Introduction

Being able to find relevant information about a topic is becoming more and more important for everyone, especially now that the number of available documents is skyrocketing on the Internet for example. Indeed, everyone needs to find information, whether they have a question about a particular subject or they want to find solutions to a problem, but, because there is such a great number of documents, it is very likely that most of them will not answer that problem. This is why search engines are very widely used tools when one needs to find accurate information. Indeed, they allow users to express their question, called a query, and retrieve a list of documents that might be of interest for this specific query. Therefore, Information Retrieval can be defined as a "set of tools and techniques that enable to find documents containing information that is relevant to a need" [START_REF] Radhouani | Introduction à la recherche d'information[END_REF]. It is in this context that we worked on this project.

The objectives of this project were to find the parameters that had the greatest influence in the prediction of performance measures and to identify parameter values that give the best performances, for different categories of queries. These categories will be defined according to several query characteristics.

In this report, we will explain what Information Retrieval is and what its main steps are. Then, we will present the data, including parameters, performance measures and the changes we made in order to get the data set we analysed. Finally, we will present the statistical analyses we performed to reach our objectives and their conclusions.

1 Information retrieval: how it works

Principle

With the development of the Internet and the increasing number of documents and data, it becomes more and more important to be able to find relevant documents for a problem. For example, when people are looking for an answer to their question on Google, they expect to find the best webpages in the first results. This is what information retrieval systems try to do: for a given question, or query, they return the documents (among a collection of documents) that are the most probably relevant. This is what happens with web search engines such as Google, but it is not limited to webpages and can be used for any kind of document.

In order to do that, many algorithms and parameters exist but, since it is not usually known in advance what documents should actually be retrieved, it is hard to know how good they are. Moreover, it is known that there is no best algorithm or best combination of parameters for every query. There might however be an algorithm that works better than others on a certain type of query. This is what we will study in this project. [START_REF] Déjean | Mining information retrieval results: Significant IR parameters[END_REF] Several information retrieval campaigns were created to help develop and improve algorithms. In these campaigns, there is a long list of documents and queries, and for each query, algorithms will be tested and the relevance of their results evaluated. Therefore, by using campaigns of previous years, it is possible to know in advance which documents are relevant to each query. This is the case of the Text REtrieval Conference (TREC) that we used in this project. [START_REF]Text REtrieval Conference[END_REF] Thanks to this, we will be able to evaluate each of the algorithms and combinations of parameters that we want to test, by comparing the list of retrieved documents and the set that is supposed to be retrieved. For this evaluation, many performance measures exist, but most of them come from these two measures:

-precision: ratio of the number of relevant documents returned by the system to the total number of documents returned nb relevant docs retrieved nb docs retrieved -recall: ratio of the number of relevant documents returned by the system to the total number of relevant documents nb relevant docs retrieved nb relevant docs

The steps of information retrieval

There are two major steps in the information retrieval process: indexing and scoring. In some cases, there can also be a query reformulation. After these two, or possibly three, steps, the system gives a list of documents that it considered to be relevant and it is this list that will be evaluated to analyse how good this system is.

During each of these steps, there are many algorithms and many parameters that can be used, which gives a great number of combinations that can be tested.

Indexing

The goal of this first step is to transform queries and documents into a list of indexes representing their content, to make the matching possible. During this step, structure words, such as pronouns and prepositions, are removed, and the remaining words are stemmed, which means only their root will be kept. Finally, each term will be given a weight, depending on criteria such as its frequency in the query or the document.

Scoring

During the second step, the indexed query is compared with the indexed documents of the collection. Representations of the documents that are the most similar to that of the query will be considered to be the most relevant, and the corresponding documents are the ones that will be retrieved in a decreasing similarity order. There are different methods to compute these similarities and there are again many possible parameters using each method.

Reformulation

After the most relevant documents have been judged by the user (implicitly or not), there can be a query reformulation: the terms that are associated most often to the relevant documents can be added to the original query. Automatic query reformulation is also often applied. In that case, it considers that the first initially retrieved documents are relevant and uses them in the reformulation. Then, this new query is stemmed, weighed and compared to the documents again.

After these two (or three) steps, the retrieved documents are compared to the list of relevant documents using the performance measures previously described. These measures are the ones we will be studying in order to know how good a given search system is.

2 Presentation of the data set

Data observation and transformation

Before this project, 100 queries from the TREC data were kept and more than 80,000 different combinations of algorithms and parameters were used on each of these queries. Then, the corresponding results were evaluated using performance measures and the data set we had corresponds to these combinations and measures.

