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Abstract

We propose a generic multistage stochastic model for the Alternating Current Optimal

Power Flow (AC OPF) problem for radial distribution networks, to account for

the random electricity production of renewable energy sources and dynamic constraints

of storage systems. We consider single-phase radial networks. Radial three-

phase balanced networks (medium-voltage distribution networks typically

have this structure) reduce to the former case. This induces a large scale op-

timization problem, which, given the non-convex nature of the AC OPF, is generally

challenging to solve to global optimality. We derive a priori conditions guaranteeing

a vanishing relaxation gap for the multi-stage AC OPF problem, which can thus be

solved using convex optimization algorithms. We also give an a posteriori upper bound

on the relaxation gap. In particular, we show that a null or low relaxation gap may be

expected for applications with light reverse power flows or if sufficient storage capacities

with low cost are available. We illustrate our results on a problem of planning of a

realistic distribution feeder on one day, taking into account the uncertainty

associated with distributed solar production, and diffuse storage systems.
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We show theoretically a vanishing relaxation gap for this problem, when the

installed solar capacity does not exceed local consumption, independently

of the scenarios of solar production that are considered. Then, we illustrate

numerically the quality of the a posteriori bound on the relaxation gap for

higher installed capacities of distributed generation. Scenario trees for solar

production are constructed from a stochastic model, by a quantile-based

algorithm.

Keywords: Optimal Power Flow, multistage stochastic optimization, convex

relaxation, second-order cone programming, scenario trees

1. Introduction

1.1. Motivation

Distribution networks are currently facing a major change owing to the increasing

share of decentralized Renewable Energy Sources (RES). They can create local physi-

cal violations and induce uncertainty on the network operating point: their production5

levels are random, as a result of the weather. To cope with these issues, many Distri-

bution Network Operators (DNOs) are required to become able to respond locally to

unforeseen events. This can be done by the means of energy flexibilities located at the

nodes of the network, like storage systems. The dynamical and sometimes uncertain

nature of these subsystems as well as the uncertainty brought by RES should be taken10

into account in the operation planning tools used by DNOs. One of these relevant tools

is the so-called Optimal Power Flow (OPF) problem. It is a mathematical optimization

problem which aims at finding an operating point of a power network that minimizes

a given objective function, such as generation costs, active power losses, subject to

constraints on power injections and losses, voltage magnitudes and intensities in the15

lines. We are interested in the Alternating Current Optimal Power Flow (AC OPF)
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problem which is an accurate physical model of the operating point of a network. It

is non-convex and traditionally used in a static deterministic framework. However, as

argued before, a stochastic and dynamic framework with storage systems and RES is

of practical interest and this is the focus of the present paper.20

1.2. Optimal Power Flow Problem

There exist two main declinations of the AC OPF problem: the Bus Injection Model

(BIM), and the Branch Flow Model (BFM), both presented in [1]. Both formulations

are equivalent for radial connected networks [2]. In this paper, we choose the BFM

formulation since it makes our arguments easier to present. The AC OPF problem is a25

non-convex optimization problem, recently shown to be strongly NP-hard [3]. However,

a series of recent works initiated by the seminal paper [4] have shown that many real-

world instances can be solved to global optimality using convex relaxations of the

original problem.

A very extensive overview on relaxations and approximations of AC Power flow30

equations can be found in the book [5], while a particular focus on conic relaxations is

given in [6]. We focus here on results on the conic relaxations of AC OPF problems for

single phase radial networks. These models allow to treat the case of balanced three-

phase radial networks, like medium voltage distribution networks (20 kV) in

France, which reduces to the former case. The most famous conic relaxations of the35

AC OPF Problem are the Second-Order Cone (SOC) relaxation and the Semi-Definite

(SD) relaxation. Both are presented in details in [1]. For radial networks, the SOC

and SD relaxations are equivalent, but the SOC relaxation exhibits better numerical

performance, and is preferable for such topologies. Conic relaxations are often used in

the literature owing to their enhanced numerical performance and for the certificate40

of optimality they may provide, compared with the non-convex formulation. They are

exact for many practical instances of OPF problem [4]. For this reason, many authors
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have studied exactness conditions for these convex relaxations. A posteriori conditions

on the solution of the dual problem are given in [4]. The relaxation is exact for radial

connected network under assumptions like over-generation [7], load over-satisfaction [8],45

or no upper bounds on voltage magnitude [9]. As these conditions are not verified by

practical instances, other authors [10, 11] have obtained more realistic a priori exactness

conditions.

1.3. Contributions

In this paper, we develop a generic model for the multi-stage stochastic version50

of the AC Optimal Power Flow problem with storage systems and intermittent RES.

Multistage stochastic models allow to ensure the non-anticipativity of decision variables

and are a pre-requisite in order to prevent decisions to depend on the realization of yet

unknown data. These models require the formulation of a scenario tree, the size of

which, has to grow exponentially with the number of time stages [12]. The multistage55

stochastic AC OPF problem is therefore a non-convex and large-scale problem. To

alleviate the non-convexity issue, we consider the SOC relaxation of the problem. Our

main contribution is to show that approaches guaranteeing the absence of relaxation

gap for the AC OPF problem, originally developed in a static deterministic setting,

can be extended to the multi-stage stochastic setting. Inspired by the approach of60

[11] in the deterministic case, we propose to restrict the feasible set of the problem by

adding a finite number of linear constraints, which impose feasibility of a linearized

power flow and compensations for active or reactive reverse power flows in the network.

We show that the restricted problem has the same optimal value as the original one

under realistic assumptions which can easily be checked a priori, see Proposition 1.65

The restricted problem has no relaxation gap, and hence its optimal value is easily

computable, see Theorem 1. This allows us to easily compute a feasible solution of the

original problem and an a posteriori upper bound on its relaxation gap, see Theorem 2.
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Besides, the result provides realistic and tractable a priori conditions guaranteeing that

the relaxation gap of the original problem is zero, see Theorem 3. The interest of the70

result is numerically illustrated on a realistic distribution network with 56 buses found

in [13], equipped with distributed storage and solar panels. We generate the scenario

trees for solar production by a quantile-based algorithm, based on a stochastic model

of solar irradiance.

1.4. Related work75

By comparison with other works guaranteeing zero relaxation gap for the AC OPF

problem [4, 7, 8, 9, 10, 11], we consider a multistage stochastic setting. The conditions

given in our paper extend to the multistage stochastic case and to more general cost

functionals the realistic zero relaxation gap conditions given in [11]. Moreover, we use

this approach to provide a posteriori bounds on the relaxation gap.80

Several works consider a deterministic dynamic AC OPF model, like [14], which

considers the SOC relaxation.

Some recent research proposes probabilistic (indifferently called chance-constrained)

versions of the OPF problem. A probabilistic AC OPF model linearized around a refer-

ence scenario is studied in [15]. Other works consider the robust counterpart of the SD85

relaxation restricted to affine-linear decision-rules [16]. A Semi-Definite convex relax-

ation of the chance-constrained AC OPF problem is proposed in [17] using a scenario

based-approach and assuming piece-wise linear decision rules, or assuming Gaussian

uncertainty. A Second-Order Cone approximation of the chance-constrained AC OPF

is proposed in [18] which allows good numerical performances, combined with a feasi-90

bility recovery method. None of these references account for storage systems, nor do

they consider dynamical aspects of the problem.

