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Abstract. Multi-agent technology is a promising approach to devel-
opment of complex decentralised systems that dynamically adapt to
changing environmental conditions. The main challenge while designing
such multi-agent systems is to ensure that reachability of the system-
level goals emerges through collaboration of autonomous agents despite
changing operating conditions. In this paper, we present a case study in
formal modelling and verification of a colony of foraging ants. We for-
malise the behaviour of cooperative ants in Event-B and verify by proofs
that the desired system-level properties become achievable via agent col-
laboration. The applied refinement-based approach weaves proof-based
verification into the formal development. It allows us to rigorously de-
fine constraints on the environment and the ant behaviour at different
abstraction levels and systematically explore the relationships between
system-level goals, environment and autonomous ants. We believe that
the proposed approach helps to structure complex system requirements,
facilitates formal analysis of various system interdependencies, and sup-
ports formalisation of intricate mechanisms of agent collaboration.

Keywords: Self-organizing MAS, cooperative ants, formal verification,
refinement, Event-B.

1 Introduction

Self-organising multi-agent systems (MAS) are decentralised systems composed 
of a number of autonomic actors – agents – that cooperate with each other to 
achieve system-level goals [6]. Each autonomic agent follows a number of rules 
that govern its own behaviour as well as agent interactions. The absence of 
a centralised controlling mechanism and a loosely-coupled system architecture 
enhance system adaptability. However, they also make the design of self-adaptive 
MAS a challenging task, since the designers should demonstrate that the desired 
system-level behaviour emerges from the behaviour of individual agents.



In this paper, we propose an approach to formal development of a self-
organising MAS by refinement in Event-B. Event-B [1] is a formal approach for
designing distributed systems correct-by-construction. The main development
technique of Event-B – refinement – allows the designers to transform an abstract
specification into a detailed model through a chain of correctness-preserving
transformations. Each refinement step is verified by proofs guaranteeing that
a refined model preserves the externally observable behaviour. Refinement also
allows us to formally define relations between formal models representing the
system behaviour at different levels of abstraction. Hence it constitutes a suit-
able mechanism for establishing relationships between the system-level goals, the
behaviour of autonomic agents, and their interactions.

In this paper, we undertake a formal development of a colony of foraging agents.
We adopt the systems approach [11] that promotes an integrated modelling of the
system with its environment. In our modelling, we further extend the systems ap-
proachby integrating the thirdcomponent– theobserver.Theobserverdetects that
the system level goal has been reached and the system can successfully terminate.

We start from an abstract specification in which all three layers – the system
environment (the grid with distributed food), the ant colony, and the observer
are modelled in a formal abstract way. In the chain of model refinements, we
introduce a detailed representation of the ant behaviour and link their actions
with the changes in the environment while, at the same time, elaborating on the
logical conditions of system-level goal reachability. Our models incorporate the
perceive-decide-act pattern for modelling the ant behaviour as well as the ant
decision rules, including the heuristics for moving and harvesting food [2]. We
discuss the benefits of formal modelling, the introduced modelling assumptions,
and point out the modelling aspects that require integration with other modelling
techniques such as stochastic analysis and simulation.

The paper is structured as follows. In Section 2 we briefly describe the basics
of self-organising MAS, while Section 3 presents our formal modelling framework
– Event-B. In Section 4 we describe our case study – the colony of foraging ants
– and outline the formal development strategy. Section 5 presents our formal
development in detail. In Section 6 we discusses the results achieved by our
approach. Finally, in Section 7 we conclude and overview the related work.

2 Self-organising Cooperative MAS

Multi-Agent Systems (MAS) exhibiting a self-organised behaviour is a promising
approach to design complex decentralised software systems. The main challenge
when designing self-organising MAS is to ensure that the desired system-level be-
haviour emerges from the interactions of individual agents. Since self-organising
systems do not have a centralised controlling mechanism, each individual agent
should adapt its behaviour according to its individual perception of the oper-
ating environment and the rules governing its behaviour. The mechanism of
self-adaptation should be described by the means of local information. There-
fore, the functionality of the overall system should emerge from the interactions
between the agents [4]. While designing a MAS, we assume that each agent has a



life cycle, called the perceive-decide-act cycle, which consists of sensing its local
environment, then deciding according to its own environment perceptions which
actions to perform, and, finally, executing them.