Description

At the beginning, the complete data set was made of 8,159,461 rows and 94 columns. The columns correspond to:

-18 search parameters (9 for the indexing, 4 for the scoring and 5 for the query reformulation)

-1 query (a number between 351 and 450)

-75 performance measures

The rows correspond to the evaluation results of each query and each combination of parameters, or search system, that was considered.

The list and meaning of each of the 18 search parameters, corresponding to the indexing, scoring and reformulation steps, can be found in Appendix A.

Simplifications

Two major simplifications were made in the columns of the data set, in order to reduce its size. Indeed, the original size was almost equal to 5GB, so it seems really important to reduce it. We needed to be careful not to lose too much information in this process though.

Reducing the number of parameters When we looked at the values of the search parameters, we realised that nine of them were identical for every system. For example, bloc was always TRUE. This cannot help us in this project because we need to compare parameters that are different from one system to another in order to see if one of them is better than others. Hence, a variable that is identical in every system does not bring any information to our problem of finding the most influential parameters and this is why we removed the corresponding parameters from the data set.

We also removed TrecQueryTags_skip because it was the exact opposite of another parameter: TrecQueryTags_process. Indeed, TrecQueryTags_process tells which fields among TITLE, DESC and NARR, are used in the information retrieving process and TrecQueryTags_skip tells which fields are not used. It was not useful to keep both of them, which is why we removed the variable telling which fields were not used (TrecQueryTags_skip).

Reducing the number of performance measures Many performance measures were correlated: for example the precision was computed for the first document retrieved, for the first two, the first five, the first ten... Moreover, having a great number of performance measures to analyse takes a lot of time. For this reason, we decided to focus only on one performance measure: the mean average precision, or MAP, and the 74 other measures were removed from the data set. It could be interesting to conduct the same analyses as we did with another performance measure, to see whether results are similar or different conclusions can be made. The MAP is defined as

MAP = 1 D D d=1 α d precision(d)
where D is the total number of documents retrieved, precision(d) is the precision computed when the d th document is retrieved and α d = 1 if the d th is relevant to the query and 0 otherwise. This measure was chosen because previous work had been done using this measure [START_REF] Déjean | Mining information retrieval results: Significant IR parameters[END_REF] so it would be possible to compare our results. Moreover, it is an average so it could be a good summary of the system efficiency.

After these few simplifications, the new data set was made of 8,159,461 rows and 10 columns.

Data importation using the ff package

Thanks to the ff library, it was possible to import the data set into R. Indeed, this package allows some objects to "behave (almost) as if they were in RAM by transparently mapping only a section (pagesize) in main memory" [START_REF] Adler | Package 'f[END_REF]. That way, R is able to import large data sets. However, when we tried to import all of it, an error occurred because there was a problem of type in one of the rows. Since it was not possible to read every row to find where the problem was, we imported small portions of the data set until we could finally find the row that was responsible for this error. It did not correspond to any of the system parameters or queries as we can see with the blue row on Figure 1, so we removed it and we were finally able to import the whole data set.

Missing values in the data

Once we had all the data imported into R, we realised that, for 6 systems, some queries (and their performance measures) were missing. Considering the great number of measures per query available (more than 80,000), this will not be a problem for the rest of the project. Nevertheless, we considered it would be easier to differentiate the systems if they all had the same length (100 in this case). For this reason, we added rows in the data frame, corresponding to the missing queries, and the missing measures were coded NA. As a result, the new database was made of 8,159,800 rows, corresponding to 81,598 systems.

Descriptive statistics

With this new and simplified data set, we were finally able to start statistical analyses. First of all, we wanted to see if some parameters were obviously better than others, as far as the MAP is concerned. For this reason, we plotted the boxplots of the MAP for each value taken by each search parameter. As we can see on Figure 2, the boxplots are very similar from one parameter value to another. For example, the median and the first and third quartiles of the MAP are almost identical for the four stemming algorithms that were tested. With the retrieving model algorithm, there are a few differences: boxes of the DFRee and DirichletLM algorithms are a little thinner and lower than boxes of the other algorithms. It means that both their median and their variance are smaller than those of other algorithms. This difference is not strong enough however to conclude that these two algorithms are worse than the others. We can also see that most of the good MAP values are outliers, which means that few systems and queries give good results (less than 10% of the data with a specific value of a parameter). As a result, it may be difficult to efficiently predict good MAP results. Finally, we can notice that the first decile of the boxplots is very close to 0 and most of the MAP measures are smaller than 0.4, which means there are many systems that give bad results and there might also be a lot of rows for which the MAP is null. We can draw the same conclusions from the other boxplots, presented in Appendix B.

The relatively bad performances can also be observed on the histogram of the MAP measures presented on Figure 3: there are many more small MAP values than great ones.

