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Abstract: The object of the paper is to introduce a macroscopic multimodal transportation
model, based on the GSOM (generic second order modelling) approach. In multimodal
transportation systems, there are two flows; the flow of vehicles, and the flow of passengers. These
two flows are not independent, since vehicles carry passengers. Hence the idea of the GSOM
approach: to describe first the vehicle flow, and to consider the passenger load of vehicles as an
attribute of vehicles. The resulting model is treated in a semidiscretized lagrangian way: vehicles
are discretized, and passengers are modelled by continuous quantities (passenger load). Nodes in
the model recapture the main complexity of the transportation system. They can represent such
distinct features intersections (cars), stations (buses, trains), or intermodal poles. The advantage
of the model is that it provides a unifying macroscopic view of multimodal transportation
systems, can accomodate various vehicle and passenger attributes, and thus should provide a
useful tool for the management of such systems.
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1. INTRODUCTION

The new technologies (communication, information, au-
tomation and autonomization) will impact the transporta-
tion system in a massive way. The system should become
progressively fully multimodal. The object of the paper is
to propose a macroscopic modelling framework for such a
fully multi-modal transportation system, including guided
transportation (trains, trams) or new modes of transporta-
tion Sossoe and Lebacque (2016). Macroscopic models are
particularity suitable for the simulation but also manage-
ment and planning of large transportation systems. Two
flows must be taken into account: passengers and vehicles.
The passenger flow is strongly linked to the vehicle flow,
since passengers are transported by vehicles. Further, the
passenger flow exhibits a high innate complexity, because
it is the result of passenger activity plans, information and
interactions.

This complexity has been addressed in various ways. One
natural approach is multi-agent modelling as exemplified
by generic models such as Urbansim Waddell (2002), and
more recently Matsim (Horni et al. (2016)), following ideas
from statiscal physics. More specific models have been
developed, such as (Monteiro et al. (2014)), (Holmgren
(2012)), (Ma and Lebacque (2013)), (Xu et al. (2016)). The
references (Moccia et al. (2011)), (Dib et al. (IEEE, 2016)),
(Yang et al. (2017)) provide examples of application in
the area of optimization and management. Recently, in
order to address specific problems in multimodal networks,
such as dynamic assignment, new macroscopic originally

tools, originally divised for traffic on very large networks,
have been adapted to multimodal flow. Examples are
MFD (macroscopic fundamental diagram) modelling, refer
to (Zheng et al. (2013), Zheng and Geroliminis (2016)),
(Loder et al. (2017)), and bidimensional modeling, refer
to (Sossoe (2017)). The resolution of these models does
not go to the link/node level.

The aim of the paper is to develop a macrocopic network-
based multimodal model. Our starting point is constituted
by GSOM models (Lebacque et al. (2007); Lebacque and
Khoshyaran (2013)) which were initially designed for ve-
hicular multimodality. They combine a kinematical wave
model of the LWR (Lighthill-Whitham-Richards) type
with vehicle/driver/passenger attribute dynamics. The
attributes include: OD information, path/mode choice,
driver behaviour, vehicle type (either physical: electric,
diesel, etc., or service: taxi, bus, on demand service, in-
ternet service, etc.), driver information, vehicle dynamic
characteristics (battery charge, engine temperature f.i.),
V2S, V2I and V2V communication, and passenger load.
The passenger flow dynamics can be modelled in this
framework via the passenger load attribute. This attribute
can be disaggregated per destination. Services can be
represented as vehicle sub-type attributes. The model will
be discretized into particles: vehicles or groups of vehicles
with similar characteristics. Guided transportation sys-
tems can be described in the same way; stations being
nodes, and the passenger load attribute of vehicles (trains,
trams...) accounts for passenger dynamics. Intermodal
platforms can be treated as special nodes. The GSOM
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framework provides a systematic way of modeling nodes
Khoshyaran and Lebacque (2008); Costeseque et al. (2015)
which will be adapted to this new context.

The outline of the paper is the following. First we present
the GSOM model for multimodal (vehicle + passenger)
flow on a link (section 2). Then we address the semi-
lagrangian discretization of the model, which yields the
particle semi-discretization (section 3). The proposed node
model is derived from the internal state node model con-
cept (Khoshyaran and Lebacque (2008), Khoshyaran and
Lebacque (2009), Costeseque et al. (2015)) and described
in section 4 with its semidiscretization.

