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We study the relation between stochastic thermodynamics and non-equilibrium thermodynamics by evaluat-
ing the entropy production and the relation between fluxes and forces in a harmonic system with N particles in
contact with N different reservoirs. We suppose that the system is in a non-equilibrium stationary state in a first
phase and we study the relaxation to equilibrium in a second phase. During this relaxation, we can identify the
linear relation between fluxes and forces satisfying the Onsager reciprocity and we obtain a nonlinear expression
for the entropy production. Only when forces and fluxes are small, the entropic production turns into a quadratic
form in the forces, as predicted by the Onsager theory.

I. INTRODUCTION

At the beginning of the 19th century, the out-of-equilibrium
statistical mechanics received a major boost from the experi-
mental observations of the Brownian motion [1, 2], and the
membrane hydrodiffusion [3]. The first theories to explain
these phenomena were developed by Einstein [4, 5], Smolu-
chowski [6], and Langevin [7], which laid the foundations for
the use of stochastic processes in physics. Importantly, these
approaches provided a definitive test of the atomic hypothe-
sis [8]. Starting from this historical milestone, the Langevin
stochastic equation was widely used and its properties were
studied by introducing the probability density of the vari-
ables involved [9–13], thus developing the modern Fokker-
Planck theory [14–17]. More recently, Sekimoto introduced
the concepts of heat and work for a given stochastic trajec-
tory [18, 19], creating a conceptual link between thermody-
namics and stochastic evolution of a system. Similarly, the
concepts of entropy (total entropy, entropy flow and entropy
production) were associated with Langevin trajectories, com-
plementing the aforementioned thermodynamic view [20–22].
This is the birth of the so-called stochastic thermodynamics
[23, 24]. Subsequently, the introduction of the concepts of
heat, work and entropy into stochastic dynamics has allowed
the principles of thermodynamics to be rediscovered on the
basis of the Langevin and Fokker-Planck methodologies [25–
30]. Furthermore, several fundamental fluctuation theorems
have been derived in this context [31–36].

In parallel with the development of stochastic thermo-
dynamics, the remarkable history of non-equilibrium ther-
modynamics must be outlined [37, 38]. In this case, the
macroscopic thermodynamics of systems at equilibrium has
been extended to slightly non-equilibrium states. The second
principle of thermodynamics is crucial to this development.
In fact, to generalize thermodynamics to non-equilibrium
processes, the explicit expression for the entropy produc-
tion is necessary. In the early thirties, Onsager theory pre-
dicted that the rate of entropy production is always given
by dSp

dt = ∑
N
i=1 JiXi, where the Xi are the thermodynamic
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forces and the Ji are the corresponding fluxes. The theory
is completed by the linearized phenomenological equations
Ji = ∑

N
j=1 Li jX j, where Li j are the phenomenological co-

efficients. Reciprocal relations Li j = L ji have been intro-
duced by Onsager on the base of the microscopic reversibility
[39, 40], and have been extensively experimentally verified
(see, for instance, Ref.[41]). Moreover, in the presence of
physical variables that are odd under time reversal, the On-
sager reciprocal relations must be replaced by the Onsager-
Casimir generalized relations [42, 43]. The theory has been
further extended by de Groot and Mazur for considering vec-
tor and tensor quantities with applications to heat conduction,
diffusion, viscosity and electromagnetic phenomena [44, 45].
More recent contributions deal with generalized Onsager re-
ciprocal relations for states far from the equilibrium [46], and
the demonstration of the Onsager relations with broken time-
reversal symmetry [47].

Today, thermodynamic theories play a crucial role in the
understanding of several nano-systems and physical phenom-
ena, including macromolecular folding and unfolding [48–
50], molecular motors [51, 52], muscles behavior [53, 54], ad-
hesion processes [55–57], micro- and nano-heat engines [58–
60], micromagnetism [61–65], and heat transfer in nanostruc-
tures [66–68], just to name a few.

For these reasons, in this work we want to further inves-
tigate the explicit relation between the stochastic thermody-
namics described by Langevin and Fokker-Planck equations
and the non-equilibrium thermodynamics defined by the On-
sager formalism. In particular, we want to understand if and
how the thermodynamic fluxes and the entropy production
calculated with stochastic thermodynamics can coincide with
those predicted by Onsager’s theory. That is, we would like
to find the fluxes as a linear function of the thermodynamic
forces (imposed by a given protocol), and the entropy pro-
duction as a quadratic function of the same forces (at least for
small forces). We would also like both of these functions to be
defined by means of the same phenomenological coefficients,
also satisfying the Onsager reciprocal relations.

As a matter of fact, there are many works in the literature
dealing with the calculation of the entropic production and/or
the Onsager coefficients for stochastic systems of different
types and under different thermodynamic conditions, as dis-
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FIG. 1. Example of the harmonic system with N = 5 particles and
with interactions described by a complete graph. The elastic con-
stants k0i link each point particle i with the fixed point x0i. Moreover,
the elastic constants ki j = k ji link the point particles i and j. Each
particle is in contact with a reservoir at temperature Ti.

cussed below.
A widely studied situation corresponds to the station-

ary regime. Concerning linear Langevin systems [69, 70],
the possible irreversibility of fluctuations in non-equilibrium
steady states was first recognized by Lax [71]. More recently,
the reversible and irreversible stationary states of Ornstein-
Uhlenbeck processes have been further investigated [72], and
several expressions for the entropy production have been elab-
orated [73]. Importantly, in these expressions both even and
odd variables under time reversal are considered. More-
over, the meaning of the thermodynamic forces in close-to-
equilibrium media has been recently clarified in Ref.[74],
where the authors considered the structure of the McLen-
nan steady nonequilibrium ensemble [75]. These approaches
have been generalized to the study of linear quantum systems
as well [76, 77]. Also the study of the entropy production
for non-Markovian dynamical systems has been recently ad-
dressed [78, 79]. Finally, expressions for the entropy produc-
tion in irreversible thermodynamics with friction have been
established [80–82].

Another complementary line of research concerns periodi-
cally driven stochastic system [83]. Entropy production, On-
sager coefficients and efficiency have been determined for a
Brownian Carnot cycle and other periodic micro- and nano-
heat engines [84–86]. Then, a general theory for the linear
stochastic thermodynamics of periodically driven Markovian
systems has been developed by considering all Fourier com-
ponents of the involved quantities [87, 88]. Also, systems with
spatially periodic potentials or sequentially exposed to dif-
ferent reservoirs have been investigated to better understand
the implications of the Onsager reciprocity relations [89–
91]. Fluctuation theorems have been used to bound the ther-
modynamic currents in periodically driven systems [92, 93].
And finally, entropy production, heat capacity and heat trans-
port properties are studied in harmonic systems under time-
dependent periodic drivings [94, 95].