Bad results

As we just saw, there is a lot of low MAP measures in the data set. This could be a problem later when trying to predict good results. Indeed, if there are much more bad results than good ones, algorithms will tend to predict them better than good results. For this reason, it would be better if we could remove some of these bad MAP measures from the data set, but before we can do that, we need to know how many there are and if they have specific characteristics. For example, is it always the same systems that give bad results? We started by computing the number of rows that had a null MAP and the number of corresponding systems:

#number of rows with a null MAP > length(which(dataBIS$map[]==0)) [START_REF] Adler | Package 'f[END_REF] 437672 #number of systems with at least one null MAP > tmp <-unique(which(dataBIS$map[]==0) %/% 100)+1 > length(tmp) [START_REF] Adler | Package 'f[END_REF] 69723 Hence, almost 70,000 systems have at least one query with a null MAP, so we cannot remove all of them from the data set without losing a lot of information.

We also wondered whether some queries gave worse MAP measures than others. In that case, it could have been possible to find search systems or to identify search parameters that give good results, in comparison to the others. This is why we computed the number of null MAP results by query. The greatest numbers are presented in Table 1. We can note that queries 442 and 432 are responsible for many more null MAP measures than other queries. Indeed, by comparing these numbers to the total number of null MAP results previously computed, we see that queries 442 and 432 respectively represent 11.9% and 11% of the null data while query 389 only represents 4.2% of them. This probably means that queries 442 and 432 are much harder than the others, so it could be interesting to study the MAP results of these two queries in more details.

Removing bad systems

Since it was not possible to remove all the systems for which there was a null MAP measure, we then tried to find out whether some combinations of parameters gave really bad results, no matter what the query was.

In order to do that, we first computed the mean and the greatest MAP for each system. Then, to identify the bad systems, we needed to choose a threshold below which the systems would be considered as such: we decided to remove the ones whose greatest MAP was smaller than 0.1 or whose mean MAP was smaller than 0.01. Thus, 2,269 systems were removed, which represents approximately 2.5% of the whole data set.

After this removal, we performed the same analysis as before: we looked at the total number of rows for which the MAP measure was equal to 0 and we computed, for each query, the number of systems with a null MAP. As a result, we noted that there were "only" 294,947 rows with a null MAP. This means that, by removing about 2.5% of the data, we removed more than 30% of the MAP measures that were equal to 0. As for the number of bad systems (those for which MAP=0) per query, the results can be found in Table 2. The first thing to be noticed is that it is the same queries as before that give the worst MAP results, or at least the most null MAP measures. Therefore, we can see that queries 442 and 432 are the ones with the most null MAP measures, which represent now about 16.9 and 15.7% of the rows for which MAP=0. It seems even more important now to analyse the results of these two queries, to see if, even though they are quite difficult, some parameters allow us to get better results than others.

Before we can do that however, we need to check that no important bias was introduced when we removed systems and that the distribution of the results is still similar to the original one. In order to do that, we plotted the MAP boxplots by query, ordered by increasing median, before and after removal of the worse systems (see Appendix B, Figures 18 and19). Thus, we can see that the two graphs are very similar, and there are very few differences. Moreover, the order of the queries is essentially the same between the two figures. There are still many bad results since the first decile is still very close to 0 for most of the queries but, as we said before, it will not be possible to remove them all so the changes that were made seem quite satisfying.

Analysis of queries 432 and 442

Since no major bias was introduced when we removed rows, we can now analyse the results of queries 442 and 432. Indeed, we saw that they were responsible for more than 30% of the null MAP measures in the new data set, so it could be interesting to identify parameters that work better than others on these two queries. However, as it appeared on Figure 19, the MAP measures of these two queries are very small, no matter what the system is. Therefore, what can be considered as better results for these queries will still be very bad results for others, but are there parameters that give less bad MAP measures? The first thing to be noticed about these two queries is that their maximum MAP measure is very small (see Table 3). As a result, we will say that a "good" MAP measure for these two queries is greater than 0.05. There are only 120 and 18 systems for which the MAP is greater than this threshold.

Then, we looked at the values taken by each parameter in these 120 and 18 rows, to see if some of them were identical. The results of this study are presented in Figure 4. Unfortunately, it is very rare to see the same values of the parameters between queries 442 and 432, so it is not possible to know how to set parameters in order to get less bad results. However, we can see that only two out of the seven retrieving model algorithms appear in this table: DirichletLM and DFRee. The same thing happens with two out of the five values of TrecQueryTags_process. It could mean that these algorithms and fields give slightly better results on queries 432 and 442. However, we need to be very careful with these results because very few systems have been represented and we only focused on two queries, so we do not know whether this is specific to these queries or it could be generalised to other queries.