Several other works deal with dynamic stochastic models. In particular, an impor-

tant requirement for such problems is to ensure that decision variables remain non-
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anticipative, i.e., do not depend on yet unobserved random data. References [19] con-95

siders the simplified case where decision are non-anticipative for the initial time steps

only. Non-anticipativity is guaranteed in [20] using affine-linear policies but with a

(linear) DC OPF model. Non-anticipativity of the decisions is also guaranteed in [21]

which considers an iterative procedure to optimize a decision policy. By comparison,

the approach by scenario trees developed here accounts both for non-anticipativity con-100

straints and for the nonlinearity of the stochastic OPF problem, whereas it benefits from

theoretical convergence guarantees. Indeed, scenario tree methods provide an approxi-

mation of the value of the original problem with continuous distribution of the random

data, and this approximation converges to this value when the number of scenarios goes

to infinity [12].105

1.5. Outline of the paper

This paper is organized as follows. Section 2 presents the multi-stage stochastic

AC OPF problem. Section 3 introduces a restriction of this problem and gives condi-

tions ensuring equality of the values of the original and restricted problems. Section 4

presents the main result of this paper: the restricted problem has no relaxation gap.110

This provides a convenient way to establish a priori exactness of the SOC relaxation for

particular instances of the original problem, or an easily computable bound on the re-

laxation gap. We illustrate numerically these results on a realistic distribution networks

with 56 buses in Section 5.

1.6. Notation115

The set of real numbers is denoted by R and the set of complex numbers by C. The

notation i stands for the purely imaginary number such that i2 = −1. For z ∈ C, <(z)

stands for its real part, =(z) for its imaginary part, z∗ for its complex conjugate and

|z| for its modulus. The set of time steps is denoted by T , the set of buses by B, the
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set of edges by E (directed towards the root of the tree for acyclic networks), the set120

of scenarios by Ω. The impedance of an edge
−−→
(i, j) ∈ E is denoted by zi,j ∈ C, with

resistance ri,j := <(zi,j), and reactance xi,j := =(zi,j). We denote vectors indexed by a

set I according to a := (ai)i∈I .

2. The multistage stochastic AC OPF model

2.1. Formulation of the problem125

Throughout the work, we will make the assumption that the network is radial, con-

nected and passive, i.e., <(zi,j) ≥ 0 and =(zi,j) ≥ 0 for all lines
−−→
(i, j) ∈ E of the network.

We formulate a multi-stage stochastic AC OPF problem with a battery storage system

at each bus of the network (except for the reference bus 0) using the Branch Flow Model,

presented in [1, 13], which we extend to the multi-stage stochastic case. We

next describe the multistage stochastic AC OPF problem in Branch Flow Model for-

mulation. We impose the following constraints. First, we consider the constraints on

voltage squared magnitudes v:

v0,t,ω = 1, t ∈ T , ω ∈ Ω, (1)

vi ≤ vi,t,ω ≤ vi, i ∈ B \ {0}, t ∈ T , ω ∈ Ω. (2)

We also incorporate bounds on intensity squared magnitude I:

0 ≤ I−−→
(i,j),t,ω

≤ I−−→
(i,j)

,
−−→
(i, j) ∈ E , t ∈ T , ω ∈ Ω. (3)

We consider bounds on sending-end power flow S magnitudes in the lines of the network,

which is a convex quadratic constraint:

∣∣∣S−−→
(i,j),t,ω

∣∣∣ ≤ S−−→
(i,j)

,
−−→
(i, j) ∈ E , t ∈ T , ω ∈ Ω. (4)
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We consider bound constraints on active power injected pinj, absorbed pabs by batteries

and flexible reactive power injected q:

0 ≤ pinj
i,t,ω ≤ pinj

i , i ∈ B \ {0}, t ∈ T , ω ∈ Ω, (5)

0 ≤ pabs
i,t,ω ≤ pabs

i , i ∈ B \ {0}, t ∈ T , ω ∈ Ω, (6)

q
i
≤ qi,t,ω ≤ qi, i ∈ B \ {0}, t ∈ T , ω ∈ Ω. (7)

We introduce the constraints on the states of charge of the batteries X, which represent

respectively their dynamics (accounting for different efficiencies when charging and

discharging the batteries), their initial values and their physical bounds for all i ∈

B \ {0}, ω ∈ Ω, denoting ∆t the time duration of step t ∈ T :

Xi,t+1,ω = Xi,t,ω + ρabs
i pabs

i,t,ω∆t − ρinj
i p

inj
i,t,ω∆t, t ∈ T \ {T}, (8)

Xi,0,ω = xi, (9)

X i ≤ Xi,t,ω ≤ X i, t ∈ T . (10)

Then we consider the expression of the complex power injections s at all buses of the

network i ∈ B \ {0}, for all time steps t ∈ T and scenario ω ∈ Ω:

si,t,ω = pinj
i,t,ω − pabs

i,t,ω + iqi,t,ω − sdi,t,ω. (11)
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This allows to formulate the power balance equations at the non-slack buses and the

slack bus 0, for all
−−→
(i, j) ∈ E , t ∈ T , ω ∈ Ω:

S−−→
(i,j),t,ω

=
∑
−−→
(k,i)∈E

(S−−→
(k,i),t,ω

− zk,iI−−→(k,i),t,ω
) + si,t,ω, (12)

0 =
∑
−−→
(k,0)∈E

(S−−→
(k,0),t,ω

− zk,0I−−→(k,0),t,ω
) + s0,t,ω. (13)

We consider also the voltage propagation constraint and the constraint making the link

between voltage squared magnitudes v, intensity squared magnitudes I and sending-end

power flows S in the network, for all
−−→
(i, j) ∈ E , t ∈ T , ω ∈ Ω:

vi,t,ω − vj,t,ω = 2<(z∗i,jS−−→(i,j),t,ω
)− |zi,j|2I−−→(i,j),t,ω

, (14)

vi,t,ωI−−→(i,j),t,ω
= |S−−→

(i,j),t,ω
|2. (15)

Constraint (15) is a non-convex quadratic equality constraint. Last, we consider the

non-anticipativity constraint, which encodes the fact that decision variables y should

not depend on yet unknown realization of random data of the problem:

y is non anticipative. (16)

More details shall be given later on the formulation of the non-anticipativity constraints.

We consider a general (possibly random, progressively-measurable) convex cost function

C depending on all decision variables of the problem. We can now formulate the multi-
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stage stochastic AC-OPF problem:

min
y=(s0,s,pinj,pabs,q,X,S,I,v)

E
[
C(s0, p

inj, pabs, q, S, I, X)
]

s.t. (1)− (16).

We denote this optimization problem by (P ). It is a non-convex problem owing to

Constraint (15). Decision variables are listed and described in Table 1.

