wA→∗ wA→∗
wB→∗ wB→∗ 0 wB→∗ wB→∗ wB→∗ 0 0 wB→∗
wa→∗ wa→A wa→∗ 0 wA→∗ wA→∗ wa→∗ wa→∗ wa→∗
wb→∗ wb→A wb→∗ wb→A 0 wb→A wb→∗ wb→∗ wb→∗
wc→∗ wc→A wc→∗ wc→A wc→A 0 wc→∗ wc→∗ wc→∗
wd→∗ wd→∗ wd→B wd→∗ wd→∗ wd→∗ 0 wd→B wd→∗
we→∗ we→∗ we→B we→∗ we→∗ we→∗ we→B 0 we→∗
wf→∗ wf→∗ wf→∗ wf→∗ wf→∗ wf→∗ wf→∗ wf→∗ 0



Using the cost matrices of the different attributes of
the table, we can define a metric MC for the merge of
two equivalence classes by simply summing the different
generalization costs of the attributes of the two classes.

Let Q = {Q1, ..., Qm} be the set of quasi-identifiers
attributes. LetC1 andC2 two equivalence classes containing
respectively |C1| and |C2| lines ([xQ1

, xQ2
, ...xQm

] and
[yQ1

, yQ2
, ...yQm

]).

MC(C1, C2) =
m∑
i=1

(CostQi(xQi , yQi)×|C1|+CostQi(yQi , xQi)×|C2|)

Indeed, to merge C1 and C2, we have to generalize the
|C1| lines of the C1 equivalence class and the |C2| lines of
the C2 equivalence class such that the two classes have their
quasi-idenitifiers identical.

4 Information loss metrics
In this section, we will introduce the metrics chosen for
our study. First of all, we will present three metrics of the
literature in the light of our new modeling: Distortion (Li
et al. 2006), NCP (Xu et al. 2006) and Total (Byun et al.
2007). Then, we will expose four new metrics: Lost Leaves
Metric (LLM ), Normalized Lost Leaves Metric (NLLM ),
Wid Lost Leaves Metric (WLLM ) and Wid Normalized Lost
Leaves Metric (WNLLM ). For a sake a clarity, we give
some notations, valid for all the rest of the section.

Let T be a table. Let Q = {Q1, ..., Qm} be the set of
quasi-identifier attributes of T . For all i ∈ {1, ...,m}, we
denote by Gi the generalization hierarchy of Qi. Let hi be



the number of nodes on the longest path in Gi (the high-
est level of the hierarchy plus 1). We denote hmax, the
maximum size of the hierarchies of the different attributes
hmax = max

i=1,...,m
(hi) (e.g. hmax = 3 in the example of Fig-

ure 2).
Let wid (the QID weights from (Pramanik, Lau, and

Zhang 2016)) be a map from Q to R defined by wid(Qi) =

1 − (hi−1)m∑m
j=1(hj−1)m for all i ∈ {1, ...,m}. If |Q| = 1, we set

wid(Q1) = 1.
Let Qi belong to Q. Let vi be a value of Gi and lvi be the

level of vi in Gi. We define nl(vi) as the number of leaves in
the subgraph whose root is vi. nl(Gi) stands for the number
of leaves in Gi (i.e. nl(root of Gi)).

LetC = [v1, ..., vm] be an equivalence class of T . We will
explicit the cost ofC for each metric in the set {Distortion,
NCP , Total, LLM , NLLM , WLLM , WNLLM}.

To make the link with our modeling, we take n1 and n2
two nodes of the generalization hierarchy Gi of the attribute
Qi such that there exists a directed edge from n1 to n2 (i.e.
ln1

< ln2
).

Three metrics of the literature
The metric Distortion (Li et al. 2006) takes into account
the level of the generalized value in the generalization hier-
archy and does not deal with the number of possible values
of the attribute (i.e. with the width of the hierarchy). For each
attribute, it assigns weights to the transitions in the general-
ization hierarchy and makes sum of them from the original
value to the generalized value. We use the wids as in (Pra-
manik, Lau, and Zhang 2016) to obtain an improved ver-
sion of the metric Distortion. These factors aims to give a
penalty to attributes with generalization hierarchies of small
heights. The distortion of C is:

Distortion(C) = |C|
m∑
i=1

lvi>0

lvi∑
j=1

cj,j−1

hi−1∑
j=1

cj,j−1

× wid(Qi).