Query clustering

Because it is impossible to find one best system for all the queries, the objective is to define clusters of queries. That way, it may be possible to find a system that works best for one type of queries.

In order to do that, we first need to define these clusters. Two approaches were used. The first one was based on the query complexity: we assumed the most efficient systems would be different depending on how difficult the query is, so we divided queries into three levels of difficulty: easy, medium and hard.

In the second approach, we wanted to separate queries into less arbitrary groups and used a statistical method to do so. Therefore, about 90 query characteristics were computed by a post-doc and we performed a hierarchical clustering to define groups of queries.

By complexity

The first thing we tried was to separate the queries according to their complexity: easy, medium and hard queries. However, there was a first issue when we decided to do so: how to define what an easy or hard query is?

We chose to have approximately the same number of queries in each cluster, so we first computed and ordered the median MAP result of each query. Then, we decided that the first 33 queries would be the hard ones (the ones with the smallest median MAP), the following 33 would be considered to be medium queries and, finally, the 34 queries with the greatest median MAP would be the easy queries.

Analysis of variance

The first thing one can wonder is whether all parameters have a significant effect on the MAP results. Indeed, there could be, for one of the eight search parameters, no significant difference between the values of this parameter, as far the MAP measure is concerned. In that case, it would mean that, no matter what value we give to the parameter, the MAP measure will stay almost the same. It would not directly help us find the best system, but it could reduce the number of parameters to optimise. Moreover, some parameters could have an influence on easy queries and none on hard ones, for example.

In order to study this significance, we decided, for the three query levels, to perform ANOVA tests. Because of the size of the data set, we could not test all queries in a complexity level, but instead we randomly selected two queries for each complexity level.

In a first model, we considered there was only one effect: the parameter we wished to study:

MAP ij = µ + param i + ij , where ij ∼ N (0, σ 2)
param i is the effect of the i th value of the parameter on the MAP measure. This was done for each of the eight parameters.

In a second model, we considered all effects at the same time with no interaction:

MAP i = µ + param1 k1(i) + ... + param8 k8(i) + i , where i ∼ N (0, σ 2) k j (i)
is the value taken by the j th parameter for the i th system.

These two models were only applied to the six randomly chosen queries. Figure 5 represents the p-values of Model 1 and the first four parameters (for full results, see Appendix C).

The first two rows of this table represent easy queries, the following two are medium queries and the last rows are hard queries. The p-values were slightly different between Model 1 and Model 2, but the same conclusions can be drawn from them. We see that there is a significant difference between the values of a parameter, for each parameter. The only non significant p-value we get is for the parameter_free_expansion parameter with one easy query. However, this parameter is significant with the other easy query. This could be due to one query in particular so, to get more reliable results, it could be interesting to test the same thing, with differently chosen easy queries.

To sum up the ANOVA results, we can say that all parameters seem to be significant, no matter what query complexity we are considering, except maybe for the free expansion parameter. As a result, we will keep all parameters when trying to model the MAP results in the following section.

Classification trees

We saw that all parameters had an influence on MAP measures, but ANOVA tests do not tell us what values to give to these parameters, in order to get good results. This is why we will now try to model the MAP measures. Indeed, if we can find a model that predicts well the data, we might be able to use it in order to optimise the parameters and to get the best MAP as possible.

The first statistical approach we used to model the data was classification trees. An advantage of this method is that, besides predicting results, we can see what the best discriminating variables are by plotting the trees. This is useful because it can tell us what parameters are the most important to differentiate good results from the others. Therefore, we can get an idea of what parameters to optimise in priority. However, classification trees can be very unstable and depend a lot on the training set. This is why another method, more stable, will be used later, to check that the results are similar.

Here, we are not interested in knowing exactly what the MAP value will be for one combination of parameters, we would rather know how good this value will be. Therefore, we need to define what a good or bad result is. In order to do so, we looked at the first and third quartiles of the MAP for each query group and decided that the results would be good when they were greater than the third quartile, bad when they were inferior to the first quartile and average otherwise. The chosen limits of each level of satisfaction, for each complexity level, can be found in Table 4. were computed for all systems and all queries of each complexity level, using the rpart function in R. We also decided of a pruning (cp=0.001), in order for the trees not to be too complex. That way, it will be possible to interpret them. Easy queries We can note that the parameter that best discriminates the MAP results is trec_qe_model, the model of query reformulation (see Figure 6). Thus, it separates the systems with the Info algorithm (trec_qe_model=c) on the left from those with other algorithms on the right. However, we can see that no combination of parameters gives "good" results, we only get "bad" and "average" (avg). Maybe we could have had "good" results if we had pruned the tree later (using a smaller complexity parameter) but the model would have been too complex and there might have been an overfitting. This is not very satisfying because it means that this method does not allow us to predict the best results and, therefore, to know what parameter values to use.