Decision variable Description
s0 = (s0,t,ω)t∈T ,ω∈Ω Apparent power injections at bus 0
s = (si,t,ω)i∈B,t∈T ,ω Apparent power injections

pinj = (pinj
i,t,ω)i∈B,t∈T ,ω Injected active power by storage systems

pabs = (pabs
i,t,ω)i∈B,t∈T ,ω Absorbed active power by storage systems

q = (qi,t,ω)i∈B,t∈T ,ω Injected reactive power by flexible systems
S = (S−−→

(i,j),t,ω
)−−→
(i,j)∈E,t∈T ,ω∈Ω

Apparent power in lines

I = (I−−→
(i,j),t,ω

)−−→
(i,j)∈E,t∈T ,ω∈Ω

Squared magnitudes of intensities

v = (vi,t,ω)i∈B,t∈T ,ω Squared magnitudes of voltages

Table 1: Decision variables

2.2. On the formulation of the non-anticipativity constraints

We define a scenario tree, which allows to formulate a problem with a finite number

of scenarios while accounting for the filtration structure. Each scenario ω ∈ Ω is130

associated with a trajectory ξω = (ξt,ω)t∈T of the exogenous random process impacting

the system and can be visualized as a path from the root to the leaves of the scenario

tree. Scenarios ω and ω′ are said to be indistinguishable up to time t if ξτ,ω = ξτ,ω′ for

any τ ≤ t. If x = (xt,ω)t∈T ,ω∈Ω denotes the decision variable of a multi-stage stochastic

problem, and xt,ω denotes the decision taken at time t for scenario ω, non-anticipativity135

can be expressed by the following constraint for all time t ∈ T and all scenarios ω

and ω′ indistinguishable up to time t: xt,ω = xt,ω′ . Good scenario trees should grow

exponentially fast with the number of time stages [12] to appropriately approximate
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the distribution and the filtration generated by the random noise.

2.3. Second-Order Cone relaxation of the problem140

As we already observed, constraint (15) is non-convex. Relaxing it into an inequality

constraint:

vi,t,ωI−−→(i,j),t,ω
≥ |S−−→

(i,j),t,ω
|2,

−−→
(i, j) ∈ E , t ∈ T , ω ∈ Ω, (17)

yields a convex problem, denoted (PSOC). This problem is called the Second-Order

Cone Relaxation of the problem, and is given by:

min
y=(s0,s,pinj,pabs,q,X,S,I,v)

E
[
C(s0, p

inj, pabs, q, S, I, X)
]

s.t. (1)− (14), (16), (17).

Indeed, (17) has the structure of a rotated second-order cone constraint x1x2 ≥

x2
3 + x2

4.

3. Restriction of the feasible set

3.1. Presentation of the problem with restricted feasible set

We present a variant of Problems (P ) and (PSOC), obtained by adding a finite num-

ber of linear inequalities. Consider additional variables vLin = (vLin
i,t,ω)i∈B,t∈T ,ω∈Ω, which

plays the role of the square voltage magnitude variable, SLin = (SLin−−→
(i,j),t,ω

)−−→
(i,j)∈E,t∈T ,ω∈Ω

,

which plays the role of the sending-end power flow variable, and sLin
0 = (sLin

0,t,ω)t∈T ,ω∈Ω,

which plays the role of the power injections at the slack bus 0. We first consider the
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constraints of the Linearized DistFlow model [22]:

vLin
0,t,ω = 1, t ∈ T , ω ∈ Ω, (18)

vLin
i,t,ω ≤ vi, i ∈ B, t ∈ T , ω ∈ Ω, (19)

SLin−−→
(i,j),t,ω

=
∑
−−→
(k,i)∈E

SLin−−→
(k,i),t,ω

+ si,t,ω,
−−→
(i, j) ∈ E , t ∈ T , ω ∈ Ω, (20)

0 =
∑
−−→
(k,0)∈E

SLin−−→
(k,0),t,ω

+ sLin
0,t,ω, t ∈ T , ω ∈ Ω, (21)

vLin
i,t,ω − vLin

j,t,ω = 2<(z∗i,jS
Lin−−→
(i,j),t,ω

),
−−→
(i, j) ∈ E , t ∈ T , ω ∈ Ω. (22)

For all buses i, define Ei as the set of directed edges belonging to the sub-tree starting145

from i, as shown in Figure 1. We recall that edges of the network are directed towards

the slack bus 0.

Figure 1: Example of sub-tree E1

Consider the additional constraint:

<(z∗k,lS
Lin−−→
(i,j),t,ω

) ≤ 0,
−−→
(i, j) ∈ E ,

−−→
(k, l) ∈ Ei, t ∈ T , ω ∈ Ω. (23)

This constraint imposes compensation of active (resp. reactive) reverse power flows
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in the lines of the network by forward reactive (resp. active) power flow along the

same lines. Denoting y := (s0, s, p
inj, pabs, q,X, S, I, v, SLin, vLin, sLin

0 ) as the vector of

all decision variables, we can now introduce the problem (P ′):

min
y

E
[
C(s0, p

inj, pabs, q, S, I, X)
]

s.t. (1)− (16), (18)− (23).

In particular, the value of (P ′) is an upper bound on the value of (P ): val(P ) ≤ val(P ′).

3.2. Second-order cone relaxation of the problem with restricted feasible set

Similarly as before, we can introduce the second-order cone relaxation of the new150

problem (P ′) by replacing the non-convex quadratic equality constraints (15) by the

rotated second-order cone constraints (17). This convex relaxation is denoted (P ′SOC)

and can be efficiently solved.

3.3. Conditions ensuring equality of the feasible sets of the original and restricted prob-

lems155

We show that, under realistic and easily verifiable a priori conditions, the feasible

sets of (P ′) and (P ) coincide. Denote si,t,ω = pinj
i + iqi − sdi,t,ω an upper bound on

total power injections at bus i at time step t for scenario ω, obtained for instance using

Constraints (5), (6), (7) and (11). For ω ∈ Ω, t ∈ T , define v̄Lin = (v̄Lin
t,ω )t∈T ,ω∈Ω and

S̄Lin = (S̄Lin
t,ω )t∈T ,ω∈Ω by:


S̄Lin−−→

(i,j),t,ω
=
∑
−−→
(k,i)∈E S̄

Lin−−→
(k,i),t,ω

+ si,t,ω,
−−→
(i, j) ∈ E ,

v̄Lin
0,t,ω = 1,

v̄Lin
i,t,ω − v̄Lin

j,t,ω = 2<(z∗i,jS̄
Lin−−→
(i,j),t,ω

),
−−→
(i, j) ∈ E .

(24)
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Proposition 1. Define (v̄Lin, S̄Lin) as the unique solution of the system (24). Assume

the network is radial, connected and passive (i.e., for all lines (i, j) ∈ E, it holds that

zi,j ≥C 0) and moreover:


v̄Lini,t,ω ≤ vi, i ∈ B, t ∈ T , ω ∈ Ω,

<(z∗k,lS̄
Lin−−→
(i,j),t,ω

) ≤ 0,
−−→
(i, j) ∈ E ,

−−→
(k, l) ∈ Ei, t ∈ T , ω ∈ Ω.

(25)

For any feasible point y of (P ) (resp. (PSOC)), define (sLin0 , vLin, SLin) as the unique solu-

tion of the linear system defined by (18)-(20)-(21)-(22). Then y′ := (y, sLin0 , vLin, SLin)

is feasible with respect to (P ′) (resp. (P ′SOC)). In particular, val(P ) = val(P ′) and

val(PSOC) = val(P ′SOC).

Proof. Consider a feasible point y := (s, v, S, I) of (P ) (resp. (PSOC)). Then, we have

si,t,ω ≤C si,t,ω for all i ∈ B \ {0}, t ∈ T , ω ∈ Ω. Define (sLin
0 , vLin, SLin) by (18)-(20)-

(21)-(22). In particular, we have:

SLin−−→
(i,j),t,ω

≤C S̄
Lin−−→
(i,j),t,ω

−−→
(i, j) ∈ E , t ∈ T , ω ∈ Ω.