This paper focuses on studying cooperative MAS. The main idea that stems
from the adaptive MAS theory is to ensure that each agent acts in coopera-
tion with its neighbours and in accordance with the state of its operational
environment [8,6]. This behavioural pattern has resulted in the following three
meta-rules [3] of the cooperative MAS design:

– The agent should be able to understand every received signal from its envi-
ronment and its neighbours;

– The representations that the agent has about its environment should allow
it to make decisions;

– The decisions that an agent make should enable it to perform an action
which is useful for the other agents and the environment.

Natural self-organising systems, such as, e.g., ant colonies, provide us with
the valuable behavioural patterns that can facilitate design of decentralised co-
operative interaction mechanisms [6]. The individual capabilities of ants to drop
pheromone, smell nest, food or other agents lead to discovery of the cooperative
mechanisms to perceive the environment, make decisions and act.

Traditionally, the behaviour of self-organising systems is studied via simula-
tion and model-checking. Simulation allows the designers to experiment with
various system parameters and create certain heuristics facilitating the system
design [2]. Model checking provides support in the discovery of deadlocks and
property violations [7]. However, to cope with the complexity of self-organising
MAS, the designer also need techniques that support not only verification, but
also the development process itself. Moreover, such techniques should support
disciplined development and facilitate reasoning about various aspects of the
system behaviour at different levels of abstraction.

We believe that the Event-B framework provides a suitable basis for formal
model-driven development of cooperative MAS. In the next section we give a
brief overview of the Event-B framework, while in Section 5 we will demonstrate
our approach to development of cooperative MAS in Event-B.

3 Formal Development in Event-B

The Event B formalism [1] is a state-based formal approach that promotes the
correct-by-construction development paradigm and formal verification by theo-
rem proving. Event B is particularly suitable for modelling distributed and reac-
tive systems and had been actively used within several EU projects for modelling
complex software-intensive systems from various domains.

In Event-B, a system specification (model) consists of two parts – machine
and context, as shown in Fig. 1. The dynamic part of the model — a machine –
is defined using the notion of an abstract state machine [1]. A machine encapsu-
lates the model state, represented as a collection of model variables, and defines
operations on this state, i.e., contains the the dynamic part (behaviour) of the
modelled system. Another part of the model, called context, contains the static
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Fig. 1. Event-B machine and context

part of the system. In particular, a context can include user-defined carrier sets,
constants and their properties, which are given as a list of model axioms.

The machine is uniquely identified by its name M . The state variables, v, are
declared in the Variables clause and initialised in the Init event. The variables
are strongly typed by the constraining predicates I given in the Invariants

clause. The invariant clause might also contain other predicates defining prop-
erties that should be preserved during system execution.

The dynamic behaviour of the system is defined by the set of atomic events
specified in the Events clause. Generally, an event can be defined as follows:

ANY vl WHERE g THEN S END,

where vl is a list of new local variables (parameters), the guard g is a state
predicate, and the action S is a statement (assignment). In case when vl is
empty, the event syntax becomes WHEN g THEN S END.

The occurrence of events represents the observable behaviour of the system.
The guard defines the conditions for the action to be executed, i.e., when the
event is enabled. If several events are enabled at the same time, any of them can
be chosen for execution. If none of the events is enabled, the system deadlocks.

The action of an event is a parallel composition of assignments.The assignments
can be either deterministic or non-deterministic. A deterministic assignment, x :=
E(x, y), has the standard syntax and meaning. A nondeterministic assignment is
denoted either as x :∈ Set, where Set is a set of values, or x :| P (x, y, x′), where
P is a predicate relating initial values of x, y to some final value of x′. As a result,
x can get any value belonging to Set or according to P .

Event-B employs a top-down refinement-based approach to system develop-
ment. Development starts from an abstract system specification that models
the most essential functional requirements. While capturing more detailed re-
quirements, each refinement step typically introduces new events and variables
into the abstract specification. Moreover, Event-B formal development supports
data refinement, allowing us to replace some abstract variables with their con-
crete counterparts. In that case, the invariant of the refined machine formally
defines the relationship between the abstract and concrete variables.

The consistency of Event-B models, i.e., verification of model well-formedness,
invariant preservation as well as correctness of refinement steps, is demonstrated
by discharging the relevant proof obligations. The Rodin platform [13] provides
an automated support for modelling and verification. In particular, it automat-
ically generates the required proof obligations and attempts to discharge them.