In general, the entropic production rate is defined through

integrals involving the probability currents [see, e.g., Eqs.(15)
and (62), for systems with 1 or N degrees of freedom], which
are difficult to calculate for most physical systems and non-
equilibrium states. However, their calculation becomes acces-
sible when the system is linear or when we work under station-
ary or periodic conditions. In the latter two cases, the entropic
production is opposite to the entropic flow, and therefore it
can be determined from the heat flows in the system. These
approaches have been largely developed and generalized in all
the above-mentioned works. Here, as a complement to previ-
ous efforts, we limit our analysis to a linear system but we
work in a non-equilibrium regime, characterized by the relax-
ation to the thermodynamic equilibrium. The idea is to show
that we can retrieve the structure of the Onsager theory dur-
ing this relaxation. First of all, for pedagogical purpose, we
introduce a very simple linear system with one degree of free-
dom to show the identification of thermodynamic fluxes and
forces with the characteristic quantities of stochastic models.
In a second step, we consider a linear system composed of N
particles described by a harmonic interaction efficiently repre-
sented by a complete graph. The coefficients of the graph rep-
resent the elastic constants and are completely arbitrary. This
means that there is no a priori symmetry in the system. The
particles are in contact with N reservoirs with different vari-
able temperatures Ti (see Fig.1). In the initial phase, the tem-
peratures are constant in time and different from each other so
that the system can reach a non-equilibrium stationary state
(NESS), characterized by constant heat flows among parti-
cles and a continuous entropy production. At a certain point,
the temperatures of the thermal baths are instantaneously set
to the same value T , thus inducing the relaxation of the sys-
tem towards equilibrium. It is precisely at this stage that we
can identify the thermodynamic forces and fluxes and observe
whether the structure of Onsager’s theory is respected. For
an arbitrary non-equilibrium regime (namely, arbitrary jumps
T − Ti), we are able to obtain the linear relation between
fluxes and forces, described by symmetric Onsager coeffi-
cients. We also provide an explicit expression of these coeffi-
cients in terms of the elastic constants characterizing the com-
plete graph of the interactions. Again in the case with arbitrary
jumps T −Ti, we find a rate of entropy production that is non-
linear in thermodynamic forces (similarly to Ref.[77], deal-
ing with open bosonic Gaussian systems), thus representing a
nonlinear generalization of the Onsager theory. Only when the
jumps T−Ti are sufficiently small, the rate of entropy produc-
tion becomes equal to the classical Onsager quadratic form.
This analysis allows a deeper understanding of the mathemat-
ical structure of the Onsager theory with arbitrary forces, and
is useful to elucidate the relation between stochastic thermo-
dynamics and non-equilibrium thermodynamics.

II. AN INTRODUCTORY ONE-DIMENSIONAL EXAMPLE

To begin with, we consider a simple example useful to in-
troduce the idea of relaxation to equilibrium in stochastic ther-
modynamics. We suppose to observe the one-dimensional
motion of a particle (of mass m) subjected to an elastic force
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(with spring constant k), to an external force f , and embed-
ded in a Langevin heat bath at temperature T . The equation of
motion can be written in the following form

ẋ =
p
m
,

ṗ =−kx+ f −β p+
√

kBmβT n(t), (1)

where x and p are position and momentum of the particle,
respectively. Moreover, β is the friction coefficient (or col-
lision frequency), kB is the Boltzmann constant and n(t) is a
Gaussian stochastic process with average value 〈n(t)〉= 0 ∀t,
and correlation 〈n(t1)n(t2)〉 = 2δ (t1− t2) ∀ t1 and t2 [16, 17].
Here, the average values are calculated over the noise statis-
tics. In order to consider an arbitrary out-of-equilibrium evo-
lution, we assume arbitrary functions T = T (t) and f = f (t),
applied to the system. For the sake of simplicity, and to min-
imise non-essential difficulties, we consider an overdamped
system (|ṗ| � β |p|), where the inertial effects can be ne-
glected as follows

ẋ =− k
mβ

x+
f

mβ
+

√
kBT
mβ

n(t). (2)

The properties of this first order Langevin equation can be
studied through the associated Fokker-Planck equation, de-
scribing the dynamics of the density probability W (x, t). In the
overdamped case it is typically named Smoluchowski equa-
tion and takes the form

∂W
∂ t

=
∂

∂x

(
k

mβ
xW
)
− ∂

∂x

(
f

mβ
W
)
+

kBT
mβ

∂ 2W
∂x2 , (3)

or equivalently,

∂W
∂ t

=−∂J
∂x

, (4)

where we introduced the quantity

J =− k
mβ

xW +
f

mβ
W − kBT

mβ

∂W
∂x

. (5)

We underline that Eq.(4) represents a one-dimensional conti-
nuity equation for the density probability. Despite the sim-
plicity of this system, we show now that it is sufficient to re-
construct the two classical principles of thermodynamics.

We start by describing the first principle, stating the en-
ergy balance for the system. If we look at the underdamped
version in Eq.(1), we can simply define the total internal en-
ergy as E = 1

2 kx2 + 1
2

p2

m . However, if we consider the over-
damped version in Eq.(2), we have to redefine the total energy
as E = 1

2 kx2, where the kinetic energy is not considered be-
cause of the absence of inertia. Consistently, the rate of aver-
age internal energy can be elaborated as follows

d
dt
〈E〉= d

dt

〈
1
2

kx2
〉
=

d
dt

∫ +∞

−∞

1
2

kx2Wdx

=
∫ +∞

−∞

1
2

kx2 ∂W
∂ t

dx =−
∫ +∞

−∞

1
2

kx2 ∂J
∂x

dx, (6)

where we can now use an integration by parts in the form∫ +∞

−∞

φ
∂ψ

∂x
dx =−

∫ +∞

−∞

ψ
∂φ

∂x
dx. (7)

In Eq.(6), the average value is calculated with respect to the
density W (x, t) (we adopted the same symbol but is not the
same average as that of noise n above). So doing, we simply
obtain

d
dt
〈E〉=

∫ +∞

−∞

Jkxdx

=
∫ +∞

−∞

J(kx− f )dx+
∫ +∞

−∞

J f dx, (8)

where in the last line we added and subtracted the same quan-
tity representing the integral of J f . This quantity corresponds
to the rate of work done on the system by the external force f .
It can be formally proved as follows∫ +∞

−∞

J f dx =
∫ +∞

−∞

(
− k

mβ
xW +

f
mβ

W − kBT
mβ

∂W
∂x

)
f dx

=

(
− k

mβ
〈x〉+ f

mβ

)
f . (9)

Then, by averaging the overdamped Langevin equation stated
in Eq.(2), we get 〈ẋ〉 = 1

mβ
( f − k 〈x〉), and therefore we have

that ∫ +∞

−∞

J f dx = f 〈ẋ〉 ,

which exactly corresponds the the rate of work done on the
system by the force f . Moreover, the first term in the second
line of Eq.(8) represents the heat rate entering the system. We
have finally obtained the first principle of thermodynamics in
the form

d
dt
〈E〉= d

dt
〈Q〉+ d

dt
〈L〉 , (10)

where the heat rate is d
dt 〈Q〉 =

∫ +∞

−∞
J(kx− f )dx and the rate

of work is d
dt 〈L〉=

∫ +∞

−∞
J f dx = f 〈ẋ〉.