Using the above, the assumption of a passive network and (25), we have:

<(z∗k,lS
Lin−−→
(i,j),t,ω

) ≤ <(z∗k,lS̄
Lin−−→
(i,j),t,ω

) ≤ 0,
−−→
(i, j) ∈ E ,

−−→
(k, l) ∈ Ei, t ∈ T , ω ∈ Ω,

which shows that (23) holds. We also get for all
−−→
(i, j) ∈ E , t ∈ T , ω ∈ Ω:

vLin
i,t,ω − vLin

j,t,ω = 2<(z∗i,jS
Lin−−→
(i,j),t,ω

) ≤ 2<(z∗i,jS̄
Lin−−→
(i,j),t,ω

) = v̄Lin
i,t,ω − v̄Lin

j,t,ω ,

which implies vLin
i,t,ω ≤ v̄Lin

i,t,ω ≤ vi for all i ∈ B, using (1), (18) and the orientations of the160

edges towards the slack bus 0. This shows that y′ := (y, sLin
0 , vLin, SLin) is feasible for
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(P ′) (resp (P ′SOC)).

Remark 1. The above Proposition implies condition C1 in [11], which is an abstract

assumption on the feasible set of the problem, but it is easier to check.

The following Proposition shows that if there are no reverse power flows in the165

network, (25) holds.

Proposition 2. Define (v̄Lin, S̄Lin) as the unique solution of the system (24). Assume

the network is radial, connected and passive, that vi ≥ 1 for all buses i ∈ B and the

following condition holds:

S̄Lin−−→
(i,j),t,ω

≤C 0,
−−→
(i, j) ∈ E , t ∈ T , ω ∈ Ω. (26)

Then (25) holds.

Proof. Under (26) and the assumption of a passive network, we have:

v̄Lin
i,t,ω − v̄Lin

j,t,ω = 2<(z∗i,jS̄
Lin−−→
(i,j),t,ω

) ≤ 0,
−−→
(i, j) ∈ E , t ∈ T , ω ∈ Ω,

which implies for all i ∈ B, t ∈ T , ω ∈ Ω, v̄Lin
i,t,ω ≤ v̄Lin

0,t,ω = 1 ≤ vi, using (1), (18) and

the orientations of the edges towards the slack bus 0. One can then easily show that

(25) holds.170

Remark 2. Let us notice that condition (26) is verified if:

si,t,ω ≤C 0, i ∈ B \ {0}, t ∈ T , ω ∈ Ω. (27)

4. Vanishing relaxation gap for the problem with restricted feasible set

We now prove that the problem with restricted feasible set has no relaxation gap,

i.e., val(P ′SOC) = val(P ′). The proof of this result relies on an appropriate relabeling of
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the buses, then on an iterative scheme inspired by [11]. By comparison with the latter

reference, we consider a multi-stage stochastic setting (in particular, we show that non-175

anticipativity is preserved throughout the iterations) and we allow more general cost

functions. We make the following assumption, which can be ensured by appropriately

re-indexing the buses:

(H.Lab) The buses are labeled in non-decreasing order according to their depths in the

tree, see Figure 1.180

The iterative scheme we consider takes as input a feasible point y(0) of (P ′SOC), and

at every iteration, constructs a new feasible point of (P ′SOC) using a Forward-Backward

Sweep method, see Algorithm 1. We shall see that the repeated applications of the

Forward-Backward Sweep method 1 generates a convergent sequence of feasible points

(y(k))k∈N of (P ′SOC), each of them being non-anticipative, and that the limit satisfies the185

constraints of the non-convex problem (P ′).

Algorithm 1 Forward-Backward sweep method

1: Inputs: (s0, S, I, v).
2: for ω ∈ Ω, t ∈ T do
3: for i = n, n− 1, ..., 1 do

4: Let j be the unique node in B such that
−−→
(i, j) ∈ E with the new labels.

5: S′−−→
(i,j),t,ω

← si,t,ω +
∑
−−→
(k,i)∈E(S

′−−→
(k,i),t,ω

− zk,iI ′−−→
(k,i),t,ω

).

6: I ′−−→
(i,j),t,ω

←
|S′−−→

(i,j),t,ω
|2

vi,t,ω
.

7: end for
8: s′0,t,ω ← −

∑
−−→
(k,0)∈E(S

′−−→
(k,0),t,ω

− zk,0I ′b,0,t,ω).

9: v′0,t,ω ← 1.
10: for i = 1, 2, ..., n do

11: Let j be the unique node in B such that
−−→
(i, j) ∈ E with the new labels.

12: v′i,t,ω ← v′j,t,ω + 2<(z∗i,jS
′−−→
(i,j),t,ω

)− |zi,j |2I ′−−→
(i,j),t,ω

.

13: end for
14: end for

15: Outputs: (s′0, S
′, I ′, v′).
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Lemma 1. Let y := (s0, s, p
inj, pabs, X, S, I, v, vLin, SLin, sLin0 ) be a feasible solution of

(P ′SOC), with . Then, if the network is passive (meaning that for all lines (i, j) ∈ E, we

have zi,j ≥C 0), the following inequalities are valid:

S−−→
(i,j),t,ω

≤C S
Lin−−→
(i,j),t,ω

, ∀
−−→
(i, j) ∈ E , t ∈ T , ω ∈ Ω,

s0,t,ω ≥C s
Lin
0,t,ω, ∀t ∈ T , ω ∈ Ω,

vi,t,ω ≤ vLini,t,ω, ∀i ∈ B, t ∈ T , ω ∈ Ω.

Proof. The claimed inequalities are established t by t and ω by ω. We drop the corre-

sponding indices for simplicity of the notations. The inequalities on S and SLin arise

from the constraint (3) which implies that I is non-negative component-wise, from pas-

sivity of the network and from constraints (12) and (20). The inequalities on s0 and

sLin
0 can then be deduced by the inequality between S and SLin and constraints (13) and

(21). Comparing (14) and (22), using the passivity of the network and the inequalities

between S and SLin, one gets for all
−−→
(i, j) in E :

vi − vj ≤ vLin
i − vLin

j .

We can then show the inequalities on v and vLin using the fact that vLin
0 = 1 = v0, by

(1) and (18), and using the fact that edges are directed towards the slack bus (root of

the tree) indexed by 0.

Lemma 2. Algorithm 1 is well-posed. Let y be a feasible solution of (P ′SOC), defined by

y := (s0, s, p
inj, pabs, X, S, I, v, vLin, SLin, sLin0 ). Apply Algorithm 1 once to (s0, S, I, v)
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and denote by (s′0, S
′, I ′, v′) its output. Then we have:

S−−→
(i,j),t,ω

≤C S
′−−→
(i,j),t,ω

, ∀
−−→
(i, j) ∈ E , t ∈ T , ω ∈ Ω,∣∣∣S−−→

(i,j),t,ω

∣∣∣ ≥ ∣∣∣S ′−−→
(i,j),t,ω

∣∣∣ , ∀
−−→
(i, j) ∈ E , t ∈ T , ω ∈ Ω,

I−−→
(i,j),t,ω

≥ I ′−−→
(i,j),t,ω

, ∀
−−→
(i, j) ∈ E , t ∈ T , ω ∈ Ω,

s0,t,ω ≥C s
′
0,t,ω, ∀t ∈ T , ω ∈ Ω,

vi,t,ω ≤ v′i,t,ω, ∀i ∈ B, t ∈ T , ω ∈ Ω.

Moreover, y′ := (s0, s, p
inj, pabs, X, S, I, v, vLin, SLin, sLin0 ) is feasible for (P ′SOC). In par-190

ticular, it is non-anticipative.