4 The Foraging Ants Case Study

Case Study Description. A colony of foraging ants is a nature-inspired coop-
erative MAS. The global objective of the colony is to bring the food, scattered
in the environment, to the nest. Each ant has the ability to perceive, primar-
ily by smell, different characteristics (e.g., closeness of food, nest or other ants)
of its environment. The ant perception depends on its position in the environ-
ment. We assume that the stronger is the smell, the closer is the food. Each ant
can autonomically perform such actions as moving, harvesting and carrying-up
food, unloading food at the nest, as well as dropping pheromone. Pheromone is
a chemical substance that ants put for marking paths to the discovered food.
The autonomic behaviour of an ant can be summarised by the following rules:

1. Each ant starts by exploring the environment and moving randomly;
2. If it smells food, it moves to the direction where the smell is strongest;
3. If it smells pheromone, it moves to the direction where the smell is strongest;
4. When reaching the food at a certain location, an ant harvests as much food

as it can carry and returns to the nest;
5. While an ant returns to the nest carrying food, it drops pheromone along

the way to attract other ants to the food source.

We assume that the environment is composed of a set of connected locations.
One specific location is reserved for the nest of the colony. A location might
contain a certain limited amount of food. Moreover, a location can be marked
by some quantity of (gradually evaporating) pheromone.

The aim of the formal development is to specify the following requirements.

– (R1) The main goal of the colony is to bring all the food to the nest;
– (R2) Before performing an action, an ant should make a decision based on

its current perceptions of the environment;
– (R3) A combination of the ant perceptions should allow it to make an un-

ambiguous decision;
– (R4) The decision an ant makes should lead to its specific action;
– (R5) An ant should avoid conflicts with other ants on the same food source;
– (R6) An ant should avoid conflicts with other ants on the same area.

The requirements (R5) and (R6) essentially mean that, given a choice, an ant
should avoid the areas already exploited by other ants. This ensures a more
efficient food foraging by exploring more territory for yet undiscovered food.

The Formal Refinement Strategy. Traditionally, modelling of self-organising
MAS is structured according to three views:

– modelling the environment,
– modelling autonomic agents and their interactions,
– modelling the system-level properties (observer-view).

One of the advantages of Event-B is that it supports the systems [11] approach,
i.e., allows us to model the system behaviour together with its environment. In
this paper, we further extend the systems approach by defining our model as



an integration of the environment, agent and observer views. It allows us to for-
mally derive the interconnections between these layers through the development
process. Moreover, such an integrated modelling approach allows us to discover
the constraints that the environment should satisfy, precisely define how the
agent behaviour affects the environment, and link the system-level goals with
both agent and environment dynamics.

Next we present the strategy that we will follow in our formal development
of the case study. The main idea behind the proposed strategy is to derive a
detailed model demonstrating that the local ant behaviour leads to achieving
the defined system-level goal (the requirement R1). The reachability is proved
as a result of formalisation of all three views: environment, agent and observer
as well as their inter-relationships. The overall refinement strategy is as follows.

1. Initial model. The initial abstract model introduces the location grid (in-
cluding the nest) with the distributed food and models the effect of ants
activity – all the food is gradually transferred to the nest. Reaching this
goal is eventually observed by the observer.

2. First refinement. The specification obtained at this level introduces into
the model a representation of the ants and their behaviour, following the
perceive- decide-act cycle. Moreover, we elaborate of the act stage.

3. Second refinement. At this level, we focus on the decision stage. We in-
troduce different types of possible ant decisions as well as the dynamic food
load the ants are carrying. This refinement allows us also to establish a link
between the act and decide stages.

4. Third refinement. At this level, we complete refinement of the perceive-
decide-act cycle by introducing different ant perceptions and the decision
rules based on these perceptions.

5. Fourth refinement. At the final refinement step, we elaborate on the link
between the cooperative ant behaviour and system-level properties. We in-
troduce the conditions guaranteeing that an ant in a particular functioning
mode (exploration, going after perceived food, returning to the nest, etc.)
always gets closer to its current target.

In our refinement strategy, each subsequent refinement step elaborates on
the previously-introduced models, verifying at the same time the consistency
between the models. Moreover, different refinement steps focus on modelling and
verifying different requirements (R1)–(R6). For instance, the second refinement
step ensures the requirement (R4), while the third refinement step focuses on
formalising the requirements (R3), (R5), and (R6).

5 Formal Development of the Foraging Ants Case Study

Next we present our formal development of the colony of foraging ants. Due to
the space limit, we will present excerpts from our formal models and only discuss
the main modelling solutions as well as verified properties.

The Initial Model. In our formal development, we aim at establishing an
explicit link between the system-level goals and the ant behaviour. In our case,



we have to demonstrate that the ants will harvest all the food distributed in
the environment. In the initial specification, we abstractly model the process of
harvesting food and reaching the goal – reaching the state in which all the food
initially distributed over the environment is transferred to the colony nest.