The coefficient cj,j−1 adds a weight on the transition
from level j to level j − 1 in the generalization hierarchy.
In order to take into account the different heights of
the hierarchies, we can choose cj,j−1 = 1

hi−j for each
j ∈ {1, ..., hi − 1} and each i ∈ {1, ...,m}.

The weights of the generalization hierarchy from which
we compute the cost matrix are, for (n1, n2) in the edges of
Gi:

. ω(n1, n2) =

ln2∑
j=ln1

+1

cj,j−1

hi−1∑
j=1

cj,j−1

× wid(Qi).

Exposed in (Xu et al. 2006), Normalized Certainty
Penalty (NCP ) is an extension of (Iyengar 2002). For a
value vi of an attribute Qi, NCP calculates the number of
leaves which are generalized in vi. Then, it makes a nor-
malization by dividing by the total number of leaves in the

generalization hierarchy. However, it does not use factors
on the attributes to equalize the heights of the generalization
hierarchies. The weights of the generalization hierarchy of
Qi from which we compute the cost matrix are, for (n1, n2)
in the edges of Gi:
. ω(n1, n2) =

nl(n2)−nl(n1)
nl(Gi) .

As for Distortion, the metric Total (Byun et al. 2007)
takes into account the level of the generalized value in the hi-
erarchy : it divides the height of the generalized value in the
hierarchy by the height of the hierarchy minus 1. Thereby,
the higher the value in the hierarchy, the more expensive it
will be.

The weights of the generalization hierarchy from which
we compute the cost matrix are, for (n1, n2) in the edges of
Gi:
. ω(n1, n2) =

ln2−ln1

(hi−1) .

Our contribution
We now propose our metric, LLM , and three variants of it.
The idea is to have an overview of the impacts of normal-
ization on the costs and of the use of the attributes’ factors.
The cost of C for the metric LLM is given by following
equation:

LLM(C) = |C|
m∑
i=1

nl(vi)×
hmax

hi
.

The factor hmax

hi
aims to give a penalty to attributes with

generalization trees of small heights. With this metric, we
would like to put more weights on the values that induce
the most lost leaves and on the attributes with the lowest
heights. Here, we do not make a first normalization on the
specific cost of a value as for the previous metrics.

The weights of the generalization hierarchy from which
we compute the costs matrix are, for (n1, n2) in the edges
of Gi:
. ω(n1, n2) = (nl(n2)− nl(n1))× hmax

hi
.

We now introduce combinations of the previous metrics.
We mix LLM , NCP and the factors put on the attributes to
obtain three new metrics.

For the first one, we combine NCP and the factor in
LLM to get the Normalized LLM.

NLLM(C) = |C|
m∑
i=1

nl(vi)

nl(Gi)
× hmax

hi
.

With NLLM , we would like to know if the factors hmax

hi

are effective in preserving information in the table.

The weights of the generalization hierarchy from which
we compute the cost matrix are, for (n1, n2) in the edges of
Gi:
. ω(n1, n2) =

nl(n2)−nl(n1)
nl(Gi) × hmax

hi
.



For the Wid LLM, we change the factors in LLM by the
wids used with Distortion in order to find out which one is
the most interesting in terms of information retention.

WLLM(C) = |C|
m∑
i=1

nl(vi)× wid(Qi).

The weights of the generalization hierarchy from which
we compute the cost matrix are, for (n1, n2) in the edges of
Gi:
. ω(n1, n2) = (nl(n2)− nl(n1))× wid(Qi).

Finally, in the Wid Normalized LLM, we use NCP with
the wid.

WNLLM(C) = |C|
m∑
i=1

nl(vi)

nl(Gi)
× wid(Qi).

The weights of the generalization hierarchy from which
we compute the cost matrix are, for (n1, n2) in the edges of
Gi:
. ω(n1, n2) =

nl(n2)−nl(n1)
nl(Gi) × wid(Qi).

LLM , NLLM , WLLM and WNLLM give a range of
combinations that we could compare with the metrics of the
literature. Thanks to our modeling, we could express the dif-
ferent formulas in the same homogeneous way.