We can see however that there are a few "bad" results, so we know which parameter values to avoid. For example, when the Info algorithm is used and the parameter for expansion model is free, it is very likely that results will be "bad". Can we draw the same conclusions for medium and hard queries?

Figure 7: Classification tree for medium queries

Medium queries

The tree shows that it is the variable TrecQueryTags_process that best discriminates the results (see Figure 7). Moreover, we note that, this time, we get two "good" results. This is rather encouraging because we can finally see what parameter values to use to get good MAP measures. Thus we see that, for both "good" leaves, the fields to use (TrecQueryTags_process) are TITLE or TITLE, DESC, the reformulation algorithms (trec_qe_model) are Bo1, Bo2, KL, KLCom or KLCor and the retrieving model algorithms can be either BB2, DFRee, InB2, BM25 or InL2.

Hard queries With hard queries, there are again two "good" predictions and they happen with the same parameter combination as in medium queries, except that there is now the stemmer algorithm that has an importance with one of the predictions (Figure 8). However, this difference might just be because there was less pruning in this tree than in the previous one. As a result, the three most important parameters to set are again TrecQueryTags_process, trec_qe_model and retrieving_model. To conclude, we noted that results were not always satisfactory as they could not always predict "good" MAP measures. Nevertheless, it is more interesting to know which parameters to be careful about with hard queries than easy ones. Indeed, with easy queries, results are supposed to be quite good and parameter values do not have as big an influence as with hard queries.

As it was said before, classification trees tend to be quite unstable so we would like to confirm the previous results with another method: random forests. However, this method has the disadvantage of giving results that are more difficult to interpret.

Random Forests

The second statistical approach we used to model the goodness of MAP measures is a model aggregation method called random forests. In this method, we give a number to the algorithm (randomForest function), which randomly chooses this number of variables (among all the variables of the data) for every split of classification trees. Many trees are computed that way and results are then averaged in order to get an importance measure for each variable, based on the changes its presence or absence caused. We used this method on each of the three query categories and optimised the number of variables to select. However, because the training set was very large, it was impossible for R to store all results with a reasonable number of trees. For this reason, we applied random forests to 10,000 randomly chosen rows of the training set.

Number of variables to select

To decide how many variables to keep for every tree, we used the train function (package caret) that computes random forests for several numbers of variables and returns, thanks to cross-validatino, an accuracy measure that depends on the number of chosen variables. With every complexity level, this accuracy was the greatest when there were four parameters in the trees. It can be seen on Figure 9, which was computed for easy queries, but the two other graphs were similar. Parameter importance When the number of variables has been set, trees on the random forests algorithm can be computed (in this case, 500 trees in each forest). Then, we plotted the parameter importance graphs for each complexity level. For example, Figure 10 represents the parameter importance for easy queries and we can see that the search parameter that appears to be the most important to differentiate the goodness of MAP results is the retrieving model. The same thing was done with medium and hard queries and, every time we plotted the corresponding importance measures (see Figures 20 and21). The parameters that appear to be the most important for each complexity group are presented in Table 5. First of all, we note that, even though there are a few differences between easy, medium and hard queries, two parameters are always among the three most important ones: the retrieving model and the reformulation model (trec_qe_model). Moreover, if we compare these results with the classification trees, we can see that there are quite similar. For example, with easy queries, the first variable that was used to separate the data was trec_qe_model, which is here the second most important. At the next split, it was parameter_free_expansion and retrieving_model. There are, of course, differences in the order of importance between classification trees and random forests, which can be explained by the fact that classification trees are unstable and depend a lot on the training set. Random forests on the other hand are more stable because of the average that is computed. For this reason, the results of randomForest are probably more reliable.

The results that we obtained with queries divided into three groups of different complexity levels are quite encouraging. However, it would be more interesting to have the same kind of information when queries are clustered into groups defined by other criteria, more objective than complexity. Indeed, the way we defined complexity levels depend entirely on the queries that we consider, since they were ordered and then separated into equal sized groups. Therefore, characteristics were computed for every query (for example the number of words they are made of) and we are now going to define a new clustering, using these characteristics.

Hierarchical clustering

The list of characteristics that we used to define new query clusters can be found in Appendix D. This new data set was made of 550 rows and 98 columns, corresponding to 550 TREC queries and 97 characteristics. We only kept queries 351 to 450, the ones that we had in the other data set and we noticed that some characteristics were identical for every one of these queries, so we did not take them into account and removed them from the data set. As a result, we had 100 queries and 83 characteristics to use, in order to define clusters.