In the context component of our abstract model, we introduce constants and
properties required to represent the grid (the environment) on which the ants
are moving to harvest the food. We model the grid as a finite adirectional graph
over a set of interconnected locations. The locations are modelled as the abstract
set Locations, with Nest – a fixed location in the grid – representing the nest of
the colony to which the ants should bring the food.

axm1: Nest ∈ Locations ∧ Locations\{Nest} 6= ∅

axm2: Grid ∈ Locations ↔↔ Locations ∧ Grid = Grid∼

Here ↔↔ designates a total relation, i.e., each location has at least one adjacent
location, connected by Grid. Grid is also symmetric (the axiom axm2). To make
a decision about where to move next, each ant should analyse its close vicinity
– a set of nearby locations. To represent this set, we explicitly introduce the
function Next, defined as a relational image of Grid for the given location loc.

axm3 : Next ∈ Locations→ P(Locations)
axm4 : ∀loc. loc ∈ Locations ⇒ Next(loc) = Grid[{loc}]

Finally, in the context component we also introduce the initial food distribu-
tion in the grid, defined as a constant function over the grid locations:

axm5 : QuantityFoodMax ∈ N1
axm6 : InitFoodDistr ∈ Locations → 0..QuantityFoodMax

axm7 : InitFoodDistr(Nest) = 0 ∧ (∃loc. loc ∈ Locations\{Nest} ∧ InitFoodDistr(loc) > 0)

Here QuantityFoodMax is the constant restricting the maximal amount of
food for any single location. In other axioms, we require that the initial food
amount in the nest is equal to 0, and there is at least one location outside the
nest that contains some non-zero amount of food. Without these constraints,
the system-level goal would be automatically satisfied, i.e., the system would
terminate right after initialisation.

In our abstract model, the main complexity lies in the context that defines the
system environment. The dynamic part of the model – the machine – is rather
simple. After the system initialisation, the event Change becomes enabled. It
models non-deterministic changes in food distribution on the grid. Eventually the
event Observer becomes enabled, indicating that all the food is now transferred
to Nest. We also introduce two variables GoalReached and QuantityFood:

inv1 : GoalReached ∈ bool
inv2 : QuantityFood ∈ Locations → 0..QuantityFoodMax

The current state of food distribution in the grid is modelled by the variable
QuantityFood. It is defined as a function (array) over the grid locations, asso-
ciating each location with the food amount currently stored in it. The variable
is initialised by InitFoodDistr, introduced in the context. The boolean variable
GoalReached indicates whether the system reached its main goal.



The system goal is reached when there is no food left in the grid, i.e.,

∀loc. loc ∈ Locations\{Nest} ⇒ QuantityFood(loc) = 0

Once this happens, the variable GoalReached is assigned TRUE (by Observer).
This in turn disables the event Change, effectively terminating the system.

The event Change abstractly models possible changes in the grid food dis-
tribution. Essentially, it non-deterministically specifies the general tendency for
the food to be transferred from non-nest locations to Nest. This behaviour is en-
forced by permitting non-deterministic decrease (or at least non-increase) of the
food amount outside Nest or, similarly, its non-deterministic increase in Nest.

EVENT Change
ANY loc, newQF WHERE

grd1 : loc ∈ Locations ∧ newQF ∈ N

grd2 : loc = Nest ⇒ newQF ≥ QuantityFood(loc)
grd3 : loc 6= Nest ⇒ newQF ≤ QuantityFood(loc)
grd4 : GoalReached = FALSE

THEN

act1 : QuantityFood(loc) := newQF
END

Even though modelling of ants is abstracted away in the initial model, it is
implicitly assumed that all the changes in the grid food distribution happen
because of some ant activities. In the subsequent refinements, this relationship
will be made explicit, constraining the nondeterminism of our abstract model.

The First Refinement. In our first refinement step, we introduce abstract
representation of ants and their behaviour stages. In particular, we adopt the
widely used pattern Perceive → Decide → Act to model the cyclic ant behaviour.
Moreover, we distinguish two groups of ants – the ants that are currently engaged
in the food foraging and the ants that are resting in the nest.

In the context of the refined model, we introduce the abstract set Ants to
model the colony of ants. Moreover, we define the enumerated set StepCycle =
{perceive, decide, act} that defines the constants to indicate specific cyclic stages
of the ant behaviour. In the dynamic part of the refined model, we introduce
three new variables to model ants and their behaviour.

inv8 : WorkingAnts ⊆ Ants
inv9 : AgentStage ∈ WorkingAnts → StepCycle

inv10 : currentLoc ∈ Ants → Locations

The variable WorkingAnts stores the set of the ants currently involved in
food foraging. The variable AgentStage indicates the current behaviour stage for
each working ant. Finally, the variable currentLoc associates each ant (whether
working or resting) with its current location on the grid.