5 Experiments and metrics comparisons
For our experiments, we choose to work on the Adult
Data Set, from the UC Irvine Machine Learning Repos-
itory (UCIrvine 1987). This data set is available online
and it is commonly used to test anonymization algorithms
(LeFevre, DeWitt, and Ramakrishnan 2005; Li et al. 2006;
Byun et al. 2007). We retain nine quasi-identifier attributes:
Age, Gender, Race, Marital status, Education, Native coun-
try, Work class, Occupation and Salary. The description of
the attributes is presented in Figure 5. We suppress the tu-
ples with unknown values. We obtain 30162 lines, grouped
by 19502 pre-existing equivalence classes.

Attribute Number of values Generalization
(graph’s height)

Age 74 5-, 10-, 20-year intervals (5)

Gender 2 Suppression (2)

Race 5 Suppression (2)

Marital status 7 Hierarchy (3)

Education 16 Hierarchy (4)

Native country 41 Hierarchy (3)

Work class 7 Hierarchy (3)

Occupation 14 Hierarchy (3)

Salary 2 Suppression (2)

Figure 5: Description of the attributes of the Adult Data Set

We apply on the data set an anonymization algorithm that
produces a k-anonymous table and in which a metric is to

be optimized to reduce the information loss. It is similar to
what is done in (Li et al. 2006). Let C(T ) be the set of the
equivalence classes of a table T to be k-anonymized. We
denote by Cmk(T ) ⊂ C(T ) the set of equivalence classes
such that their sizes are strictly less than k. LetMC : C(T )×
C(T )→ R be a metric.

In (Meyerson and Williams 2004), the authors proposed
a polynomial approximation algorithm for the optimal k-
anonymization problem. But this algorithm is polynomial in
the number of lines and exponential in k. Considering large
data sets and k as a fraction of the number of lines (implies
that k is large), the algorithm is impracticable for our ex-
periments. To perform our experiments, we used Algorithm
1 as a simple greedy algorithm to minimize the cost of the
k-anonymization.

Algorithm 1 Anonymization algorithm
1: procedure K-ANONYMIZATION(T )
2: while Cmk(T ) is not empty do
3: Choose arbitrarily a class Csmall in Cmk(T )
4: Find a class C in Cmk(T )\Csmall such that
MC(Csmall, C) is minimal

5: Merge Csmall and C
6: Update Cmk(T )
7: end while
8: end procedure

At each step, we make the best movement relative to the
metric c. We decide to search the best merge of equivalence
classes in Cmk(T ) instead of C(T ) in order to reduce the
computation time. Indeed, for some values of k, we have
less equivalence classes to treat. The choice of Csmall is de-
termined by the way the set C(T ) is computed: we simply
use the first element of C(T ).

From now on, we make a distinction between optimiza-
tion and metric. The optimizations, in O ={Distortion,
NCP, Total, LLM, NLLM, WLLM, WNLLM}, are used dur-
ing the anonymization process as the function to optimize in
the algorithm. The metrics, in M ={distortion, ncp, total,
llm, nllm, wllm, wnllm}, are used to evaluate the quality of
an anonymized table. We make experiments for 21 values of
k between 2 and 15000. We call requested k these values
of k because they are the minimal equivalence classes’ sizes
we want to reach when we run the algorithm on the data set
(the effective k value can be different). For each requested
k, we begin from the original data set (i.e. we do not restart
from the anonymized table obtained for a smaller k value).

When we run the algorithm with an optimization o ∈ O,
we obtain a k-anonymized table. We denote by To,k this ta-
ble. The tables in Figures 6, 7 and 8 summarize the cost of
each To,k with o ∈ O for each metric m ∈ M. That means,
for a row m (representing a metric) and a column o (repre-
senting an optimization), the value in (m, o) is the percent-
age of alteration of To,k for the metric m. The percentage of
alteration is m(To,k)

m(T∗) ×100 where T ∗ is the table in which all
the rows are generalized with the highest levels. For exam-
ple, in Figure 7, the value in (distortion,NLLM) means
that the percentage of alteration for the metric distortion of
the 100-anonymous table generated by the algorithm fitted



thanks to NLLM is 24%. Then, we make a ranking respect
to each metric: the optimization that produces the smallest
percentage of alteration with respect to a metric m is at rank
1 for m. The rank is given in brackets on the tables of Fig-
ures 6, 7 and 8.