Proof. The claimed inequalities are established t by t and ω by ω. We drop the corre-

sponding indices for simplicity of the notations. The definition of S for leaves of the tree

in the forward pass is well-defined as the sum in the LHS is empty in this case by our

labels (Algorithm 1, line 6). The labels chosen ensure that the forward pass always ex-

plores leaves before their ancestors, which ensures that the forward pass is well-defined.

Therefore, the whole algorithm is well-posed. Consider the forward pass, with i = n, n

being the index of the last bus after setting the new labels (see Assumption (H.Lab)).

Denoting j its unique ancestor, we have S−−−→
(n,j)

= sn = S ′−−−→
(n,j)

by construction. We then

obtain, using the fact that y satisfies (17):

I ′−−−→
(n,j)

= |S ′−−−→
(n,j)
|2/vn = |S−−−→

(n,j)
|2/vn ≤ I−−−→(n,j)

.

Let us now assume i < n, and we assume the inequalities for S, S ′, I and I ′ have

been proved for all k = i+ 1, ..., n. If i is a leaf, we can prove the inequalities similarly

as for i = n. Consider the case where i < n is not a leaf. Let j be its unique ancestor.
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Then, by passivity of the network:

S ′−−→
(i,j)

= si +
∑
−−→
(k,i)∈E

(S ′−−→
(k,i)
− zk,iI ′−−→

(k,i)
) ≥C si +

∑
−−→
(k,i)∈E

(S−−→
(k,i)
− zk,iI−−→(k,i)

) = S−−→
(i,j)

.

Besides, denoting P := <(S), Q := =(S), P Lin := <(SLin) and QLin := =(SLin):

|S ′−−→
(i,j)
|2 − |S−−→

(i,j)
|2 = (P ′−−→

(i,j)
+ P−−→

(i,j)
)(P ′−−→

(i,j)
− P−−→

(i,j)
) + (Q′−−→

(i,j)
+Q−−→

(i,j)
)(Q′−−→

(i,j)
−Q−−→

(i,j)
)

≤ 2P Lin−−→
(i,j)

(P ′−−→
(i,j)
− P−−→

(i,j)
) + 2QLin−−→

(i,j)
(Q′−−→

(i,j)
−Q−−→

(i,j)
)

= −2

 ∑
(k,l)∈Ei

(P Lin−−→
(i,j)

rk,l +QLin−−→
(i,j)

xk,l)(I ′−−→
(k,l)
− I−−→

(k,l)
)


= −2

 ∑
−−→
(k,l)∈Ei

<(z∗k,lS
Lin−−→
(i,j)

)(I ′−−→
(k,l)
− I−−→

(k,l)
)


≤ 0.

In the inequality in the third line, we used Lemma 1, then we use the definition of S ′

and the fact that S satisfies (12) to obtain the following equality. The last inequality is

obtained using I ′−−→
(k,l)
≥ I−−→

(k,l)
for all

−−→
(k, l) ∈ Ei and the fact that SLin satisfies (23). We

then obtain:

I ′−−→
(i,j)

= |S ′−−→
(i,j)
|2/vi ≤ |S−−→(i,j)

|2/vi ≤ I−−→(i,j)
.

The inequality s0 ≥C s′0 can then be deduced from the first and third above in-

equality and the assumption of passivity of the network. We have v0 = 1 = v′0 by

construction and by (1). Notice then that for all
−−→
(i, j) ∈ E , by construction of v′ and

by (14):

v′i − vi ≥ v′j − vj,

where we used the earlier inequalities on S, S ′, I and I ′ and the assumption of passivity
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of the network. By propagating this in the network from 0 to n, we get the desired

inequality on the voltage squared magnitudes. We have:

∀
−−→
(i, j) ∈ E , I ′−−→

(i,j)
= |S ′−−→

(i,j)
|2/vi ≥ |S ′−−→

(i,j)
|2/v′i.

Hence (S ′, v′, I ′) satisfies (17). Let y′ := (s0, s, p
inj, pabs, X, S, I, v, vLin, SLin, sLin

0 ) be the

new point. Non-anticipativity of y′ arises from the fact that for all t ∈ T and ω ∈ Ω, y′t,ω

is measurable with respect to yt,ω. By construction and using the inequalities derived

above as well as Lemma 1, one can show that y′ is feasible for (P ′SOC) if y is feasible.195

Corollary 1. Let y := (s0, s, p
inj, pabs, X, S, I, v, vLin, SLin, sLin0 ) be a feasible solution

of (P ′SOC). Then, there exists a feasible (non-anticipative) point for (P ′), denoted by

y′ := (s′0, s, p
inj, pabs, X, S ′, I ′, v′, vLin, SLin, sLin0 ) such that:

S−−→
(i,j),t,ω

≤C S
′−−→
(i,j),t,ω

, ∀
−−→
(i, j) ∈ E , t ∈ T , ω ∈ Ω,∣∣∣S−−→

(i,j),t,ω

∣∣∣ ≥ ∣∣∣S ′−−→
(i,j),t,ω

∣∣∣ , ∀
−−→
(i, j) ∈ E , t ∈ T , ω ∈ Ω,

I−−→
(i,j),t,ω

≥ I ′−−→
(i,j),t,ω

, ∀
−−→
(i, j) ∈ E , t ∈ T , ω ∈ Ω,

s0,t,ω ≥C s
′
0,t,ω, ∀t ∈ T , ω ∈ Ω,

vi,t,ω ≤ v′i,t,ω, ∀i ∈ B, t ∈ T , ω ∈ Ω.

Proof. The claimed inequalities are established t by t and ω by ω. We drop the cor-

responding indices for simplicity of the notations. Apply inductively Algorithm 1 to

x(0) := (s0, S, I, v). This defines a sequence (x(k))k∈N := (s
(k)
0 , S(k), I(k), v(k))k∈N. By
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Lemmas 1 and 2, we have the following inequalities for all k ∈ N:

S
(k)
−−→
(i,j)
≤C S

(k+1)
−−→
(i,j)

≤C S
Lin−−→
(i,j)

, ∀
−−→
(i, j) ∈ E ,

I(k)
−−→
(i,j)
≥ I(k+1)

−−→
(i,j)

≥ 0, ∀
−−→
(i, j) ∈ E ,

s
(k)
0 ≥C s

(k+1)
0 ≥C s

Lin
0 ,

v
(k)
i ≤ v

(k+1)
i ≤ vLin

i , ∀i ∈ B.

By the monotone convergence theorem, (x(k)) converges to a point (s′0, S
′, I ′, v′). Define

y′ := (s′0, s, p
inj, pabs, X, S ′, I ′, v′, vLin, SLin, sLin

0 ), which is feasible for (P ′SOC) as a limit

of feasible points of (P ′SOC). Besides, it satisfies (15) as (s′0, S
′, I ′, v′) is a fixed point of

Algorithm 1. This implies that y′ is a feasible point of (P ′). The inequalities claimed

arise from the monotone behavior of the sequence x(k).200

Theorem 1. Assume the following:

1. The network is radial and connected.

2. The network is passive, i.e., <(z(i,j)) ≥ 0 and =(z(i,j)) ≥ 0 for all lines
−−→
(i, j) ∈ E

of the network.

3. The cost function C is convex, component-wise monotone non-increasing in <(S),205

=(S) and v, component-wise monotone non-decreasing in I, <(s0), =(s0) and |S|.

Then (P ′) has no relaxation gap, i.e., its optimal value coincides with the optimal value

of (P ′SOC).