Clustering using the original data

At first, we tried to perform hierarchical clustering of the queries using the original data, without changing anything to the characteristics. However, these were very different: some were much greater than others, there were characteristics that barely changed from one query to another... As a result, we could not get a satisfying clustering, no matter what method was used to compute distances.

Clustering using PCA coordinates

To solve this problem we performed a principal component analysis on the data, using the PCA function of the FactoMineR package. That way, distances will be computed on the query coordinates in this new base and they will all have roughly the same size. Moreover, it will be easier to represent clusters that way.

When we look at the variable coordinates in the first three dimensions, we get the following graphs: First, if we look at the horizontal axis, which corresponds to the first dimension of the PCA, we can see that there are, on the left side, variables related to the LOG and to the terms frequency in the collection (TF). On the right side however, we can find characteristics that have something to do with the inverse document frequency (IDF) and the normalised inverse document frequency (IDFN).

With the second dimension (left side graph), there are, on the upper side, characteristics SUM(TF_Q), SUM(LOG), SUM(IDFENQUIRY) and NBWords. On the lower side, characteristics concern the terms ambiguity and minimum inverse frequencies. Finally, the third dimension (right side graph) differentiates characteristics that measure the similarity between original and extended queries on the lower side, from characteristics that measure ambiguity of the extended query on the upper side. Now that we have new coordinates, we can compute the Euclidean distance matrix and the hierarchical clustering. We need to choose the agglomeration method that will be used by the hclust function though. Because Ward's method tends to give equal sized clusters, this is the one we will use. Then, we get a dendrogram we can finally use for the clustering (see Figure 12). To choose how many clusters to keep, we plotted the height of the dendrogram branches against the number of clusters (see Figure 13). There are several sharp decreases in this height, so we will use one of them to decide how many clusters to keep. Keeping 5 clusters seemed appropriate because it allowed us to have enough groups so that data sets would not be too large, but not too many so that there would be enough queries inside each group.

We then wanted to know how many queries there were in each cluster, so we can thus see in Table 6 that the last two clusters represent few queries. This is probably because the 8 and 1 queries have a particular behaviour, regarding the three PCA dimensions (see Figure 14), so we decided not to include them in statistical analyses. Indeed, if these queries are quite different from the others, as it can be expected from the hierarchical clustering, they might have a completely different response to search parameters and we would rather know what values to use in a more general context, so that MAP results are quite good for most of the queries. It is possible to graphically represent the five clusters, using the axes defined by the PCA (see Figure 14). We can see that clusters 1 to 3 are not very different when we consider their coordinates on the vertical axes. Cluster 2 seems to be the one for which queries have the greatest LOG and TF whereas cluster 1 is the one where queries have a great inverse frequencies.

Classification trees

As we did when we were considering complexity clusters, we are now going to study classification trees on queries from the first 3 clusters of the previously defined clustering. We also defined goodness of MAP measures the same way as before: by using quartiles (see Table 7 for the values). We wanted to know, as we did with easy, medium and hard queries, what the best discriminating parameters were and we hoped that we would be able to observe some combinations of parameters that would give "good" results. However, even when tried to use a smaller complexity penalisation (cp=0.0005), we were not able to get "good" results with this tree. Maybe we could have had some if we had used a very small penalisation, or not at all, but, in that case, conclusions would not have been reliable because of the instability of this method.

Cluster 2 The most important variables for the second cluster are retrieving_model and TrecQueryTags_process (see Appendix B, Figure 22). Classification trees for cluster 2 were not able to predict "good" results either, even when we changed the penalisation.

Cluster 3 For the last cluster, the most important parameters are the same as the ones of the two other clusters: TrecQueryTags_process and retrieving_model (Appendix B, Figure 23). There were no "good" predictions with this cluster either.

Conclusion

The most important variables that we have observed with these trees are the same as those obtained when we considered the complexity clusters. This probably means that parameters TrecQueryTags_process and retrieving_model are indeed very important in the prediction of the MAP measures. However, what we really wanted to know was the parameter combinations that gave "good" results, which was not possible with any of these trees. To check whether the problem came from the training set or from the complexity penalisation ("cp"), we changed their values several times, but we realised that none of these changes allowed "good" predictions. It could be because there are twice as many "average" results in the data as "good" or "bad" ones, but in that case we would have had the same problem with the "bad" predictions, which is not the case here.