To further substantiate the expression of the heat rate, we
study the time variation of the total entropy of the system,
eventually constructing the second principle. Firstly, we in-
troduce the entropy as follows

S =−kB

∫ +∞

−∞

W logWdx, (11)

and we perform its time derivative

dS
dt

=−kB

∫ +∞

−∞

∂W
∂ t

logWdx = kB

∫ +∞

−∞

∂J
∂x

logWdx

=−kB

∫ +∞

−∞

J
∂ logW

∂x
dx =−kB

∫ +∞

−∞

J
1

W
∂W
∂x

dx.(12)

Then, we can substitute ∂W
∂x obtained from Eq.(5), and we get

dS
dt

=−kB

∫ +∞

−∞

J
1

W

(
− mβ

kBT
J− k

kBT
xW +

f
kBT

W
)

dx

=
1
T

∫ +∞

−∞

J (kx− f )dx+
1
T

∫ +∞

−∞

mβ

W
J2dx, (13)
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where the first term represents the entropy flow generated by
the heat transfer between thermal bath and system and the sec-
ond term represents the entropy production generated by the
irreversible character of the process. We can indeed write

dS
dt

=
1
T

d 〈Q〉
dt

+
dSp

dt
, (14)

which represents the second principle of thermodynamics,
where we introduced the entropy production rate as

dSp

dt
=

1
T

∫ +∞

−∞

mβ

W (x, t)
J(x, t)2dx. (15)

The positive character of this quantity is perfectly consis-
tent with the second principle of thermodynamics. The tech-
nique, here presented for obtaining the two thermodynamic
principles from the Langevin overdamped equation for a one-
dimensional system, has been extended to the underdamped
case with an arbitrary number of particles [26–30], and to
holonomic systems with an arbitrary number of generalized
coordinates as well [96, 97].

We define now specific conditions on the system to prove
that the formalism of the stochastic thermodynamics (based
on the Langevin and Fokker-Planck equations and on their
further developments) is able to reproduce the structure of
the classical non-equilibrium thermodynamics (based on the
Onsager theory). We suppose that the system is at thermody-
namic equilibrium for t < 0 with f = f1 and T = T1. Then,
for t = 0, we suddenly change these values to f = f2 and
T = T2, and we observe the relaxation for t ≥ 0 of the sys-
tem to the new thermodynamic equilibrium. The mathemati-
cal analysis of this problem is very simple since the Langevin
equation stated in Eq.(2) is linear and results in an Ornstein-
Uhlenbeck stochastic process [69, 70]. In spite of the sim-
plicity of this problem, we want to stress here that the relax-
ation to the thermodynamic equilibrium can be represented
by the formalism of the classical nonequilibrium thermody-
namics where, in general, the entropy production is given by
dSp
dt = ∑

N
i=1 JiXi where the Xi are the so-called thermody-

namic forces and the Ji are the fluxes described by the lin-
earized phenomenological equations Ji = ∑

N
j=1 Li jX j, with

Li j being the phenomenological coefficients [37]. These co-
efficients, in absence of an external magnetic field, fulfill the
Onsager reciprocal relations Li j = L ji [39, 40]. In our case,
we deal with a simple linear one-dimensional system, where
forces and fluxes are uncoupled, and therefore we cannot ob-
serve this reciprocal property. However, in a following section
we will discuss a N-dimensional system with coupled forces
and fluxes.

At equilibrium, for t < 0, the average value 〈x〉0 of the po-
sition is simply given

〈x〉0 =
f1

k
, (16)

and its variance Σ0 =
〈
(x−〈x〉0)2

〉
is given by

Σ0 =
kBT1

k
, (17)

as one can easily prove, i.e., by means of the Ornstein-
Uhlenbeck theory [69, 70], or by the equilibrium Gibbs dis-
tribution. Since the system is linear, the probability density is
Gaussian and takes the explicit form

W0(x) =

√
k

2πkBT1
e−

1
2

(
x− f1

k

)2 k
kBT1 , (18)

which is valid for any t < 0. For t ≥ 0, the evolution of 〈x〉
and Σ =

〈
(x−〈x〉)2

〉
is governed by the equations [69, 70]

d 〈x〉
dt

=− k
mβ
〈x〉+ f2

mβ
, (19)

dΣ

dt
=− 2k

mβ
Σ+2

kBT2

mβ
, (20)

with solutions

〈x〉= f1− f2

k
e−

k
mβ

t
+

f2

k
, (21)

Σ = kB
T1−T2

k
e−

2k
mβ

t
+

kBT2

k
. (22)

Of course, also for t ≥ 0, the probability density W (x, t) is
Gaussian,

W (x, t) =

√
1

2πΣ
e−

1
2Σ

(x−〈x〉)2
, (23)

with average value and variance given in Eqs.(21) and (22). Of
course, we have W (x,0) = W0(x). The relaxation to the new
thermodynamic equilibrium generated by the values f2 and
T2 can be described by the fluxes J1 =

d〈x〉
dt and J2 =

d〈Q〉
dt ,

representing the average velocity of the particle and the heat
rate exchanged with the thermal bath, respectively. Indeed,
the particle must change its position and its average kinetic
energy to attain the new thermodynamic equilibrium. For t ≥
0, the first flux is directly obtained from Eq.(21), as follows

J1 =
d 〈x〉

dt
=

f2− f1

mβ
e−

k
mβ

t
. (24)

The second flux can be calculated through the expression

J2 =
d 〈Q〉

dt
=
∫ +∞

−∞

J(kx− f2)dx, (25)

where J is the flux of the Smoluchowski equation

J =− k
mβ

xW +
f2

mβ
W − kBT2

mβ

∂W
∂x

. (26)

Here, we considered f2 and T2 in Eq.(5) since we are working
for time t > 0. The substitution of Eq.(26) in Eq.(25) leads to

J2 = 2
f2k
mβ
〈x〉− k2

mβ

(
Σ+ 〈x〉2

)
+ k

kBT2

mβ
− f 2

2
mβ

, (27)

where we can use Eqs.(21) and (22) to get the final result for
J2 in the form

J2 =
d 〈Q〉

dt
= k

kB(T2−T1)

mβ
e−

2k
mβ

t − ( f2− f1)
2

mβ
e−

2k
mβ

t
. (28)
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In order to have a complete picture of the system evolution
for t ≥ 0, it is important to obtain an explicit expression for the
quantities entering the second principle of thermodynamics,
as stated in Eq.(14). First of all, we consider the total entropy,
and for the Gaussian distribution defined in Eq.(23), we have

S =−kB

∫ +∞

−∞

W logWdx =
kB

2
log(2πeΣ). (29)

Hence, we can calculate the total entropy rate during the re-
laxation to the equilibrium through the following derivative

dS
dt

=
kB

2
1
Σ

dΣ

dt
=− k

mβ

kB(T1−T2)e
− 2k

mβ
t

(T1−T2)e
− 2k

mβ
t
+T2

, (30)

where we introduced the expression of the variance given in
Eq.(22). The entropy flow is simply given by 1

T
d〈Q〉

dt and
therefore it is sufficient to divide by T the heat flow given
in Eq.(28). To conclude, we consider the entropy production
rate. It can be calculated either by its definition in Eq.(15), or
by using the second principle stated in Eq.(14). Both proce-
dures lead to the following result

dSp

dt
=

1
T2

∫ +∞

−∞

mβ

W
J2dx =

dS
dt
− 1

T2

d 〈Q〉
dt

=

=
k

mβ
kB

(
T2−T1

T2

)2 e−
4k
mβ

t

1− T2−T1
T2

e−
2k
mβ

t

+
1

mβ
( f2− f1)