2. LINK MODEL.

2.1 Notations

• a ∈ A: the arcs;
• d ∈ D: the destinations;
• x the position, which can be instantiated on a link a
as: x = ξa with ξa ∈ [0, �a];

• t the time;
• ρ(x, t) the density, v(x, t) the speed and q(x, t) the

flow of vehicles. Note that q
def
= ρv;

• I(x, t): the vector of attributes. It comprises the
following:

· χ(x, t)
def
=

(
χd(x, t)

)
d∈D: the vector of fractions of

vehicles with destination d ∈ D (χd(x, t) denotes
the fraction of vehicles at time t and location x
with destination d);

· �(x, t): the load of passengers;

· µ(x, t)
def
=

(
µd(x, t)

)
d∈D: the vector of fractions

of passengers with destination d ∈ D (µd(x, t)
denotes the fraction of passengers at time t and
location x with destination d);

· κ(x, t) denotes a vector of supplementary at-
tributes pertaining to passengers or vehicles.

I = (χ,�, µ, κ) (1)

• Note that � has the unit of number of passengers per
vehicles, thus ρ� denotes the density of passengers
per unit length. The speed of passengers is v(x, t)
thus the flow of passengers is given by:

p
def
= ρ�v (2)

• Velocity and density are connected through the FD
(fundamental diagram):

v = Ve(ρ) (3)

We make a standing simplifying hypothese: all at-
tributes are neutral (i.e. they do not impact the FD).

• The vehicles have an attribute which is their capacity
with respect transport passengers, �max. This at-
tribute is connected to vehicles, thus must satisfy an
advection equation

∂t�max + v∂x�max = 0 (4)

The passenger load is bounded as follows:

0 ≤ �(x, t) ≤ �max(x, t) ∀x, t (5)

This attribute must be included into I:

I = (χ,�max, �, µ, κ) (6)

2.2 The model equations.

The GSOM model equations in eulerian coordinates (x, t)
are the following:



∂tρ+ ∂x (ρv) = 0 (7.1)
∂t (ρI) + ∂x (ρIv) = −ρΦ(I, ρ) (7.2)
v = Ve(ρ) (7.3)
I = (χ,�max, �, µ, κ) (7.4)
0 ≤ � ≤ �max (7.5)

(7)

The source term Φ concerns only κ. Thus passengers can
board or unboard only at nodes, at which locations pas-
sengers and vehicles can change their path. The lagrangian
coordinates are (n, t) with n the vehicle index and t the
time. The relationship between eulerian and lagrangian
coordinates results from the definition of the vehicle index:

n(x, t)
def
=

t∫

−∞

q(x, τ) dτ (8)

Let us introduce the spacing r
def
= 1/ρ and define the FD in

lagrangian coordinates: Vn(r) ≈ Ve(ρ). Let us also define
φn(r, I) ≈ Φ(ρ, I). Note that in lagrangian coordinates
we include an explicit dependency of the FD and the
source term on the vehicle (in eulerian coordinates such
a dependency would be expressed via some attribute).
Following for instance (Lebacque and Khoshyaran, 2013),
equation (7) can be expressed as


∂tr + ∂nv = 0 (9.1)
∂tI = −φn(I, r) (9.2)
v = Vn(r) (9.3)
0 ≤ � ≤ �max (9.4)

(9)

Note that (9) is slightly more general than (7). Since the
source term φ concerns only κ, it follows that (9.2) can be
expressed as:[

∂tχ = 0 ; ∂t�max = 0 ; ∂t� = 0 ; ∂tµ = 0
∂tκ = −ϕn(I, r)

2.3 Boundary conditions

The equilibrium supply and demand functions Σe and
∆e result from the FD. The flow-density FD in eulerian

coordinates is given by: Qe(ρ, I;x)
def
= ρVe(ρ, I;x).[

Σe (ρ, I;x) = max
β≥ρ

Qe(β, I;x+)

∆e (ρ, I;x) = min
β≥ρ

Qe(β, I;x−)
(10)

As a consequence of the standing hypothesis, that the
attributes are neutral, the equilibrium functions do not
depend on I. This simplifies the expression of the local
traffic supplies σ and demands δ considerably (Lebacque
et al. (2005),Mammar et al. (2009)).[

σ(x, t) = Σe (ρ(x+, t);x)
δ(x, t) = ∆e (ρ(x−, t);x))

(11)

The vehicle and attribute flows at any location x and time
t are given by the min principle:[

q(x, t) = min [δ(x, t), σ(x, t)]
(qI) (x, t) = q(x, t) I(x−, t)

(12)
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framework provides a systematic way of modeling nodes
Khoshyaran and Lebacque (2008); Costeseque et al. (2015)
which will be adapted to this new context.