Random Forests

We used random forests again, hoping that, by computing a great number of classification trees, there would be "good" leaves, so that the model would be able to predict good MAP measures. As previously, this method was used on 10,000 random rows of each of the three query categories and 500 trees were computed. By plotting graphs of accuracy, we saw that the accuracy was the greatest when there were four variables in the trees, no matter what the cluster was. We could then compute parameter importance using the mean decrease in accuracy for each cluster, and see what the most important parameters were when trying to predict the goodness of MAP measures. This is why random forests were tested on a portion of a training set, instead of the whole data set, so that we could keep a test set. However, it would not be reasonable to try to predict all the data from the test set, as we "only" used 10,000 observations in the random forest model. For this reason, 7,000 rows were randomly chosen from the test set in order to be predicted by the model. Confusion matrices could then be computed so that we could get an idea of the prediction error. As we can see in Table 9, the error rates are really high, especially with "good" and "bad" predictions. This difference between errors is due to the greater number of "average" MAP results in the training set. Therefore, it is easier for the model to predict "avg" results. However, even for average MAP results, the error rates are very high.

For this reason, it will not be possible to know for sure what parameter values should be used in order to get good MAP measures. We can get an idea of it, but to get reliable answers, we would need to have better models.

To get a graphical idea of what values to choose, we decided to use mosaic plots on the training set predictions. That way, we can compare, for a given search parameter, the proportions of each value in every MAP goodness category. Then, if we see that the proportion of a specific algorithm in the "good" predictions is much greater than its proportion in the "average" and "bad" predictions, it could mean that this algorithm gives better MAP results, or at least it does so for the computed model. Mosaic plots were only drawn with the two previous most important variables: retrieving_model and TrecQueryTags_process for each of the three clusters.

Mosaic plots corresponding to the first cluster are presented in Figure 16 and the graphs corresponding to the other clusters can be found in Appendix B (Figures 24 and25). Thanks to these graphs, we can see that, in the "good" predictions of Cluster 1, there are more InL2 algorithms than for the other levels of satisfaction. On the other hand, there are less DirichletLM algorithms than in "avg" and "bad" results (see left side graph). It could mean that InL2 is an algorithm that works better for queries that belong to the first cluster and that it would be good to avoid the DirichletLM algorithm.

Results are less obvious on the right side graph (TrecQueryTags_process). There might be a little bit more TITLE and TITLE,DESC in the "good" predictions than in the others, but what we can say for sure is that there are many more NARR fields used in the "bad" predictions. Therefore, it is probably a good idea to avoid using only this field in order not to get too bad MAP measures.

Using the same kind of arguments, it is possible to identify a few algorithms, for each cluster, that seem to be more present in the "good" predictions. This is what we summarised in Tables 10 and 11. What we can see from these tables is that parameter values are very similar between the three clusters. Hence, it would seem like, to get good MAP results, one should choose the TITLE field (maybe also the DESC field) and avoid NARR. Moreover, retrieving algorithms InL2 and InB2 seem to give better results whereas it would be better to avoid DirichletLM algorithm.

These results only concern the first 3 clusters that were created, so choices would probably be different with the other two query clusters. Moreover, these results are not to be entirely trusted as error rates were very high, but they can be a trail for new studies.

Conclusion

We tried in this project to determine which search parameters influence the most MAP results and we tried to find what values to give them, in order to get good results. Our work was made of several steps during which we reduced the size of the data set, we separated queries into clusters (there were two kinds of clustering), and we used statistical methods to evaluate the influence of parameters.

We had to face a few problems, mostly due to the great size of the data set, and because of that, the models we got had considerable error rates, which makes them not completely reliable. It appeared however that parameters retrieving_model and TrecQueryTags_process were quite influential and these are probably the ones one should try to optimise first.

Models would need to be improved in order to get more reliable results. This could be done with a few changes. For example, another way to define how good results are could be used, with equal sized categories, or maybe with only two of them (good and bad). New data could also be computed with the parameters that seemed to give better MAP measures, to confirm the results and maybe then, error rates would be smaller as there would be less data to analyse.

With improved models and better error rates, statistical tests would need to be performed to compare parameter values and to decide what values to keep to get good MAP measures.

Finally, the same kind of work could be done with another performance measure, to see whether results are similar or if different parameter values enable good performances.