2 1
T2

e−
2k
mβ

t
. (31)

With the aim of reconciling these results of the stochas-
tic thermodynamics with the known structure of out-of-
equilibrium thermodynamics, we consider a small deviation
between the initial state and the final state. It means that we
assume δT = T2− T1 and δ f = f2− f1 as arbitrarily small
quantities, and we rewrite the fluxes J1 and J2 to the first
order in δT and δ f . We simply get

J1 =
1

mβ
δ f e−

k
mβ

t
, (32)

J2 = k
kB

mβ
δTe−

2k
mβ

t
. (33)

We observe that the second term in Eq.(28) is not considered
in Eq.(33) since is of the second order in δ f . This shows
that stochastic thermodynamics can provide higher order in-
formation than non-equilibrium thermodynamics. We also
underline that Eqs.(32) and (33) represent a first form of the
phenomenological equation mapping thermodynamic fluxes
and forces. To better understand the structure of the non-
equilibrium thermodynamics, we rewrite the entropy produc-
tion rate under the same assumptions, as follows

dSp

dt
=

k
mβ

kB

(
δT
T2

)2

e−
4k
mβ

t
+

1
mβ

(δ f )2 1
T2

e−
2k
mβ

t

= J1X1 +J2X2, (34)

where we introduced the thermodynamic forces

X1 =
δ f
T2

e−
k

mβ
t
, (35)

X2 =
δT
T 2

2
e−

2k
mβ

t
. (36)

So doing, the linear phenomenological equations for the sys-

tem are in the form J1 = T2
mβ

X1 and J2 = k kBT 2
2

mβ
X2. It

means that L11 = T2
mβ

, L22 = k kBT 2
2

mβ
, and L12 = L21 = 0.

Moreover, the rate of entropy production assumes the classi-
cal quadratic form dSp

dt = L11X
2

1 +L22X
2

2 . We have that
L12 = L21 = 0 since the system is linear. This is a very sim-
ple example but is useful to understand that the expression
of the entropy production rate given in Eq.(15) is perfectly
compatible with the structure of the out-of-equilibrium ther-
modynamics. It is worth noticing that this structure can be
also recognized by simply observing the system for t = 0. In-
deed, the deviations δ f and δT are able to instantaneously
generate thermodynamic forces and the corresponding fluxes,
when applied to the system. It means that it is not necessary
to solve the equations describing average values and covari-
ances during the relaxation to the equilibrium to identify the
phenomenological coefficients. This point is useful to study
more complex systems, as discussed in the next Section.

III. OVERDAMPED N-DIMENSIONAL SYSTEM

In this Section, we consider a system described by N de-
grees of freedom, which is at NESS for t < 0, and that shows
a relaxation to equilibrium for t ≥ 0. The system is har-
monic and governed by overdamped Langevin equations with
N different thermal baths. This assumption allows us to use
the results of the Ornstein-Uhlenbeck theory. We prove that
the relaxation to the equilibrium can be described by a lin-
ear map between thermodynamic fluxes and forces, with phe-
nomenological coefficients satisfying the Onsager reciprocal
relations. Moreover, for small forces, the rate of entropy pro-
duction can be written as a quadratic form in the thermody-
namic forces, defined through the same set of phenomenolog-
ical coefficients.

A. System definition

We consider an elastic network composed of N point par-
ticles with positions ~x = (x1, ...,xN) ∈ IRN on the x-axis and
interacting through the potential energy

V (~x) =
1
2

N

∑
i=1

k0i(xi− x0i)
2 +

1
4

N

∑
i=1

N

∑
j=1

ki j(xi− x j)
2, (37)

stating that each point particle i is connected with all the others
j 6= i and with a fixed point x0i. The elastic constants k0i > 0
link each point particle i with the fixed point x0i. Moreover,
the elastic constants ki j = k ji > 0 (with knn = 0 ∀n = 1, ...,N)
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link the point particles i and j over the complete graph de-
scribing the elastic network (see Fig.1). We underline that
this is the most complex case of elastic interaction among the
N particles. The network, or equivalently the complete graph,
is arbitrarily heterogeneous. In addition, we suppose that all
the point particles have a mass m and that they are embedded
in thermal baths with the same collision frequency β but with
different temperatures Ti. We adopted the same values m and
β for all point particles for the sake of simplicity but all the
following results could be also obtained with heterogeneous
masses and collisions frequencies. We underline that a non-
equilibrium thermodynamic approach for complex networks
or graphs is developed in Ref.[98] from a different point of
view. The overdamped dynamics of our system is described
by the following system of stochastic differential equations

ẋi =−
1

mβ

∂V (~x)
∂xi

+

√
kBTi

mβ
ni(t), (38)

where the elastic forces can be determined by deriving the
potential energy

−∂V (~x)
∂xi

=−k0i(xi− x0i)−
N

∑
j=1

ki j(xi− x j), (39)

and where the noises satisfy the relations 〈ni(t)〉 = 0 and〈
ni(t1)n j(t2)

〉
= 2δi jδ (t1 − t2) [16, 17]. In this Section we

study the temperature-related thermodynamic forces but to
simplify the analysis we ignore the displacement-related ther-
modynamic forces. It means that, unlike the previous Section,
we do not take into consideration mechanical forces applied to
the particles. This assumption also stems from the fact that in
linear systems the thermal and mechanical effects are uncou-
pled and thus the corresponding Onsager cross-coefficients
are zero. Since we are interested in studying Onsager rela-
tions in stochastic thermodynamics, we restrict ourselves to
the purely thermal case.

We first analyze the general properties of the out-of-
equilibrium evolution of the system in the most general case
with arbitrarily time-varying thermostats Ti = Ti(t). To carry
out this analysis, the main system of equations can be rewrit-
ten in matrix form as follows

d~x
dt

=− 1
mβ

(
K~x−~f0

)
+G~n(t), (40)

where we introduced the vectors (~f0)i = k0ix0i and (~n)i = ni

and the matrices G= diag
(√

kBTi
mβ

)
and

K=


k01 +∑ j 6=1 k1 j −k12 −k13 . . .
−k12 k02 +∑ j 6=2 k2 j −k23 . . .
−k13 −k23 k03 +∑ j 6=2 k3 j . . .

...
...

...
. . .