The outline of the paper is the following. First we present
the GSOM model for multimodal (vehicle + passenger)
flow on a link (section 2). Then we address the semi-
lagrangian discretization of the model, which yields the
particle semi-discretization (section 3). The proposed node
model is derived from the internal state node model con-
cept (Khoshyaran and Lebacque (2008), Khoshyaran and
Lebacque (2009), Costeseque et al. (2015)) and described
in section 4 with its semidiscretization.

2. LINK MODEL.

2.1 Notations

• a ∈ A: the arcs;
• d ∈ D: the destinations;
• x the position, which can be instantiated on a link a
as: x = ξa with ξa ∈ [0, �a];

• t the time;
• ρ(x, t) the density, v(x, t) the speed and q(x, t) the

flow of vehicles. Note that q
def
= ρv;

• I(x, t): the vector of attributes. It comprises the
following:

· χ(x, t)
def
=

(
χd(x, t)

)
d∈D: the vector of fractions of

vehicles with destination d ∈ D (χd(x, t) denotes
the fraction of vehicles at time t and location x
with destination d);

· �(x, t): the load of passengers;

· µ(x, t)
def
=

(
µd(x, t)

)
d∈D: the vector of fractions

of passengers with destination d ∈ D (µd(x, t)
denotes the fraction of passengers at time t and
location x with destination d);

· κ(x, t) denotes a vector of supplementary at-
tributes pertaining to passengers or vehicles.

I = (χ,�, µ, κ) (1)

• Note that � has the unit of number of passengers per
vehicles, thus ρ� denotes the density of passengers
per unit length. The speed of passengers is v(x, t)
thus the flow of passengers is given by:

p
def
= ρ�v (2)

• Velocity and density are connected through the FD
(fundamental diagram):

v = Ve(ρ) (3)

We make a standing simplifying hypothese: all at-
tributes are neutral (i.e. they do not impact the FD).

• The vehicles have an attribute which is their capacity
with respect transport passengers, �max. This at-
tribute is connected to vehicles, thus must satisfy an
advection equation

∂t�max + v∂x�max = 0 (4)

The passenger load is bounded as follows:

0 ≤ �(x, t) ≤ �max(x, t) ∀x, t (5)

This attribute must be included into I:

I = (χ,�max, �, µ, κ) (6)

2.2 The model equations.

The GSOM model equations in eulerian coordinates (x, t)
are the following:



∂tρ+ ∂x (ρv) = 0 (7.1)
∂t (ρI) + ∂x (ρIv) = −ρΦ(I, ρ) (7.2)
v = Ve(ρ) (7.3)
I = (χ,�max, �, µ, κ) (7.4)
0 ≤ � ≤ �max (7.5)

(7)

The source term Φ concerns only κ. Thus passengers can
board or unboard only at nodes, at which locations pas-
sengers and vehicles can change their path. The lagrangian
coordinates are (n, t) with n the vehicle index and t the
time. The relationship between eulerian and lagrangian
coordinates results from the definition of the vehicle index:

n(x, t)
def
=

t∫

−∞

q(x, τ) dτ (8)

Let us introduce the spacing r
def
= 1/ρ and define the FD in

lagrangian coordinates: Vn(r) ≈ Ve(ρ). Let us also define
φn(r, I) ≈ Φ(ρ, I). Note that in lagrangian coordinates
we include an explicit dependency of the FD and the
source term on the vehicle (in eulerian coordinates such
a dependency would be expressed via some attribute).
Following for instance (Lebacque and Khoshyaran, 2013),
equation (7) can be expressed as


∂tr + ∂nv = 0 (9.1)
∂tI = −φn(I, r) (9.2)
v = Vn(r) (9.3)
0 ≤ � ≤ �max (9.4)

(9)

Note that (9) is slightly more general than (7). Since the
source term φ concerns only κ, it follows that (9.2) can be
expressed as:[

∂tχ = 0 ; ∂t�max = 0 ; ∂t� = 0 ; ∂tµ = 0
∂tκ = −ϕn(I, r)