Proof. If (P ′SOC) is infeasible, then so is (P ′) and the result holds. If (P ′SOC) is fea-

sible and bounded from below, consider its optimal solution y∗. Corollary 1 and the210

monotonicity assumptions on the cost then show that there exists ỹ∗ which is feasible

for (P ′) and with lower cost than y∗. This yields the result. If (P ′SOC) is feasible and

unbounded from below, given a sequence of feasible points of (P ′SOC), whose costs goes
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to −∞, we build a sequence of feasible point of (P ′) with lower costs, using Corollary

1. This shows that (P ′) is also feasible and unbounded from below.215

The assumptions of Theorem 1 are quite realistic. In practice, the cost functional

is often independent from <(S),=(S), v,=(s0) and is monotone non-decreasing in the

active power injections at the substation <(s0) and in thermal losses, proportional to I.

Besides, no assumption is made on the behavior of the cost regarding power injections

at buses other than the slack bus. This allows to apply the result to a wide range of220

applications.

The following theorem is an immediate consequence of Theorem 1.

Theorem 2 (A posteriori bound on the relaxation gap). Under the assumptions of

Theorem 1, the relaxation gap of (P ), given by val(P ) − val(PSOC) is bounded from

above by val(P ′SOC)− val(PSOC).225

The following theorem is a consequence of Proposition 1 and Theorem 1.

Theorem 3 (A priori condition for a vanishing relaxation gap). Under the assumptions

of Proposition 1 and Theorem 1, the problem (P ) has no relaxation gap, i.e., val(P ) =

val(PSOC).

Remark 3. The result can be generalized to other types of electricity storage systems,230

thermal storage systems, electrical vehicles. . . Other constraints, static or dynamic (i.e.,

linking variables of two distinct time steps), can be incorporated to power injections at

all buses except the slack bus 0.

5. Case studies and numerical illustration

This numerical study is implemented using Matlab R2018b combined with YALMIP235

R20200116, interfaced with conic solver Gurobi 9.0.0 with an Intel-Core i7 PC at 2.1

GHz with 16 Go memory.
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5.1. Network topology

We consider a distribution network on the Southern California Edison system with

56 buses [13]. A visualization of the network before relabeling the buses is given in240

Figure 2.

Figure 2: 56 buses network [13]

We leave network topology and line resistances and reactances unchanged compared

with [13]. The peak loads are assumed unchanged, but we modify the installed solar

capacities and do not assume shunt capacitors at any bus. Additionally, we shall

considered storage systems. We attribute to each bus i a size parameter Si, given by245

the peak load of the bus i, taken from the column Load data, Peak MVA. Non-specified

buses are attributed the size Si = 0. The values of the parameters of the network are

given in Figure 3. In particular, the total peak load is given by
∑

i Si = 3.835 MVA.

We assume the maximal intensity magnitude in each line is 300 A, which yields

the bound I−−→
(i,j)

= 90000 A2. We accept 5% deviations of voltage magnitude from250

the reference value, i.e., v−−→
(i,j)

= (0.95)2 p.u. and v−−→
(i,j)

= (1.05)2 p.u. We assume also

S−−→
(i,j)

= 5 MVA.
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Figure 3: Table of the data of the 56 buses network [13]: line resistances, reactances, peak loads Si

5.2. Discussion about other electronics devices

More generally, incorporating devices which only modify the bounds

on power injections at buses except the reference (like storage systems,255

flexible consumption, energy conversion systems...) do not make Theorem

1 invalid. Besides, a priori conditions guaranteeing a vanishing relaxation

gap (see Theorem 3) should be verified with the updated bounds on power

injections. For devices which directly impact voltage or intensity magnitude

or link them with power injections like shunt capacitors (see the model of260

[13]) or transformers, one should extend the analysis developed above to

check if similar results may hold under further assumptions.

5.3. Exogenous residual demand

We consider an exogenous demand profile at node i and for time t given by the

difference between a deterministic consumption profile and a solar power production

profile

sdi,t,ω = scons
i,t − psol

i,t,ω.

24



The consumption profiles are given by scons
i,t = scons,ref

t
1+i0.2√
1+(0.2)2

Si, i.e., the consumption

at each node i is proportional to a reference deterministic evolution scons,ref (independent265

from i) represented in Figure 4 and the size parameter Si.
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Figure 4: Normalized reference consumption profile scons,ref

5.4. Batteries

We assume pinji (resp. pabsi ) represents the power supplied (absorbed) by

the battery at bus i, at time step t ∈ T , for scenario ω ∈ Ω. We assume each

battery can be charged/discharged in τ =2 hours, i.e., pinji = pabsi = Xi

τ
where

X i denotes the installed storage capacity at node i. We assume a charging

efficiency ρabsi = 0.95 while the discharging efficiency is ρinji = 1/ρabsi . They are

the same for all buses. Additionally, we impose the periodicity constraints:

∀i ∈ B, ω ∈ Ω, Xi,T+1,ω = Xi,1,ω, (28)

which ensure that the batteries will have the same states of charge on con-

secutive days. This allows us to take into account the daily repetition of

the problem considered. In the light of Remark 3, this additional constraint270

25



does not jeopardize the earlier results of this paper. Besides, we assume the

batteries cannot provide nor absorb reactive power.

5.5. Photovoltaic panels

The reactive power supplied by the solar panels qsoli,t,ω is a decision variable

and we have the bound constraints:

∀i ∈ B, t ∈ T , ω ∈ Ω, −0.3psol
i ≤ qsol

i,t,ω ≤ 0.

5.6. First use case: diffuse energy storage systems and solar production

We assume the total installed capacity of batteries is X
tot

= 1 MWh.275

Each bus i ∈ B is equipped with a battery with maximal energy capacity

proportional to the size (or peak load) Si of the bus X i = Si∑
i∈B Si

X
tot

. The

total installed solar capacity is denoted psol,tot and its value will be set to

different levels later on. Each bus i ∈ B is equipped with photovoltaic

panels with maximal capacity proportional to the size Si of the bus, i.e.,280

psoli = Si∑
i∈B Si

psol,tot.

Let us show that for psol,tot inferior to some threshold value, (24)-(25)

hold. To this end, we consider the upper bound s̄i = Si∑
i∈B Si

(
psol,tot + X

tot

τ

)
−

0.55 1+i0.2√
1+(0.2)2

Si on the power injections at bus i, valid for any time and any

scenario tree, where we used the fact that 0.55 ≤ mint∈T s
cons,ref
t .285

Let us consider the linear program (LP ):
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max
psol,tot,S̄Lin,v̄Lin

psol,tot

s.t. S̄Lin−−→
(i,j)

=
∑
−−→
(k,i)∈E

S̄Lin−−→
(k,i)
− 0.55

1 + i0.2√
1 + (0.2)2

Si

+
Si∑
i∈B Si

(
psol,tot +

X
tot

τ

)
,

−−→
(i, j) ∈ E ,

v̄Lin
0 = 1,

v̄Lin
i − v̄Lin

j = 2<(z∗i,jS̄
Lin−−→
(i,j)

),
−−→
(i, j) ∈ E .

v̄Lin
i ≤ vi, i ∈ B,

<(z∗k,lS̄
Lin−−→
(i,j)

) ≤ 0,
−−→
(i, j) ∈ E ,

−−→
(k, l) ∈ Ei.