For a requested k equal to 2, LLM is a little worse than
the other metric but the others are on the same range. From a
certain value of the requested k, some optimizations do not
produce the best result considering the same metric to evalu-
ate the final database: for example, for a requested k equal to
100 and for the metric ncp, NCP is at rank 4 and NLLM
is at rank 1. The table in Figure 7 shows that, for a requested
k equal to 100, LLM and WLLM produce a high aver-
age percentages of alteration whileDistortion andNLLM
have the best scores. For a requested k equal to 1500 (table
in Figure 8), the optimization NLLM is at rank 1 for 5 out
of 7 metrics. These results can be viewed in the plot of the
Figure 10.

Figure 6: Percentage of alteration for a requested k = 2

Figure 7: Percentage of alteration for a requested k = 100

Figure 8: Percentage of alteration for a requested k = 1500

The plot in Figure 9 represents the minimum k plotted
against the requested k. The minimum k is the size of the
smallest equivalence class of the anonymized table obtained
for a requested k. We see that, until a requested k equal to

1000, all the To,1000 for o ∈ O have a minimum k equal
or very close to the requested k (i.e. for a requested k equal
to 2, the smallest equivalence class of the To,2 is of size 2).
For a requested k between 1500 and 4000, the minimum k
remains relatively close to the requested k and all the opti-
mizations have the same behavior. From a requested k equal
to 5000, the minimum k strongly increases compared to the
requested k. For instance, for a requested k equal to 7500,
the minimum k of TLLM,7500 is 12307. For a requested k
equal to 104, TDistortion,104 and TTotal,104 only have one
equivalence class so the minimum k is 30162. Finally, for
a requested k equal to 15000, all the optimizations produce
tables with a minimum k equal to 30162.

Figure 9: Minimum k plotted against the requested k

For the average percentages of alteration and the percent-
ages of modified values (Figures 10 and 11), the behav-
ior of the optimizations is quite similar. We call modified
value a value in the k-anonymous table that is different from
the value in the original table, whatever the level of gen-
eralization applied to it. For a requested k between 2 and
750, Distortion and NLLM have the lowest percentages.
LLM andWLLM alter much the data set and modify more
values than the others. They are joined byNCP for the aver-
age percentage of alteration from a requested k equal to 500.
For a requested k between 1000 and 7500, the optimization
NLLM is the one with the least average percentage of al-
teration (we find these results in Figure 8) and percentage of
modified values. Finally, for a requested k more than 104,
the behavior is more chaotic because the number of equiva-
lence classes is small and it needs a lot of huge generaliza-
tions.

Figures 12 and 13 present the amount of deleted values as
a function of k. A deleted value is a value generalized at the
highest level of the generalization hierarchy of its attribute.
Figure 12 shows the percentage of deleted values consid-
ering the total number of values in the table (271458). We
can see that using LLM or WLLM produced more deleted
values than the other optimizations while using NLLM or
WNLLM better preserved the table data than the others.

Figure 13 shows the part of deleted values among the
modified ones. For a requested k between 2 and 50, NCP ,
NLLM and Total stand out from the rest of the optimiza-



Figure 10: Average percentage of alteration according to k

Figure 11: Percentage of modified values according to k

Figure 12: Percentage of deleted values on the total number
of values according to k

tions (these optimizations cause less deletion among the
generalizations). For a requested k between 100 and 750,
Distortion is “better” for this aspect and the other opti-
mizations are in the same range, LLM and WLLM start
to decrease the part of deleted value. Finally, for a requested
k more than 1000, LLM and WLLM are less deleting data
and the others reach fastly 100%, i.e. all the modified values
are deleted values.

Figure 13: Percentage of deleted values on the number of
modified values according to k

6 Conclusion and future works
In this paper, we propose a formalization of information loss
metrics for k-anonymization with matrices of costs. We then
compare seven metrics, from the literature and from our re-
searches, applying an algorithm on a data set and varying
the optimization. We focus on the difference of average per-
centages of alteration, percentages of modified values and
percentages of deleted values. At the end, we can say that
the optimization NLLM is the best trade-off to make k-
anonymization with a good quality. For a small requested k
compared to the size of the data set, the metrics are equiv-
alent. However, when the requested k increases, NLLM
manages to the information loss, until a point where all the
optimizations have a chaotic behavior (when the requested
k is too big compared to the size of the data set).

As a perspective, we will consider more suitable strate-
gies in the anonymization algorithm (i.e. change the selec-
tion processes for Csmall and C) because we know that the
k-anonymous tables are not the optimal. We could also make
the study on various data sets to clear features more or less
favorable for the optimizations.
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