The abstract event Change is now refined (and renamed into Act) to model
possible actions of a particular ant. The event is parameterised with a local
variable ant, which is required to be a working ant in the stage act (the guard
grd5). Note that the local variable (parameter) loc of the abstract event Change,
which signified an arbitrary possible grid location, is now constrained to be equal
to currentLoc(ant), i.e., the current location of ant.

The ant action may also result in the ant moving to an adjacent location.
The new action act2 specifies this: the ant may move to a new location (one of
possible locations specified by Next(currentLoc(ant))) or stay where it is now.



EVENT Act
REFINES Change

ANY newQF, ant WHERE

grd1 : newQF ∈ N

grd2 : currentLoc(ant) = Nest ⇒ newQF ≥ QuantityFood(currentLoc(ant))
grd3 : currentLoc(ant) 6= Nest ⇒ newQF ≤ QuantityFood(currentLoc(ant))
grd4 : GoalReached = FALSE

grd5 : ant ∈ WorkingAnts ∧ AgentStage(ant) = act
THEN

act1 : QuantityFood(currentLoc(ant)) := newQF
act2 : currentLoc(ant) :∈ Next(currentLoc(ant))∪ {currentLoc(ant)}

END

The new events Perceive, Decide, and NewCycle are introduced to model the
cyclic ant behaviour. The events Perceive and Decide abstractly model the per-
ceive and decide stages of the ant behaviour. These events will be elaborated (re-
fined) in the subsequent refinement steps. The event NewCycle is enabled when
all the working ants completed their act stage (i.e., executed Act). It starts a
new cycle by moving all the working ants into the perceive stage.

As a part of verifying model correctness, Event-B allows us to formally prove
convergence of the newly introduced events (system transitions) in the refined
models. The convergence is proved by providing a natural number expression
(variant) and then formally demonstrating that this expression is decreased by
any execution of new events. We have proved convergence of the new events
Perceive and Decide (thus guaranteeing that the act stage will be reached for all
the working ants), using the following variant expression:

card({a · a ∈ WorkingAnts ∧AgentStage(a) = perceive}) +
card({a · a ∈ WorkingAnts∧ AgentStage(a) ∈ {perceive, decide}),

where card is the set cardinality operator.

The Second Refinement. The first refinement step has allowed us to establish
the connection between the dynamical changes in the system environment (the
food distribution in the grid) and the actors (ants) that cause these changes. In
the second refinement, we elaborate on the ant decision stage. We also introduce
the notions of ant load (i.e., the amount of food an ant is carrying) and grid
pheromone distribution (i.e., quantities of ant pheromone in grid locations).

To model the outcome of the decision stage, in the model context we introduce
the enumerated set Decision = {move, harvest, dropPheromoneAndMove,

dropPheromone, dropFood, doNothing}, with the constants for respective ant
decisions. The ant decisions are constrained by the corresponding environment
and its own conditions, such as the presence of food and currently carried load.
To reason about this, we add the constant MaxLoad (for the maximal amount
a single ant can carry) as well as the functions TotalLoad and TotalFood, re-
turning the total amount of food for a set of ants or a set of locations.

axm2 : MaxLoad ∈ N1
axm3 : TotalLoad ∈ (Ants → N) → (P(Ants) → N)
axm4 : TotalFood ∈ (Locations → N) → (P(Locations)→ N)

In the dynamic part of the model, we introduce three new variables:

inv2 : load ∈ WorkingAnts → Decision

inv3 : AgentDecision ∈ WorkingAnts → Decision
inv4 : DensityPheromone ∈ Locations → N



The first variable, load, models the current load each ant is carrying. The sec-
ond one, AgentDecision, stores the latest decision made by every working ant.
Finally, the variable DensityPheromone reflects the current amount of dropped
pheromone in specific grid locations. Having the corresponding type and variable
for ant decisions allows us to refine the abstract event Decide as follows:

EVENT Decide

REFINES Decide
ANY ant WHERE

grd1 : ant ∈ WorkingAnts ∧ AgentStage(ant) = decide

grd2 : GoalReached = FALSE
THEN

act1 : AgentDecision(ant) :∈ Decision
act2 : AgentStage(ant) := act

END

The event is still abstract since the environment perceptions of an ant, which
are the basis for making ant decisions, will be introduced later. As a result, here
the ant decision is made nondeterministically from the set Decision. Neverthe-
less, we can now rely on the information about the last decision of each ant
(stored in AgentDecision) to elaborate on the act stage. In the previous model,
this stage is represented by a single event Act. Now we refine the event Act to
introduce the instances of Act corresponding to each possible ant decision. For
example, below we show the event that models dropping food by an ant after
reaching the nest. This event is proved to be a valid refinement of Act.