The projection of the feasibility set of this optimization problem along the

first component psol,tot is either empty, R if val(LP ) = +∞ or an interval of

the form (−∞, val(LP )]. By solving it numerically, we find val(LP ) = 1.7023,

which shows that for psol,tot ≤ 1.7023 MW, (24)-(25) are satisfied and therefore,290

by Theorem 3, (P ) has no relaxation gap, provided that the assumptions of

Theorem 1 hold. This shows that the absence of a relaxation gap can be

proved under more realistic assumptions than over-generation [7] or load

over-satisfaction [8], and in a general multi-stage stochastic setting, unlike

[11] which considers a deterministic model. In particular, this condition295

does not depend on the time grid (τt)t or on the scenario tree.

5.7. Second use case: concentrated energy storage systems and solar production

In this second example, we assume that there is no battery and that

only buses 7 and 20 are equipped with PV panels. The installed capacities

are respectively denoted by psol7 and psol20 . We consider the upper bound
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s̄i = psoli −0.55 1+i0.2√
1+(0.2)2

Si on the power injections at bus i, valid for any time and

any scenario tree, where we used the fact that 0.55 ≤ mint∈T s
cons,ref
t . We want

to maximize the installed solar capacity at both buses while guaranteeing an

a priori vanishing relaxation gap by enforcing (24)-(25) to hold. This yields

the linear program (LP ′):

max
psol7 ,psol20 ,S̄

Lin,v̄Lin
psol

7 + psol
20 ,

s.t. S̄Lin−−→
(i,j)

=
∑
−−→
(k,i)∈E

S̄Lin−−→
(k,i)

+ psol
i − 0.55

1 + i0.2√
1 + (0.2)2

Si,
−−→
(i, j) ∈ E ,

v̄Lin
0 = 1,

v̄Lin
i − v̄Lin

j = 2<(z∗i,jS̄
Lin−−→
(i,j)

),
−−→
(i, j) ∈ E .

v̄Lin
i ≤ vi, i ∈ B,

<(z∗k,lS̄
Lin−−→
(i,j)

) ≤ 0,
−−→
(i, j) ∈ E ,

−−→
(k, l) ∈ Ei,

psol
7 ≥ 0,

psol
20 ≥ 0.

Then the maximal installed solar capacity is given by psol,tot = psol7 + psol20 =

2.0851 MW with psol7 = 0.4399 MW and psol20 = 1.6452 MW. Therefore, for any

values of psol7 ≤ 0.4399 MW and psol20 ≤ 1.6452 MW, (24)-(25) hold and therefore,300

by Theorem 3, (P ) has no relaxation gap, provided that the assumptions of

Theorem 1 hold. This is true for any choice of time grid and scenario tree,

provided scons,reft ≥ 0.55 for any t ∈ T .

5.8. Numerical study of the upper bound on the relaxation gap

From now on, we numerically investigate the upper bound on the relax-305

ation gap derived in Theorem 2 on the first use case with diffuse energy
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storage systems and solar production, see 5.6. We consider higher levels

of installed solar capacity so that assumptions of Theorem 3 do not hold

anymore. We need to specify an optimization window and a scenario tree.

5.8.1. Time grid considered310

We consider an optimization window of 31 hours, divided into T + 1 = 9 sub-

intervals. Each time step t corresponds to a time interval in the model [τt, τt+1]. The

correspondence between t and τt is given in Table 2. One could consider instead

a finer time grid, with step lengths of 15 minutes or 1 hour, which is most

common in practice. However, as discussed below, the number of scenarios315

is generally exponential in the number of “branching points” of the scenario

tree, hence, to avoid a blow up of the size of the optimization problem,

one needs to use scenario trees branching at time steps from a coarser time

grid. However, this coarse grid need not be uniformly distributed. Here,

since the scenario tree provides a quantization of the randomness of solar320

production, we use 2-hours steps from 10 am to 6 pm, 3-hours steps from

7 to 10 am and from 9 pm to midnight the next day, and a single step of 7

hours for all the night from midnight to 7 am. We also emphasize that our

theoretical results regarding the relaxation gap do not depend directly on

the choice of time discretization parameters.325

t 0 1 2 3 4 5 6 7 8 9
Real time τt (h) 0 7 10 12 14 16 18 21 24 31

Table 2: Time steps and their corresponding time window
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5.8.2. Generation of a scenario tree with i.i.d. scenarios for solar power production

Recall that τt is the time associated with time step t ∈ T . We assume the solar

power is given by:

psol
i,t,ω = psol

i I
sol
τt,ωx

sol,norm

τt , (29)

where the clear-sky index Isol is a random process taking values between 0 and 1, which

models the clearness of the sky. Its value is 0 when the sky is completely cloudy (i.e.,

even at day, there would be no light) and 1 for a completely clear sky. The deterministic

time-dependent envelop x
sol,norm

models the time evolution of the normalized solar power

we would observe if the sky were clear.We suppose it is given by x
sol,norm

τ = 0 for

τ < Tday = 7 and τ > Tnight = 21 and by

x
sol,norm

τ = 0.5− 0.5 cos

(
2π(τ − Tnight)

Tnight − Tday

)

for Tday ≤ τ ≤ Tnight.

To build a scenario tree, we use the stochastic model in [23] for the clear-sky index

Isol, based on a Fisher-Wright-type Stochastic Differential Equation (SDE), given by:

Isol
τ = Isol

0 −
∫ τ

0

a(Isol
s − Iref)ds+

∫ τ

0

σ(Isol
s )α(1− Isol

s )βdBs, (30)

with B a Brownian motion. The parameter a ≥ 0 is a mean-reversion speed parameter,

and Iref ∈ [0, 1] is a reference value for the clear-sky index. Under the assumption

a ≥ 0, α, β ≥ 0.5, this SDE has a unique strong solution with values in [0, 1] almost330

surely, see [23].

The branching structure of the scenario tree is characterized by pre-specified vector

(Ct)t∈T where Ct corresponds to the number of children nodes of a node at stage t. In
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particular, the total number of scenarios is given by N =
∏T

t=1 Ct. Given a structure of

a scenario tree, we use the quantile-based Algorithm 2 with parameters given in Table335

3 to instantiate the values of solar irradiance at the nodes of the scenario tree. Each

scenario is assigned probability 1/N , which is consistent with the fact that we consider

evenly spaced quantiles for the values of successors of each node.

Parameter Iref a σ α β Isol
0 M τEuler

Value 0.75 0.75 h−1 0.7 0.8 0.7 0.5 10000 0.1h

Table 3: Parameters of SDE of solar irradiance Isol and of Algorithm 2

Algorithm 2 Generation of scenario tree of solar irradiance Isol

Given: M , (Ct)t=1,...,T , {τ1, ..., τT }, τEuler.
val: table of values of the nodes of scenario tree
val[n1]← Isol

init with n1 node at time t = 1
for t = 2, ..., T do

for nt−1 node at stage t− 1 do
Simulate M i.i.d. trajectories of Isol in (30) on [τt−1, τt] conditionally to Isol

τt−1
=

val[nt−1] using Euler scheme with step τEuler.
for i = 1...Ct−1 do

Create ith child of node nt−1, denoted nt.

Set val[nt] to quantile 100(2i−1)
2Ct−1

% of simulated values of Isol
τt .

end for
end for

end for

Return val.