2.3 Boundary conditions

The equilibrium supply and demand functions Σe and
∆e result from the FD. The flow-density FD in eulerian

coordinates is given by: Qe(ρ, I;x)
def
= ρVe(ρ, I;x).[

Σe (ρ, I;x) = max
β≥ρ

Qe(β, I;x+)

∆e (ρ, I;x) = min
β≥ρ

Qe(β, I;x−)
(10)

As a consequence of the standing hypothesis, that the
attributes are neutral, the equilibrium functions do not
depend on I. This simplifies the expression of the local
traffic supplies σ and demands δ considerably (Lebacque
et al. (2005),Mammar et al. (2009)).[

σ(x, t) = Σe (ρ(x+, t);x)
δ(x, t) = ∆e (ρ(x−, t);x))

(11)

The vehicle and attribute flows at any location x and time
t are given by the min principle:[

q(x, t) = min [δ(x, t), σ(x, t)]
(qI) (x, t) = q(x, t) I(x−, t)

(12)
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Fig. 1. Lagrangian discretization

Note that the passenger flow is given by: (q�) (x, t) =
q(x, t)�(x−, t).

3. SEMI-DISCRETIZED LINK MODEL.

This model is obtained by applying the Godunov scheme
(Lebacque (1995), (Lebacque and Khoshyaran, 2013),
Costeseque and Lebacque (2014)) to (9). Time is dis-

cretized in time-steps (t)
def
= [t∆t, (t + 1)∆t] of dura-

tion ∆t. Vehicular traffic is divided into particles (n) of
size ∆vhn, which are the cells of the discretization. Each
particle (n) has a capacity for transporting passengers
which is Kn,max. The passenger traffic is not discretized
explicitly, but only subsidiarily to the discretization of
vehicular traffic, which is why the scheme is called semi-
discretized. The position of particle (n) at time t∆t is xt

n.
The interdistance between particles (n) and (n−1) at time
t∆t is denoted rtn. The resulting scheme is straightforward
and described by:


rtn

def
=

(
xt
n−1 − xt

n

)
/∆vhn

vtn = Vn

(
rtn
)

rt+1
n = rtn + (∆t/∆vhn)

[
vtn−1 − vtn

]
It+1
n = Ψn

(
rt+1
n , rtn, I

t
n,∆t

)
(13)

Here Ψn

(
rt+1
n , rtn, I

t
n,∆t

)
denotes the solution of


İn(τ) = −φn (In(τ), rn(τ))
In(τ)|τ=t∆t = Itn
rn(τ) = rtn + (τ − t∆t)

[
rt+1
n − rtn

] (14)

İn denotes the time-derivative with respect to the time τ .
The notations are illustrated by figure 1.

The scheme (13) may be expressed in a more accessible
way in terms of the trajectories of particles, that is in
terms of the positions xt

n. In this context we can also
approximate (14) by a simple explicit euler scheme. Thus
(13), (14) yield



rtn
def
=

(
xt
n−1 − xt

n

)
/∆vhn (15.1)

vtn = Vn

(
rtn
)

(15.2)
xt+1
n = xt

n +∆t vtn (15.3)
It+1
n = Itn −∆t φn

(
rtn, I

t
n

)
(15.4)

0 ≤ �t
n ≤ �t

n,max (15.5)

(15)

Considering that I = (χ,�max, �, µ, κ) we can express
(15.4) as[

χt+1
n = χt

n �t+1
n,max = �t

n,max �t+1
n = �t

n

µt+1
n = µt

n , κt+1
n = κt

n −∆t ϕn

(
Itn, r

t
n

)
(15.5) is trivial except at network nodes.

4. NODE MODELLING

Nodes represent those elements which connect links. The
exact nature of nodes is context-dependent; they can

be intersections (connecting links dedicated to vehicular
traffic), stations (connecting links dedicated to public
transportation, guided modes etc) and intermodal poles
(connecting links pertaining to all modes).