 .
(41)

Here, diag(ai) represents a diagonal matrix with the elements
ai on the main diagonal (i = 1, ...,N). This is a standard

Ornstein-Uhlenbeck process [69, 70], and therefore the av-
erage value of positions 〈~x〉 and the covariance matrix � =〈
(~x−〈~x〉)(~x−〈~x〉)T

〉
are described by the following relations

d 〈~x〉
dt

=− 1
mβ

(
K〈~x〉−~f0

)
, (42)

d�
dt

=− 1
mβ

(K�+�K)+2GGT . (43)

We observe that in a possible NESS regime we have 〈~x〉 =
K−1~f0 and then we define ~xss = K−1~f0. We remark that the
NESS can be attained only if all the thermal bath tempera-
tures are constant over time. Nevertheless, we can always de-
fine ~xss = K−1~f0 or ~f0 = K~xss. Anyway, the Fokker-Planck
methodology can be applied to Eq.(40) and yields the follow-
ing Smoluchovski equation for the overdamped problem un-
der investigation

∂W
∂ t

=
1

mβ

∂

∂~x

[(
K~x−~f0

)
W
]
+

∂

∂~x

(
GG

T ∂W
∂~x

)
. (44)

By the introduction of the flux

~J =− 1
mβ

(
K~x−~f0

)
W −GGT ∂W

∂~x
, (45)

the Smoluchovski equation can be rewritten as

∂W
∂ t

=−∂~J
∂~x

, (46)

which represents a standard continuity equation. As it is well
known in the theory of the Ornstein-Ulhenbeck theory [69,
70], the general solution of Eq.(44) can be obtained in the
following Gaussian form

W (~x, t) =
1√

(2π)N det�
exp
[
−1

2
(~x−〈~x〉)T

�
−1(~x−〈~x〉)

]
,

(47)

completely defined by the average value 〈~x〉 and by the covari-
ance matrix �, described by Eqs.(42) and (43).

B. Thermodynamic principles

We determine now the mathematical form of the two ther-
modynamic principles for the system under investigation.

Concerning the first principle we observe that the total en-
ergy of the system is simply constituted by the potential en-
ergy because of the overdamped motion assumption, as dis-
cussed in Section II. Therefore, we can directly obtain the
expression

d
dt
〈E〉= d

dt
〈V 〉=

∫
IRN

V
∂W
∂ t

d~x

=−
∫

IRN
V

∂~J
∂~x

d~x =
∫

IRN
~J · ∂V

∂~x
d~x. (48)
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Since in this case we have no external forces applied to the
system, the right hand side of Eq.(48) must corresponds to the
total heat rate entering the system. Hence we can write

d
dt
〈E〉= d

dt
〈Q〉=

N

∑
i=1

d
dt
〈Qi〉 , (49)

where we can calculate the heat rate pertaining to the point
particle i through the expression

d 〈Qi〉
dt

=
∫

IRN
Ji

∂V
∂xi

d~x, (50)

without implicit sum over the index i.
This result can be further confirmed by developing the sec-

ond principle of thermodynamics, as follows. We define the
entropy through the natural generalization of Eq.(11), i.e. by
the expression S =−kB

∫
IRN W logWd~x, and then, by perform-

ing straightforward calculations as in Eq.(12), we find

dS
dt

=−kB

∫
IRN

1
W

~J · ∂W
∂~x

d~x. (51)

Here, we can substitute ∂W
∂xi

obtained from Eq.(45), i.e.

∂W
∂xi

=− mβ

kBTi

(
Ji +

1
mβ

W
∂V
∂xi

)
, (52)

finally obtaining the second principle in the form

dS
dt

=
N

∑
i=1

1
Ti

∫
IRN

Ji
∂V
∂xi

d~x+
N

∑
i=1

mβ

Ti

∫
IRN

J2
i

W
d~x, (53)

or, in the more classical form

dS
dt

=
N

∑
i=1

1
Ti

d 〈Qi〉
dt

+
dSp

dt
, (54)

where the first sum represents the entropy flow associated to
the heat fluxes [see also Eq.(50)], and the second term the
entropy production related to the irreversible character of the
process.

For later use, we determine a specific expression for the
three terms entering the second principle for the system under
investigation. Let’s start with the first one, dS

dt , representing
the total entropy rate during the system evolution. By con-
sidering again the definition S = −kB

∫
IRN W logWd~x, we can

take into account the Gaussian distribution stated in Eq.(47)
and we get

S =
kB

2
log [det(2πe�)] . (55)

Then, we can perform the time derivative and we obtain

dS
dt

=
kB

2
1

det�
d det�

dt
=

kB

2
tr
(
�
−1 d�

dt

)
, (56)

where we have used the standard matrix property d det�
dt =

det�tr
(
�−1 d�

dt

)
, holding for any non-singular matrix �.

Since the covariance matrix is governed by Eq.(43) (Ornstein-
Uhlenbeck theory), we find the total entropy rate as

dS
dt

= kBtr
(
�
−1
GG

T − 1
mβ

K

)
=− kB

mβ

N

∑
i=1
Kii +

kB

mβ

N

∑
i=1

kBTi
(
�
−1)

ii . (57)

The second term entering the second principle represents
the entropy flow ∑

N
i=1

1
Ti

d〈Qi〉
dt , which depends directly on the

heat rates d〈Qi〉
dt . These quantities can be naturally calculated

by means of Eq.(50). With the help of the Smoluchosky
fluxes, written in the form

Ji =−
1

mβ

∂V
∂xi

W − kBTi

mβ

∂W
∂xi

, (58)

we easily derive this practical expression for the heat rate as-
sociated to each particle

d 〈Qi〉
dt

=− 1
mβ

〈(
∂V
∂xi

)2
〉
+

kBTi

mβ

〈
∂ 2V
∂x2

i

〉
. (59)

Here, the quadratic form of the potential energy V (~x) allows a
direct calculation yielding the result

d 〈Qi〉
dt

=− 1
mβ

{
K

[
�+(〈~x〉−~xss)(〈~x〉−~xss)T

]
K

}
ii

+
kBTi

mβ
Kii, (60)

representing the heat rate for any point particle. These expres-
sions can be combined to give the entropy flow for the whole
system

N

∑
i=1

1
Ti

d 〈Qi〉
dt

=
kB

mβ

N

∑
i=1
Kii

− 1
mβ

N

∑
i=1

1
Ti

{
K

[
�+(〈~x〉−~xss)(〈~x〉−~xss)T

]
K

}
ii
. (61)

Please note that Eqs.(60) and (61) are valid for an arbitrary
out-of-equilibrium evolution of the system and the presence
of quantity~xss does not mean that we are in a steady state. We
have simply adopted the definition~xss = K−1~f0, as previously
discussed.

The third and final term entering the second principle is
represented by the entropy production dSp

dt , defined as

dSp

dt
=

N

∑
i=1

mβ

Ti

∫
IRN

Ji(~x, t)2

W (~x, t)
d~x. (62)

In order to develop an explicit expression for this contribution,
we use Eq.(58) combined with the formula ∂V

∂xi
= Kisxs− (~f0)i

and with the property ∂W
∂xi

= W [�−1(~x−〈~x〉)]i [directly com-
ing from Eq.(47)]. Straightforward calculations lead to the
result

dSp

dt
=−2

kB

mβ

N

∑
i=1
Kii +

kB

mβ

N

∑
i=1

kBTi
(
�
−1)

ii

+
1

mβ

N

∑
i=1

1
Ti

{
K

[
�+(〈~x〉−~xss)(〈~x〉−~xss)T

]
K

}
ii
. (63)
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As a check on the developed procedure, we can immedi-
ately observe that the three contributions obtained in Eqs.(57),
(61) and (63) identically satisfy the second principle stated in
Eq.(54). It is important to observe that the time evolution of
the three terms directly depends on the dynamics of the aver-
age value 〈~x〉 and of the covariance �.