We consider various scenario trees which approximate the stochastic process Isol,

where branching (i.e., Ct > 1) occurs at the time steps where xsol, norm
t is big. This is340

heuristically justified by the fact that instantaneous volatility of the solar power at time

t is directly proportional to x
sol,norm

τt . The scenarios of normalized solar power Isolx
sol,norm

are represented in Figure 5 for three scenario trees with respectively 1 scenario (Ct = 1

for all t ∈ T ), 8 scenarios (Ct = 2 for τt ∈ {10, 12, 14} and Ct = 1 else) and 12

scenarios (Ct = 2 for τt ∈ {10, 14}, Ct = 2 for τt = 12 and Ct = 1 else).345
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Figure 5: Scenario trees of daily normalized solar power production x
sol,norm

Isol (1, 8 and 12 scenarios)

5.8.3. Numerical results

We assume that the cost functional is given by:

1

N

N∑
ω=1

T∑
t=0

∆t

c0,+(p0,t,ω)+ − c0,−(p0,t,ω)− +
∑
−−→
(i,j)∈E

clossri,jI−−→(i,j),t,ω

 , (31)

where c0,+ = 1 MW−1 represents a marginal cost of importing electricity in

the feeder considered from the public grid (connected to the feeder at bus

0), c0,− = 0.5 MW−1 respectively represents a marginal gain when sending

electricity back to the public grid and closs = 2 MW−1 represents the marginal350

cost of thermal losses in the distribution network. We do not incorporate

storage costs, which would require an estimation using a technical and economical

analysis [19] or a specific mathematical model [24].

We consider the value psol,tot = 3 MW. For this value, one cannot invoke Theorem

3 guaranteeing a vanishing relaxation gap. Instead, we use Theorem 2 to compute an

a posteriori bound on the relative relaxation gap ε defined by:

ε =
2 (val(P ′SOC)− val(PSOC))

|val(PSOC)|+ |val(P ′SOC)|
. (32)

Table 4 gives the bound on the relative relaxation gap as a function of the number

of scenarios. Computation times corresponding to the optimization are also reported.355

32



number of scenarios N 1 8 12
Bound on relative relaxation gap ε 0 4.5× 10−8 1.3× 10−6

Optimization time (PSOC) 1.79 s 38.9 s 165.9 s
Optimization time (P ′SOC) 1.72 s 50.3 s 153.2 s

Table 4: Bound on relative relaxation gap ε and computation time depending on the number of
scenarios N for the 56 buses network

For the three scenario trees considered, the bound on relative relaxation gap of

(P ) is zero (up to a numerical tolerance). The probability distributions of active

power losses and power injections at bus 0 over time of the solution of (PSOC)

(which is also feasible for (P )) are represented in the form of box-plots in

Figures 6 and 7 respectively. We can notice than power losses and injections360

at bus 0 decrease during the day, owing to the local solar production.
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Figure 6: Empirical distribution of total active losses in the network over time

0-7 7-10 10-12 12-14 14-16 16-18 18-21 21-24 24-31

Time period (h)

0

0.5

1

1.5

2

2.5

3

P
o

w
e

r 
s
u

p
p

lie
d

 b
y
 t

h
e

 g
ri
d

 (
M

W
)

(a) 1 scenario

0-7 7-10 10-12 12-14 14-16 16-18 18-21 21-24 24-31

Time period (h)

0

0.5

1

1.5

2

2.5

3

P
o

w
e

r 
s
u

p
p

lie
d

 b
y
 t

h
e

 g
ri
d

 (
M

W
)

(b) 8 scenarios

0-7 7-10 10-12 12-14 14-16 16-18 18-21 21-24 24-31

Time period (h)

0

0.5

1

1.5

2

2.5

3

P
o

w
e

r 
s
u

p
p

lie
d

 b
y
 t

h
e

 g
ri
d

 (
M

W
)

(c) 12 scenarios

Figure 7: Empirical distribution of active power injections at bus 0 over time

We now exhibit typical cases where the a posteriori bound on the relaxation gap
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can be expected to be good (i.e., close to the true value of the relaxation gap) or not.

To this end, we consider a deterministic case with different values for the storage cost

cbat and the total installed solar capacity psol,tot. We consider the cost functional:

T∑
t=0

∆t

c0,+(p0,t)+ − c0,−(p0,t)− +
∑
−−→
(i,j)∈E

clossri,jI−−→(i,j),t
+
∑
i∈B

cbat(p
inj
i,t + pabs

i,t )

 . (33)

We give in Table 5 the values of upper bound on the relative relaxation gap ε defined

in (32), as a function of the installed solar capacity and storage cost.

psol,tot 1.5 MW 3 MW 3.5 MW 4 MW 4.5 MW
cbat = 0 MW−1 0 0 7.7× 10−6 4.0× 10−4 +∞
cbat = 1 MW−1 3.7× 10−8 0 7.2× 10−4 6.2× 10−3 +∞
cbat = 2 MW−1 0 3.4× 10−7 7.2× 10−4 3.1× 10−2 +∞

Table 5: A posteriori bound ε depending on storage cost and installed solar capacity (56 buses network)

One can show that for all the instances considered in Table 5, the optimal solution

of (PSOC) found is feasible for (P ), showing that the relaxation gap is zero in all cases365

investigated: val(P ) = val(PSOC). Therefore, considering problem (P ′SOC) is not

necessary to estimate the relaxation gap or to prove that it is null, but it

allows to assess the quality of the bound ε on the relative relaxation gap:

we aim at finding typical situations where the bound ε is close to the true

value of the relative relaxation gap 0, and situations where this is not the370

case. The bound ε is close to 0 if the installed solar capacity is low (1.5 MW) in

agreement with Theorem 3 or intermediate (3MW ). For higher values of the installed

solar capacity (4 MW), the a posteriori bound is of better quality for lower storage cost.

This makes sense since the batteries can be leveraged to absorb power to avoid reverse

power flow at low cost (guaranteeing 23). Figure 8 confirms this observation: it375

represents the total active power supplied by the storage systems over time

for the optimal solution of the restricted problem (P ′SOC) for cbat = 2 MW−1
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(to minimize battery use). When psol,tot = 3.5 MW, the batteries are not

used at all whereas for psol,tot = 4.5 MW, the storage systems need to be

employed in order to ensure that (23) hold. For higher values of the installed380

solar capacity, the a posteriori bound ε becomes even infinite, although the relaxation

gap of (P ) is still zero. In that case, the storage capacity is not sufficient to absorb

power, and hence constraint 23 cannot be satisfied, even using batteries. The numerical

results show that the a posteriori bound on the relaxation gap is good in the case of

low decentralized production capacity or if active or reactive power can be absorbed385

locally and at low cost.
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0 5 10 15 20

Time (h)

-0.2

-0.1

0

0.1

0.2

0.3

0.4
P

o
w

e
r 

s
u
p
p
lie

d
 b

y
 t
h
e
 b

a
tt
e
ri
e
s
 (

M
W

)

(b) psol,tot = 4 MW

Figure 8: Evolution of total active power supplied by batteries for cbat = 2 MW−1

6. Conclusion

We have introduced a multi-stage stochastic AC OPF problem to account for both

uncertainty of renewable production and dynamic constraints of storage systems. We

have extended a result ensuring a vanishing relaxation gap under some realistic a priori390

conditions for the static deterministic AC OPF problem to the multi-stage stochastic

setting. A similar procedure also yields an easily computable a posteriori upper bound
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on the relaxation gap of the problem. These results are illustrated by numerical exper-

iments on a realistic distribution network with local generation and storage systems. A

possible extension of this work would be to consider three-phase unbalanced networks395

in a multi-stage stochastic setting, so as to capture low voltage networks, which are

typically unbalanced.
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