4.1 Notations

• Nodes z ∈ Z, Arcs a ∈ A;
• OD (origin-destination) couples w ∈ W;
• Entry points (i), i ∈ I(z) of a node (z);
• Exit points (j), j ∈ O(z) of a node (z);
• Entry link (a) (a ∈ Γ−(z) corresponding to an entry

point (i) of node (z): a
def
= I(z, j);

• Exit link (b) (b ∈ Γ+(z) corresponding to an exit

point (j) of node (z): b
def
= O(z, j);

• Nodes may serve as entry points of passengers, hence
the definition: Πd

z,j = arrival rate of passengers
at node (z) with destination (d), exiting the node
through exit point (j) ∈ O(z) towards the link (b),
b = 0z, j);

• Nodes may serve as entry points for vehicles, hence
the definition: Ξd

z,j = arrival rate of vehicles at node
(z) with destination (d), exiting the node through exit
point (j) ∈ O(z) towards the link (b), b = 0z, j);

• θdz,ij denotes the generic assignment coefficient for
passengers in the node (z), that is to say the fraction
of passengers with final destination d ∈ D, having
entered the node through entry point i ∈ I(z) which
exit the node through exit point j ∈ O(z).

• γd
z,ij denotes the generic assignment coefficient for

vehicles in the node (z), that is to say the fraction
of vehicles with destination d ∈ D, having entered
the node through entry point i ∈ I(z) which exit
the node through exit point j ∈ O(z). Vehicles carry
passengers, but, especially in the case of public trans-
portation, they share only part of their passengers’
paths.

• Nz,j : the passenger queue in node (z) about to exit
the node through exit point j ∈ O(z). This queue
is managed following a FIFO rule, and passengers
inside are described as a continuum (semi-discretized
approximation).

• Mz,j : the vehicle queue in node (z) about to exit
the node through exit point j ∈ O(z). This queue
is managed following a FIFO rule, and vehicles inside
are described as a queue of particle.

• Mz denotes the total number of vehicles in the node
(z). At any time t:N t

z =
∑

j∈O(z)

#M t
z,j (with #S being

the cardinal of a set S).
• βz,i denotes the split coefficient for the node supply
relative to the node entry point i ∈ I(z).

These definitions are illustrated by figure 2.

4.2 Node modeling principles

The node model is based on the internal state model
which is based on the buffer concept, which is described
in Khoshyaran and Lebacque (2008), Khoshyaran and
Lebacque (2009), see also Delle Monache et al. (2014).

This model allows us to calculate the through-flow of
vehicles, i.e. the flow of vehicles entering node (z) through
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Fig. 4. headway applying to a vehicular particle exiting a
link, and entering a node.

the entry point i ∈ I(z), and exiting the node through exit
point j ∈ O(z). This through-flow is obtained by classical
supply/demand analysis.

While crossing the node, passengers stay in the vehicle if
they have the same exit link as their vehicle. Otherwise the
passengers exit the vehicle and join the passenger queue
say Nz,j pertaining to their exit link b = O(z, j) and board
vehicles exiting the node towards link (b). Thus passengers
have their own through-flows.

4.3 Node inflows

Node supply.
Any node (z) is assumed to have a global supply which
depends on the total number of vehicles N t

z: Σz (N
t
z).

Typically the function Σz (Nz) has the aspect depicted
by figure 3. This node fundamental diagram expresses
the physical qualities of the node: the maximum global
through-flow Qz,max, the storage capacity Nz,max, the
critical capacity Nz,crit. The supply for link (a) ∈ Γ−(z)
with a = I(z, j) is a fraction βz,i of the total node supply:

σt
z,i

def
= βz,iΣz

(
N t

z

)
where t denotes either time or time-step.

First particle dynamics.
The first particle in link (a), let us say (n), has the position
ξn,ta . The dynamics of the particle (n) are described by the
system (15). In order to apply (15.2) it is necessary to
estimate rtn from the supply applying to (a), since (n) has
no predecessor on (a). Refer to figure 4.

laξ
n
a

(t)

σz,i (t)
n

(i)

(z)

(a)

Fig. 5. Vehicular particle exiting a link, entering a node.

A lower bound for rtn is given by the distance to the head
of the link, �a − ξn,ta . This bound applies if this distance
is large enough and the node supply σt

z,i does not impose
any further constraints on the dynamics of particle (n). If
the supply is low we must also consider the headway r∗n(t)
which is the smaller of the two solutions of the equation:

rσt
z,i = Vn(r)

i.e. the solution in the interval [rn,min, rn,crit] (refer to
figure 4). Thus rtn is obtained as follows

rtn = max
[
r∗n(t), �a − ξn,ta

]
(16)

The position of the particle (n) at time (t + 1)∆t results
from (16), (15.2), and (15.3):

ξn,t+1
a = ξn,ta +∆t Vn

(
rtn
)

(17)

with rtn given by (16). The attribute dynamics is still given
by (15.4).