C. Relaxation to equilibrium

We introduce now a particular evolution of the temperatures
Ti(t), useful to investigate the relation between the stochas-
tic thermodynamics and the non-equilibrium thermodynam-
ics. This is the most important conceptual point of this work.
We suppose that the system is at NESS for t < 0 with constant
temperatures Ti(t) = Ti over time t < 0 (Ti 6= Tj for i 6= j).
Then, we assume that all the temperatures instantaneously
change to the value T for t ≥ 0. It means that Ti(t) = T ∀i
for t ≥ 0. So doing, we can observe a relaxation to the ther-
modynamic equilibrium for t ≥ 0 and it is important to verify
that the stochastic thermodynamic is able to give the classical
results based on thermodynamic forces and fluxes.

From the one hand, for t < 0, the NESS regime is attained
and therefore d〈~x〉

dt = 0 and d�
dt = 0. Hence, by using Eqs.(42)

and (43) for t ≤ 0, we have

〈~x〉=~xss with~xss = K
−1~f0, (64)

�= �
ss with K�ss +�ss

K= 2mβGG
T , (65)

whereG= diag
(√

kBTi
mβ

)
and K is given in Eq.(41). Of course,

in this stationary regime, for t < 0, we have d
dt 〈E〉= 0, dS

dt = 0
and ∑

N
i=1

d〈Qi〉
dt = 0, as can be easily verified. Moreover the rate

of entropy flow is opposed to the rate of entropy production to
satisfy the second principle of thermodynamics.

On the other hand, for t ≥ 0, the system evolves to perform
the relaxation to the equilibrium thermodynamics at temper-
ature T (indeed, Ti(t) = T ∀i, ∀t ≥ 0). In this situation, for
t ≥ 0, the average value 〈~x〉 remains constantly equal to~xss, as
can be easily deduced from Eq.(42) with the initial condition
〈~x〉(0) =~xss. Moreover, the covariance matrix evolves from
the initial value � = �ss for t = 0 [defined by Eq.(65)] to the
equilibrium value �= kBTK−1 for t→∞. Indeed, the asymp-
totic solution of Eq.(43) for t → ∞ with Ti(t) = T ∀i, ∀t ≥ 0
is exactly given by � = kBTK−1 for t → ∞. Consistently, we
remark that the covariance � = kBTK−1 corresponds to the
Gibbs distribution of the equilibrium statistical mechanics.

We are interested in studying the mathematical form of the
heat fluxes and the rate of entropy production during the re-
laxation to equilibrium. It is worth understanding whether
stochastic thermodynamics is consistent with Onsager’s non-
equilibrium theory. For t ≥ 0, the heat fluxes are given by
Eq.(60), where we substitute 〈~x〉=~xss and Ti(t) = T ∀i, ∀t ≥
0. We get

d 〈Qi〉
dt

=− 1
mβ
{K�K}ii +

kBT
mβ

Kii

=− 1
mβ
{K�K− kBTK}ii . (66)

Similarly, again for t ≥ 0, the rate of entropy production is
given by Eq.(63) with 〈~x〉 =~xss and Ti(t) = T ∀i, ∀t ≥ 0. We
have

dSp

dt
=−2

kB

mβ

N

∑
i=1
Kii +

k2
BT

mβ

N

∑
i=1

(
�
−1)

ii +
1

mβT

N

∑
i=1
{K�K}ii

=
1

mβT
tr
{
K�K−2kBTK+ k2

BT 2
�
−1} . (67)

We wish to prove that Eqs.(66) and (67) are consistent with
the formalism of the non-equilibrium thermodynamics. As it
is well known, the formalism of non-equilibrium thermody-
namics is valid for small deviations from equilibrium. This
suggests to represent the covariance matrix � as a perturba-
tion of its asymptotic equilibrium value kBTK−1. Hence we
define

�= kBTK−1 + kB�, (68)

where � represents the perturbation (i.e. �= 0 at equilibrium,
for t→ ∞). With this representation, Eq.(66) immediately de-
livers

d 〈Qi〉
dt

=− kB

mβ
{K�K}ii . (69)

As discussed in Section II, in order to investigate the struc-
ture of the non-equilibrium thermodynamics, it is sufficient
to observe the beginning of the relaxation for t = 0. As a
matter of fact, the temperature jumps T −Ti are able to instan-
taneously generate the thermodynamic forces and the corre-
sponding fluxes, which drive the system to the equilibrium. It
means that we can analyze the quantities

Ji =
d 〈Qi〉

dt

∣∣∣∣
t=0

=− kB

mβ
{K�ss

K}ii , (70)

where �ss =�|t=0 is defined by �ss = kBTK−1+kB�
ss and �ss

by Eq.(65), which characterize the NESS regime. These quan-
tities represent the heat flux at the initial time of the relaxation
towards equilibrium. Therefore, they should be proportional
to the temperature jumps δTi = T−Ti. Indeed, by substituting
�ss = kBTK−1 + kB�

ss in Eq.(65), we obtain

K�
ss +�ss

K=−2diag(δTi), (71)

showing that the perturbation �ss effectively depends on the
temperature jumps δTi = Ti−T . We can usefully decompose
�ss as

�
ss =

N

∑
j=1
�

ss
j δTj, (72)

so that any matrix �ss
j is solution of the simpler equation

K�
ss
j +�

ss
j K=−2E j, (73)

where E j is the elementary matrix with only one element
equal to one in the diagonal position ( j, j), and all other el-
ements being zero. In other words, we have that

{
E j
}

nm =
δ jnδ jm. The validity of Eq.(73) can be easily proved by
observing that diag(δTi) = ∑

N
j=1 δTjE j. The importance of
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Eq.(73) lies in the fact that it can be solved explicitly in
the following way. Since the matrix equation AX+XA = C

(sometimes called Sylvester or Lyapunov equation, see e.g.
Refs.[99–101]) has the unique solution

X=−
∫ +∞

0
eAξ

CeAξ dξ , (74)

if A has all eigenvalues with negative real part, we can write
the explicit solution of Eq.(73) as

�
ss
j =−2

∫ +∞

0
e−Kξ

E je−Kξ dξ . (75)

The matrix K is in fact positive-definite, being at the origin
of the quadratic form that defines the potential energy of an
asymptotically stable mechanical system. Now, Eqs.(72) and
(75) can be replaced into Eq.(70) to determine the thermody-
namic fluxes in terms of the temperature jumps

Ji =−
kB

mβ

N

∑
j=1

{
K�

ss
j K
}

ii δTj

=
2kB

mβ

N

∑
j=1

∫ +∞

0

{
Ke−Kξ

E je−Kξ
K

}
ii

dξ δTj. (76)

We remark that the fluxes are given by a linear combination of
the temperature jumps δTj. To write these expressions in the
standard way used in non-equilibrium thermodynamics, we
define the thermodynamic forces Xi =

δTi
T 2 and we directly

identify the phenomenological coefficients

Li j =−
kBT 2

mβ

{
K�

ss
j K
}

ii

=
2kBT 2

mβ

∫ +∞

0

{
Ke−Kξ

E je−Kξ
K

}
ii

dξ , (77)

describing the linear relationships Ji = ∑
N
j=1 Li jX j. For our

harmonic system, the linearity between fluxes and forces is
retrieved without any additional assumptions. We can now
prove the symmetry of Li j by means of two distinct methods.