EVENT Act Drop Food
REFINES Act

ANY ant WHERE

grd1 : ant ∈ WorkingAnts ∧ AgentStage(ant) = act

grd2 : AgentDecision(ant) = dropFood
grd3 : currentLoc(ant) = Nest ∧ GoalReached = FALSE

THEN

act1 : QuantityFood(Nest) := QuantityFood(Nest) + load(ant)
act2 : load(ant) := 0

END

In a similar way, such events as, for example, Act Move, Act HarvestFood,
and Act DropPheromone, are introduced and proved to be specific refinements
of the abstract event Act. The first event changes the ant’s current location (not
affecting the food and pheromone distributions), while the second and third ones
update respectively the grid pheromone and food distributions.

In the abstract model, the food distribution in the event Change is updated
with a high degree of nondeterminism. After two refinements, the introduced
system details and constraints allow us to eliminate this nondeterminism com-
pletely. In fact, we can prove (as an invariant property) that no food is lost:

inv5 : TotalFood(QuantityFood)(Locations) + TotalLoad(load)(Ants) =
TotalFood(InitFoodDistribution)(Locations)

Here we use the context functions TotalFood and TotalLoad to state that all
the food from the initial food distribution is now either in the grid locations or
is carried up by the ants. We can also explicitly relate the reaching of the main
goal with the food absence outside the nest.

inv6 : GoalReached = TRUE ⇒ TotalFood(QuantityFood)(Ants\{Nest}) = 0
inv7 : GoalReached = TRUE ⇒

QuantityFood(Nest) = TotalFood(InitFoodDistribution)(Locations)



Finally, we can now prove that all the events affecting the food distribution
are convergent, using the following variant expression:

TotalFood(QuantityFood)(Locations\{Nest})

The Third Refinement. The second refinement step has allowed us to build
a link between the ant decisions and its subsequent actions. While further elab-
orating on the ants behaviour, we have also refined the definition of the system
level goal and the conditions that lead to it. Next, we focus on introducing dif-
ferent ant perceptions and formulate the decision rules allowing an ant to decide
on its next action based on a combination of its current perception values.

We assume that each ant has the ability to perceive from a distance the food,
dropped pheromone, nest and other ants. The exact strength of each perception
depends on the ant’s current location and the direction (i.e., the next location)
it is facing. In other words, knowing the current food, pheromone or ant dis-
tribution on the grid, as well as the ant’s location and direction, we can argue
that the value of a specific perception can be unambiguously determined. This
reasoning allows us to introduce the ant perceptions as abstract functions in the
context. Specifically, the food perception can be defined as follows:

axm5 : MaxFoodSmell ∈ N1
axm6 : FoodPerception ∈ (Locations → N) → (Locations × Locations 7→ 0..MaxFoodSmell)

The first parameter of FoodPerception is the current food distribution on the
grid. The second parameter is a pair of locations, the first element of which is
the current location and the second one is a possible next location (a position
in the vicinity). The resulting value is the perception strength. We also assume
that there is a upper limit for it (e.g., the maximal food smell).

In a similar way, we introduce PheromonePerception and AntPerception.
The final perception, NestPerception, can be defined slightly simpler: since the
nest location is stationary, the first parameter can be omitted.

axm11 : MaxNestSmell ∈ N1
axm12 : NestPerception ∈ (Locations × Locations 7→ 0..MaxNestSmell)

When foraging, an ant should evaluate different alternatives in its vicinity
based on a combination of all its perceptions: food, pheromone, other ants, and
nest. In other words, four perception values should be merged into a single value,
which is then can be compared with the corresponding values for each possible di-
rection. In the concrete system implementations, the perception values are often
partitioned into the distinct intervals with the corresponding attached weights.
In our formal development, we abstract away from the concrete heuristics allow-
ing for producing a single perception value1. Instead, we define a generic abstract
function, Favour,

axm14 : Favour ∈ N × N × N × N → N

which can be instantiated in many different ways.
For the given food, pheromone, and ants distributions fd, pd, ad, and a pair of

locations (loc 7→ next), the overall perception value can be calculated as follows:

1 How such heuristics can be obtained, see, for instance, [2].



Favour (FoodPerception fd (loc 7→ next), PheromonePerception pd (loc 7→ next),

AntsPerception ad (loc 7→ next), NestPerception (loc 7→ next))

In the dynamic part of the model, we introduce two new variables:

inv4 : nextLocation ∈ WorkingAnts → Location
inv5 : DensityAnts ∈ Locations → N

The first variable, nextLocation, stores the next location an ants decides to move
to based on its environment perceptions. The variable DensityAnts contains the
dynamic information about the quantity of ants in grid locations.