Particle entry into a node.
Please refer to Figure 5 for a description of the setting.
If ξn,t+1

a ≥ �a then the particle (n) enters the node (z)
during time step (t) = [t∆t, (t+ 1)∆t], at time (t+ τ tn)∆t
with

τ tn =
(
�a − ξn,ta

)
/
(
ξn,t+1
a − ξn,ta

)
If the destination (d) of (n) is actually the node (z) then
the particle (n) exits the network at time (t+ τ tn)∆t.

Otherwise the particle (n), given its destination (d),
chooses the exit point j ∈ O(z) with probability γd

z,ij :

IP (choice = j | entry = i , destination = d ) = γd
z,ij(t)

If the particle (n) chooses the exit point (j) it joins
the queue M t

z,j at time (t + τ)∆t. This information is
important since the queue is managed following a FIFO
rule.

Passenger dynamics at a node entry.
While entering the node the passenger load of the particle
is�t

n, with a composition in terms of passenger destination
µd,t
n . The assignment coefficient for passengers is θdz,ij(t).

Thus for any k ∈ O(z), �t
n µ

d,t
n θdz,ik(t) passengers choose

this link exit point (k). If k = j the passengers stay in
vehicle (n) and contribute to �t+1

n . Otherwise they join
the passenger queue N t

z,j . We summarize this as follows,
in the case (j) is the exit point of particle (n):

• If k �= j, �t+1
k

def
=

∑
d∈D

�t
n µ

d,t
n θdz,ik(t) passengers join

the queue N t
z,k at time (t+ τ tn)∆t. Their composition

with respect to destinations d ∈ D is given by:

µd,t+1
k

def
= �t

n µ
d,t
n θdz,ik(t)/�

t+1
k .

• If k = j no passengers from particle (n) join queueN t
j .

All passengers with exit-point (j) stay in vehicle, thus
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the entry point i ∈ I(z), and exiting the node through exit
point j ∈ O(z). This through-flow is obtained by classical
supply/demand analysis.

While crossing the node, passengers stay in the vehicle if
they have the same exit link as their vehicle. Otherwise the
passengers exit the vehicle and join the passenger queue
say Nz,j pertaining to their exit link b = O(z, j) and board
vehicles exiting the node towards link (b). Thus passengers
have their own through-flows.

4.3 Node inflows

Node supply.
Any node (z) is assumed to have a global supply which
depends on the total number of vehicles N t

z: Σz (N
t
z).

Typically the function Σz (Nz) has the aspect depicted
by figure 3. This node fundamental diagram expresses
the physical qualities of the node: the maximum global
through-flow Qz,max, the storage capacity Nz,max, the
critical capacity Nz,crit. The supply for link (a) ∈ Γ−(z)
with a = I(z, j) is a fraction βz,i of the total node supply:

σt
z,i

def
= βz,iΣz

(
N t

z

)
where t denotes either time or time-step.

First particle dynamics.
The first particle in link (a), let us say (n), has the position
ξn,ta . The dynamics of the particle (n) are described by the
system (15). In order to apply (15.2) it is necessary to
estimate rtn from the supply applying to (a), since (n) has
no predecessor on (a). Refer to figure 4.
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Fig. 5. Vehicular particle exiting a link, entering a node.

A lower bound for rtn is given by the distance to the head
of the link, �a − ξn,ta . This bound applies if this distance
is large enough and the node supply σt

z,i does not impose
any further constraints on the dynamics of particle (n). If
the supply is low we must also consider the headway r∗n(t)
which is the smaller of the two solutions of the equation:

rσt
z,i = Vn(r)

i.e. the solution in the interval [rn,min, rn,crit] (refer to
figure 4). Thus rtn is obtained as follows

rtn = max
[
r∗n(t), �a − ξn,ta

]
(16)

The position of the particle (n) at time (t + 1)∆t results
from (16), (15.2), and (15.3):

ξn,t+1
a = ξn,ta +∆t Vn

(
rtn
)

(17)

with rtn given by (16). The attribute dynamics is still given
by (15.4).

Particle entry into a node.
Please refer to Figure 5 for a description of the setting.
If ξn,t+1

a ≥ �a then the particle (n) enters the node (z)
during time step (t) = [t∆t, (t+ 1)∆t], at time (t+ τ tn)∆t
with

τ tn =
(
�a − ξn,ta

)
/
(
ξn,t+1
a − ξn,ta

)
If the destination (d) of (n) is actually the node (z) then
the particle (n) exits the network at time (t+ τ tn)∆t.