The first demonstration starts with the simple observation
that one element aii on the diagonal of a matrix A can be writ-
ten as aii = tr{EiA}. Hence, the phenomenological coeffi-
cients can be rewritten as

Li j =−
kBT 2

mβ
tr
{
EiK�

ss
j K
}
, (78)

where we considered the first line of Eq.(77). Now, the matrix
Ei can be written as − 1

2 [K�
ss
i +�ss

i K] by using Eq.(73), thus
obtaining

Li j =
kBT 2

2mβ
tr
{
[K�ss

i +�ss
i K]K�

ss
j K
}
. (79)

Further, the last term �ss
j K can be substituted by−K�ss

j −2E j,
exploiting again Eq.(73). We elaborate the expression of Li j

as follows

Li j =−
kBT 2

2mβ
tr
{
[K�ss

i +�ss
i K]K

[
K�

ss
j +2E j

]}
=−kBT 2

2mβ
tr
{
K�

ss
i K

2
�

ss
j +�

ss
i K

3
�

ss
j

+2K�ss
i KE j +2�ss

i K
2
E j
}

=−kBT 2

2mβ
tr
{
�

ss
i K

2
�

ss
j K+�

ss
i K

3
�

ss
j

+2E jK�
ss
i K+2�ss

i K
2
E j
}

=−kBT 2

mβ
tr
{
�

ss
i K

2
[

1
2
�

ss
j K+

1
2
K�

ss
j +E j

]
+E jK�

ss
i K
}

=−kBT 2

mβ
tr
{
E jK�

ss
i K
}
= L ji, (80)

where we used the cyclic property of the trace stating that the
trace of a product is invariant under cyclic permutations of
the arguments, and Eq.(73) several times. This demonstration
is simply based on Eq.(73) and does not require its explicit
solution given in Eq.(75).

In contrast, the second demonstration is based on Eq.(75)
and is useful since provides an explicit form of the phe-
nomenological coefficients that is manifestly symmetric. The
second line in Eq.(77) can be rewritten as

Li j =
2kBT 2

mβ

∫ +∞

0

{
Ke−Kξ

}
in

{
E j
}

nm

{
e−Kξ

K

}
mi

dξ ,(81)

where we introduced the implicit sums over n and m. The
definition of E j leads to

Li j =
2kBT 2

mβ

∫ +∞

0

{
Ke−Kξ

}
in

δ jnδ jm

{
e−Kξ

K

}
mi

dξ

=
2kBT 2

mβ

∫ +∞

0

{
Ke−Kξ

}
i j

{
e−Kξ

K

}
ji

dξ

=
2kBT 2

mβ

∫ +∞

0

{
Ke−Kξ

}
i j

{
Ke−Kξ

}
ji

dξ , (82)

since K commutes with the matrix exponential e−Kξ for any
value of ξ . Given that the two quantities

{
Ke−Kξ

}
i j

and{
Ke−Kξ

}
ji

are scalars, their product commutes and therefore

the symmetry of Li j is evident. As a matter of course, Eq.(82)
provides an explicit and practical form for the phenomenolog-
ical coefficients for the system under consideration.

The complete structure of the non-equilibrium thermody-
namic is retrieved only if we are able to prove that the en-
tropy production rate given by Eq.(67) can be written as
a quadratic form in the thermodynamic forces, defined by
the phenomenological coefficients, as dSp

dt = ∑
N
i=1 JiXi =

∑
N
i=1 ∑

N
j=1 Li jXiX j. As before, we investigate the mathemat-

ical form of the rate of entropy production for t = 0, i.e. at the
beginning of the relaxation to the equilibrium. Hence, Eq.(67)
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can be rewritten as

dSp

dt

∣∣∣∣
t=0

=
1

mβT
tr
{
K�

ss
K−2kBTK+ k2

BT 2 [�ss]−1
}
,(83)

where �ss is the value of � for t = 0, corresponding to the
NESS regime. Now, as before, we can write this covariance
matrix in terms of its perturbation in the form �ss = kBTK−1+
kB�

ss. Then, the initial rate of entropy production becomes

dSp

dt

∣∣∣∣
t=0

=
kB

mβ
tr

{
K
�ss

T
K−K+

[
K
−1 +

�ss

T

]−1
}
. (84)

Up to this point, we have not applied any approximation based
on the hypothesis of small thermodynamic forces. Neverthe-
less, the relationship between fluxes and forces was automat-
ically linear [see for instance Eq.(76)], without applying any
approximation. Now, if we look at Eq.(84), we notice that
it can be quadratic in the perturbation �ss only thanks to the
inverse matrix

[
K−1 +�ss/T

]−1. However, the calculation of
this inverse matrix surely involves a set of higher order terms
in the perturbation �ss. In this sense, we can say that the On-
sager entropy production emerges in our development in the
form of a nonlinear expression valid arbitrarily far from equi-
librium. For this reason, Eq.(84) is an important achievement
of this work since it goes beyond Onsager’s theory by con-
sidering higher order terms. A similar result can be found in
Ref.[77], where the authors considered the thermodynamic of
an open bosonic Gaussian system, in a state far from equilib-
rium. Interestingly, recent techniques allow the experimen-
tal measurements of the entropy production rate in quantum
systems such as micromechanical resonators or Bose-Einstein
condensates, allowing the systematic assessment of these the-
ories [102]. In addition to the exact nonlinear expression given
in Eq.(84), it is important to show how it is possible to re-
trieve the classical linearized Onsager theory. It means that
the nonlinear function in Eq.(84) should reduce to the usual
quadratic form close to equilibrium. To prove this point, we
have to calculate the inverse of a perturbed matrix, namely[
K−1 +�ss/T

]−1. For this purpose, we consider the simple
matrix property

[A+B]−1 = A
−1−A−1

B [A+B]−1 , (85)

which is valid if A+B and A are non singular. It can be di-
rectly proved by multiplying both sides on the right by A+B.
This relation can be used recursively eventually obtaining

[A+B]−1 = A
−1

[
+∞

∑
k=0

(−1)k (
BA
−1)k

]
= A

−1−A−1
BA
−1 +A−1

BA
−1
BA
−1− ... (86)

As an example, in the second line of Eq.(86) we stopped the
series at the second order in B. We apply this approximation
to Eq.(84) and, thanks to the identifications A= K−1 and B=
�ss/T , we get

dSp

dt

∣∣∣∣
t=0

=
kB

mβT 2 tr{K�ss
K�

ss
K} , (87)

where we find only a second order term in the perturbation,
as expected. Indeed, it should be noted that the first order
terms in the perturbation are completely eliminated in the re-
sult. Again, by using the decomposition in Eq.(72), we have
the quadratic form

dSp

dt

∣∣∣∣
t=0

=
kB

mβT 2

N

∑
i=1

N

∑
j=1

tr
{
K�

ss
i K�

ss
j K
}

δTiδTj

=
kBT 2

mβ

N

∑
i=1

N

∑
j=1

tr
{
K�

ss
i K�

ss
j K
}

XiX j, (88)

where we introduced the thermodynamic forces Xi =
δTi
T 2 , as

before. Now, we have obtained the rate of entropy production
as a quadratic form in the forces Xi, as requested by the lin-
earized Onsager theory, but unfortunately this quadratic form
is defined by a new set of coefficients Hi j, which do not ex-
hibit the same expression of the coefficients Li j. More ex-
plicitly, we obtained

dSp

dt

∣∣∣∣
t=0

=
N

∑
i=1

N

∑
j=1

Hi jXiX j, (89)

where

Hi j =
kBT 2

mβ
tr
{
K�

ss
i K�

ss
j K
}
, (90)

while we previously proved that

Li j =−
kBT 2

mβ
tr
{
EiK�

ss
j K
}
. (91)