Based on the perception functions introduced in the model context, we can
now elaborate on the ant decide stage. Specifically, the abstract event Decide

is now split into its several versions (Decide MoveExplore, Decide MoveReturn,
Decide HarvestFood, ...) that cover different ant decisions. The introduced per-
ception functions are most useful for the events where an ant should decide the
next location to proceed to. For instance, the eventDecide MoveExplore presented
below should rely on all the ant perceptions.

EVENT Decide MoveExplore
REFINES Decide

ANY ant, nextDir, maxFav WHERE

grd1 : ant ∈ WorkingAnts ∧ AgentStage(ant) = decide

grd2 : GoalReached = FALSE ∧ nextDir ∈ Next(currentLoc(ant))
grd3 : maxFav = FAVOUR(ant 7→ nextDir)
grd4 : maxFav = max({dir · dir ∈ Next(currentLoc(ant)) | FAVOUR(ant 7→ dir)}

THEN

act1 : AgentDecision(ant) := move

act2 : AgentStage(ant) := act
act2 : NextLocation(ant) := nextDir

END

where FAVOUR(ant 7→ nextDir) stands for

Favour( FoodPerception (QuantityFood) (currentLoc(ant) 7→ nextDir),

PheromonePerception (DensityPheromone) (currentLoc(ant) 7→ nextDir),

AntsPerception (DensityAnts) (currentLoc(ant) 7→ nextDir),

NestPerception (currentLoc(ant) 7→ nextDir))

The event allows an ant to choose the most favourable direction to move next.
It is the location nextDir belonging to Next(currentLoc(ant)) and giving the
maximal FAVOUR(...) value based on the current ant perceptions.

The Fourth Refinement. One of the main purposes of the presented formal
development is to formally establish the reachability of the main system goal:
”All the distributed food will be eventually transferred to the nest”. In the second
refinement, we already proved that all the events affecting the food distribution
are convergent and the amount of food outside the nest is constantly decreasing.

However, this result does not concern the events modelling the ants moving
in search of the food or drawn by the left pheromone, ants returning to the
nest, etc. We have to ensure that the ants do not stay forever in such modes of
operation. We can achieve this by deriving the necessary conditions (constraints)
on the ant perception functions that essentially control ant movements.

When ants are returning to the nest (or going after the food/pheromone
smell), they have a specific target to reach, after which they switch to a different



activity (operational mode). The property we have to ensure is that, if an ant
moves to the next location according to the used perception functions, it always
gets closer to the target of its current operational mode. We ensure this by adding
additional expected constraints (axioms) for the abstract perception functions
in the model context. Then we are going to use these constraints in the model
machine component to prove termination of the ants in particular operation
modes. For instance, we constrain the definition of NestPerception as follows:

axm17 : ∀loc, next, prc. loc ∈ Locations ∧ next ∈ Next(loc) ∧
prc = NestPerception(loc 7→ next) ∧
prc = max({dir · dir ∈ Next(loc) |NestPerception(loc 7→ dir)}) ⇒
next = Nest ∨ (∃loc′. loc′ ∈ Next(next) ∧ NestPerception(loc′ 7→ dir) > prc)

This axiom states that, if an ant proceeds to the direction with the maximal
nest perception value, it either immediately reaches the nest or there exists
the next location after that with an even higher perception value. Since we
have introduced the constant for the maximal nest smell, the nest perception
value cannot go up indefinitely. In similar fashion, we add the corresponding
constraints to the other perception as well as the Favour function.

In the model machine component, we explicitly introduce ant operation modes
by partitioning the working ants into separate classes. For instance, the variable
AntsApproachingNest is introduced for the ants returning to the nest.

inv7 : AntsApproachingNest ⊆ WorkingAnts

The corresponding model events are refined to update this variable if necessary.
Moreover, we formulate the variant in order to formally demonstrate termi-

nation of the ants in this operation mode:
Σ (ant · ant ∈ AntsApproachingNest | (maxNestSmell − max(

{ dir · dir ∈ Next(currentLoc(ant)) | NestPerception(currentLoc(ant) 7→ dir)})))

The decreasing of this variant (for the corresponding events) is proved by relying
on the axiom axm17 presented above. In a similar way, we formulate the necessary
conditions and prove termination for the other ant operation modes.