Figure 1 :

 1 Figure 1: Problem in the data

Figure 2 :

 2 Figure 2: Boxplots of the MAP for the first two parameters

Figure 3 :

 3 Figure 3: Histogram of the MAP

Figure 4 :

 4 Figure 4: Summary of systems for which MAP≥ 0.05 (Queries 442 and 432)

Figure 5 :

 5 Figure 5: ANOVA p-values, Model 1

Figure 6 :

 6 Figure 6: Classification tree for easy queries

Figure 8 :

 8 Figure 8: Classification tree for hard queries

Figure 9 :

 9 Figure 9: Accuracy for random forest (Easy queries)

Figure 10 :

 10 Figure 10: Importance of variables (Easy queries)

Figure 11 :

 11 Figure 11: Variables in the three dimensions of the PCA

Figure 12 :Figure 13 :

 1213 Figure 12: Dendrogram of the PCA coordinates (Ward's method)

Figure 14 :

 14 Figure 14: Five clusters in the PCA coordinates

Cluster 1

 1 Figure15shows that the parameters which best discriminate the goodness of MAP measures are TrecQueryTags_process and retrieving_model.

Figure 15 :

 15 Figure 15: Classification tree for Cluster 1 queries

Figure 16 :

 16 Figure 16: Mosaic plots for Cluster 1 (retrieving_model and TrecQueryTags_process)

Table 1 :

 1 Number of null MAP by query (6 greatest)

	Query	442	432	389	412	352	397
	Null MAP 51,941 48,357 18,390 15,681 15,419 14,872

Table 2 :

 2 Number of null MAP by query after removal (6 greatest)

	Query	442	432	389	412	352	397
	Null MAP 49,781 46,225 16,363 13,766 13,705 12,674

Table 3 :

 3 Best

		results, queries 442 and 432
		max(MAP) #(MAP≥ 0.05)
	Query 442	0.0564	120
	Query 432	0.0746	18

Table 4 :

 4 Definition of the good and bad results by complexity

	Complexity	Bad	Average	Good
	Easy	MAP < 0.16	0.16 ≤ MAP ≤ 0.5	0.5 < MAP
	Medium	MAP < 0.03	0.03	

≤ MAP ≤ 0.18 0.18 < MAP Hard MAP < 0.001 0.001 ≤ MAP ≤ 0.04 0.04 < MAP Now that we have defined what a good or bad result is, we can use classification trees. Trees

Table 5 :

 5 Most important parameters by level of complexity

		Easy	Medium	Hard
	1st	retrieving_model	TrecQueryTags_process TrecQueryTags_process
	2nd	trec_qe_model	retrieving_model	trec_qe_model
	3rd expansion_documents	trec_qe_model	retrieving_model

Table 6 :

 6 Number of queries by cluster(5 clusters)

	1	2	3 4 5
	Number of queries 33 20 38 8 1

Table 7 :

 7 MAP quartiles by cluster of queries

	Bad	Average	Good
	Cluster 1 MAP < 0.046 0.046 ≤ MAP ≤ 0.367 0.367 < MAP
	Cluster 2 MAP < 0.002 0.002 ≤ MAP ≤ 0.082 0.082 < MAP
	Cluster 3 MAP < 0.020 0.020 ≤ MAP ≤ 0.274 0.274 < MAP

Table 8 :

 8 Most important parameters for the three new clustersFirst of all, we can observe that, for all three clusters, the most important parameters are the same, they only have a different order. Moreover, these parameters are basically the same as the ones we got with complexity groups. Therefore, it seems like the kind of clustering we use does not have a significant influence on what the most important search parameters are. It could also mean that it is not necessary to divide queries into clusters, in order to know what parameters are the most important.As it was said before, random forests do not allow us to know what value to give to the most important variables in order to get good MAP measures. This is what we will try to determine later, but before we can do that, we need to know how good our model is and how well it predicts the MAP goodness.

		Cluster 1	Cluster 2	Cluster 3
	1st	TrecQueryTags_process	retrieving_model	retrieving_model
	2nd	retrieving_model	TrecQueryTags_process TrecQueryTags_process
	3rd	trec_qe_model	trec_qe_model	trec_qe_model

Table 9 :

 9 Error rates by cluster and prediction (random forests)

	Cluster	Prediction bad avg good
	1	0.76 0.50 0.74
	2	0.76 0.50 0.75
	3	0.74 0.49 0.74

Table 10 :

 10 Parameters values giving "good" predictions

		Cluster 1	Cluster 2	Cluster 3
	retrieving_model	InL2	BB2 and InB2 BB2 and InB2
	TrecQueryTags_process T and T,D	T and T,D	T
		Table 11: Parameters to avoid	
		Cluster 1	Cluster 2	Cluster 3
	retrieving_model	DirichletLM, DFRee DirichletLM DirichletLM, DFRee
	TrecQueryTags_process	N and T,N	N and T,N	N and T,D,N

Notes:

Only parameters in bold were kept in the study.

In the topic fields, T corresponds to TITLE, N to NARR and D to DESC.

Appendix B: Other graphs