To find a solution to this apparent difficulty, we can rewrite
Eq.(89) in the form

dSp

dt

∣∣∣∣
t=0

=
N

∑
i=1

N

∑
j=1

[(Hi j−Li j)+Li j]XiX j, (92)

where we have adopted the expedient of adding and sub-
tracting Li j to Hi j. If we are able to prove that the co-
efficients Ai j = Hi j −Li j are skew-symmetric, i.e. that
Ai j =−A ji, we can accept that Hi j 6=Li j because it remains
true that ∑

N
i=1 ∑

N
j=1 Hi jXiX j = ∑

N
i=1 ∑

N
j=1 Li jXiX j. Indeed,

a quadratic form that is constructed using a skew-symmetric
matrix always takes the value zero, i.e. ∑

N
i=1 ∑

N
j=1 Ai jXiX j =

0 ∀Xi if Ai j = −A ji. At this point, we must therefore try to
prove that Ai j is skew-symmetric. We start with its definition

Ai j =
kBT 2

mβ
tr
{
K�

ss
i K�

ss
j K+EiK�

ss
j K
}
, (93)

where we used the expressions for Hi j and Li j given in
Eqs.(90) and (91). Now, in the first product we exchange the
order of the two groups of factors K�ss

i and K�ss
j K. Then, we

get

Ai j =
kBT 2

mβ
tr
{
K�

ss
j KK�

ss
i +EiK�

ss
j K
}
. (94)
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Further, in the first product the last term K�ss
i can be substi-

tuted by −�ss
i K−2Ei, using Eq.(73). We obtain

Ai j =
kBT 2

mβ
tr
{
−K�ss

j K�
ss
i K−2K�ss

j KEi +EiK�
ss
j K
}

=
kBT 2

mβ
tr
{
−K�ss

j K�
ss
i K−EiK�

ss
j K
}
. (95)

Here, we can apply the Onsager reciprocal relations, proved
in Eq.(80), to the second term, eventually obtaining

Ai j =
kBT 2

mβ
tr
{
−K�ss

j K�
ss
i K−E jK�

ss
i K
}
. (96)

If we now draw a comparison between Eq.(93) and Eq.(96),
we immediatly deduce that Ai j = −A ji, as we wanted to
demonstrate. Finally, the fact that Ai j is skew-symmetric al-
lows us to conclude that the rate of entropy production can be
written as

dSp

dt

∣∣∣∣
t=0

=
N

∑
i=1

N

∑
j=1

Li jXiX j, (97)

with the same phenomenological coefficient describing the re-
lation between fluxes and forces, i.e.

Ji =
N

∑
j=1

Li jX j, (98)

where the Onsager reciprocal relations Li j = L ji are satis-
fied. We finally proved that both the heat fluxes and the
entropy production obtained through the formalism of the
stochastic thermodynamics are perfectly consistent with the
Onsager theory during the relaxation to the equilibrium. We
remark that the structure of the non-equilibrium thermody-
namics summed up by Eqs.(97) and (98) is only an approx-
imation of the general nonlinear results obtained through the
stochastic thermodynamics, valid for arbitrary values of the
jumps δTi or, equivalently, for states far from equilibrium.
More precisely, we remember that the relation between fluxes
and forces is linear also for states arbitrarily far from equi-
librium, while the rate of entropy production shows a nonlin-
ear form if we consider the result of the stochastic thermody-
namics without linearization. This calculation thus shows in
a deeper way the structure of the Onsager theory when treat-
ing systems arbitrarily far from equilibrium. And also proves
that the mathematical structure of the Onsager theory is not
easily and directly deducible from the formalism of stochastic
thermodynamics even in the case in which weak thermody-
namic forces are assumed. Interestingly enough, we presented
here the analysis of the overdamped system, but we carefully
verified that all the results can be also demonstrated with the
underdamped version of the same system, accepting however
some more mathematical complications. We have chosen to
present only the overdamped version because it contains all
the essential elements, which are crucial for the understand-
ing of the underlying physics.

IV. CONCLUSIONS

In this work, we presented two examples through which
we discussed the relation between stochastic thermodynamics
and non-equilibrium thermodynamics. In both cases, we ob-
served the approach to equilibrium in given harmonic systems
and we identified the thermodynamic fluxes and forces, char-
acteristic of the Onsager theory. While the first example con-
siders a system with one degree of freedom, the second one
deals with N degrees of freedom, coupled with the most gen-
eral harmonic interaction. It means that the elastic constants
can be assigned to the edges of a complete graph, describing
the interactions between the particles. Since the elastic con-
stants are arbitrary, no a priori symmetry defines the system.
The idea is to consider a system simple enough to be exam-
ined analytically but sufficiently complex to have no symme-
tries and to be described by an arbitrary number of degrees of
freedom. We identified thermodynamic forces and fluxes de-
scribing the system during the relaxation to equilibrium and
we proved that they are linked through a linear map, also for
states arbitrarily far from equilibrium. This linear map is char-
acterized by coefficients satisfying the Onsagar reciprocal re-
lations, for which we provided an ad hoc demonstration. We
also presented an explicit integral expression of such Onsager
coefficients, which can be applied to most of linear systems.
On the other hand, the entropy production is found in general
as a complex nonlinear function of the thermodynamic forces,
and the classical Onsager quadratic form is retrieved only for
small values of the forces, consistently with the assumption
of the non-equilibrium thermodynamics. We gave an explicit
demonstration that this quadratic form is based on the same
set of coefficients describing the linear map between forces
and fluxes, as stated within the non-equilibrium thermody-
namics. Since this work is oriented to explain the relation-
ship between stochastic thermodynamics and non-equilibrium
thermodynamics, the type of system considered is rather ab-
stract but we can say that the results obtained are valid for any
physical linear system, which can also be found by lineariza-
tion of an arbitrarily nonlinear system around a given work
point. This means that, for example, the adopted system is
suitable to represent the approach to the equilibrium of a solid
or a fluid, which is composed of a collection of atoms con-
nected by linear springs in the harmonic limit and subjected
to an initial heterogeneous temperature. And it is not difficult
to extend this procedure to other physical systems of interest.
Although our analysis is restricted to the specific case of har-
monic systems, the nonlinear form of the entropy production
provides an example of particular complex behavior, which
emerges when a system is driven arbitrarily far from equilib-
rium. As mentioned above, we recall that we presented the
analysis for an overdamped system but similar results were
also demonstrated for the underdamped case. Further general-
izations will be considered and concern the three-dimensional
extension, the application of arbitrary forces and the presence
of an external magnetic field.
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