6 Discussion

The presented formal development of the foraging ants case study has been car-
ried out within the Rodin platform [13] – the integrated tool support for Event-B.
The Rodin platform has significantly facilitated both modelling and verification
of our models. In particular, it has generated over 480 proof obligations, most of
which were automatically discharged. Majority of those proof obligations came
from the last two refinement steps, indicating the rising level of complexity.

By formulating many important notions as abstract sets and functions (with
only essential properties postulated) in the model context, we have not only
achieved better understanding of the environment-system interdependencies but
also arrived at a parametric system model. Indeed, the obtained generic defi-
nitions can be instantiated with different system-specific parameters and hence
the proposed models can be reused to model a family of cooperative MAS. For
instance, generic definitions of the ant decision rules (perception and Favour

functions) allow us to instantiate them in many ways, assigning different weights
for various perceptions or their combinations.



In the last refinement step we derived the constraints for ensuring termination
of ants staying in particular operation modes. These constraints can be seen as
the conditions to be checked for concrete instances of the perception functions.

Our derived models also demonstrate the interplay between the global and
local reasoning. Even though the ant perception functions (which are the basis
for local ant decisions) are defined globally, they merely represent our global
assumptions that each ant has particular capabilities to perceive its vicinity.

We formalised the problem of system-level goal reachability as a termination
problem. We had to constrain the environment by requiring that no new food
sources appear on the grid, otherwise the system would become non-convergent.
The proved termination for ants in particular modes can be seen as piece-wise
invariant, since it can be violated at the points of ants switching the operating
modes. The termination proof is based on the standard Event-B technique using
variants. To obtain a general termination result, one can consider almost certain

termination approach [9] based on the probabilistic reasoning. However, such an
approach would complicate the refinement process because of intricate properties
of models containing both probabilistic and demonic non-determinism.

To evaluate quantitative characteristics of the modelled system (e.g., how
effective are cooperation strategies of concrete instances of the decision rules),
the designers should bridge Event-B with other approaches. We are planning to
investigate how runtime simulation or model checking can be used for this aim.

7 Related Work and Conclusions

Self-organising systems have attracted significant research attention over the last
decade. Majority of the approaches rely on simulation and model checking to ex-
plore the impact of different parameters on the system behaviour. In [7],Gardelli

uses stochastic Pi-Calculus for modelling self-organising MAS for intrusion de-
tection capabilities. The SPIM tool is used to assess the impact of, e.g., the
number of agents and frequency of inspections, on the system behaviour. In [5],
a hybrid approach for modelling and verifying self-organising systems has been
proposed. This approach uses stochastic simulations to model the system de-
scribed as a Markov chain and probabilistic model checking (using the PRISM

tool) for verification. Konur et al. [10] also use PRISM and probabilistic model
checking to verify the behaviour of a robot swarm. The authors verify the system
properties expressed in the PCTL logic for several scenarios.

In this paper, we have experimented with a technique that not only allows
the designers to verify certain system-level properties of self-organising MAS,
but also provides a support throughout the development process. In our work,
we start from a high-level system model and derive the specification that details
the individual agent mechanisms leading to reaching the desired goal.

The derivational approach has been also adopted in our previous work [12].
There we have studied the mechanisms of goal decomposition by refinement
and ensuring data integrity in cooperative MAS. In contrast, in this paper we
propose how to create a parameterised generic model of the system environment
and establish the link between actions of autonomic agents and the environment



state. Moreover, we demonstrate how to formally represent agent perception and
decision rules as generic system parameters.

In this paper, we presented a case study in formal development of a nature-
inspired self-organising MAS. We demonstrated how to derive a detailed specifi-
cation of a colony of foraging ants by refinement. Formal derivation has provided
us with a structured and disciplined framework for the development of a complex
system with intricate agent interactions. We believe that the proposed approach
is promising for modelling the logical aspects of self-organising systems.

Self-organising MAS are complex multi-facet phenomena and hence require a
range of approaches for their modelling and analysis. The proposed approach
should be integrated with stochastic analysis techniques, in order to identify the
most optimal system parameters that would allow the system to achieve its objec-
tives not only in terms of logical correctness but also performance, reliability and
required resources. Integration with such techniques constitutes one of the direc-
tions of our future research.
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3. Camps, V.: Vers une théorie de l’auto-organisation dans les systèmes multi-agents
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