Otherwise the particle (n), given its destination (d),
chooses the exit point j ∈ O(z) with probability γd

z,ij :

IP (choice = j | entry = i , destination = d ) = γd
z,ij(t)

If the particle (n) chooses the exit point (j) it joins
the queue M t

z,j at time (t + τ)∆t. This information is
important since the queue is managed following a FIFO
rule.

Passenger dynamics at a node entry.
While entering the node the passenger load of the particle
is�t

n, with a composition in terms of passenger destination
µd,t
n . The assignment coefficient for passengers is θdz,ij(t).

Thus for any k ∈ O(z), �t
n µ

d,t
n θdz,ik(t) passengers choose

this link exit point (k). If k = j the passengers stay in
vehicle (n) and contribute to �t+1

n . Otherwise they join
the passenger queue N t

z,j . We summarize this as follows,
in the case (j) is the exit point of particle (n):

• If k �= j, �t+1
k

def
=

∑
d∈D

�t
n µ

d,t
n θdz,ik(t) passengers join

the queue N t
z,k at time (t+ τ tn)∆t. Their composition

with respect to destinations d ∈ D is given by:

µd,t+1
k

def
= �t

n µ
d,t
n θdz,ik(t)/�

t+1
k .

• If k = j no passengers from particle (n) join queueN t
j .

All passengers with exit-point (j) stay in vehicle, thus
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we can define �t+1
j

def
=

∑
d∈D

�t
n µ

d,t
n θdz,ij(t) the load of

passengers in particle (n) while this particle is queued
in the particle queue M t

z,j . The composition of this

passenger load per destinations is given by: µd,t+1
j

def
=

�t
n µ

d,t
n θdz,ik(t)/�

t+1
j . The residual capacity of the

particle is given by �n,max −�t+1
j .

4.4 Node queue dynamics for vehicles.

Vehicular queue dynamics in a node: arrival process.
These queues are denoted M t

z,j (vehicular queue pertain-
ing to exit point (j) of node (z) at the beginning of time-
step (t). They are constituted of car particles managed
following a FIFO dynamics. A queue can be fed according
to two processes.

1. A particle enters the node (z) through an entry point
(i) and joins the queue M t

z,j . This process is described
in subsection 4.3 (subsubsection ”Particle entry into a
node”).

2. A vehicular particle enters the node from outside. The
arrival rate of vehicular particles during time-step (t) is
given, and denoted Ξd,t

z . Thus the inflow rate of vehicular
particles with destination (d) which chose the exit point
(j) is given by:

Ξd,t
z,j = Ξd,t

z γd,t
z,j (18)

All arrival processes are assumed Poisson. Thus during the

time-step (t) of duration ∆t, the number hd,t
z,j of vehicular

particles generated with destination (d) and exit point (j)
follows the law

IP
[
hd,t
z,j = h

]
=

{(
λd,t
z,j

)h

/h!

}
exp

(
λd,t
z,j

)
(19)

with λd,t
z,,j

def
= Ξd,t

z,j/∆vh. If needful and relevant, i.e. if there

exists a passenger inflow at node (z), passengers could be
loaded into the generated vehicular particles. In this paper
we mainly consider passengers boarding vehicles as they
leave the node to enter a link.

Vehicular queue dynamics in a node: exit process.
Now we analyze the exit of a particle into link (b), with
b = O(z, j). It is necessary to introduce a specific time-step
for the link:

∆tb
def
= ∆vh/Qb,max (20)

with Qb,max the maximum flow in link (b). During each
such time-step of duration ∆tb, we check link (b) and the
vehicular queueM t

z,j . IfM
t
z,j is not empty, the first particle

of the queue may leave and enter link (b), provided that
the supply of (b) is sufficient. Let us denote by (m) the

last particle on link (b); its position is ξm,t
b . The setting is

described in figure 6.

This particle is associated to the headway rtb
def
= ξm,t

b /∆vh.
If rtb < rb,min then no particle can leave the queue M t

z,j .

If rtb ≥ rb,min then a particle say (m+ 1) leaves the queue
M t

z,j and enters (b). In order to calculate its position, we

lbξ (t)
m

b
0

m
(z)

(j)

Mz,j
t

Fig. 6. Vehicular queue at an exit point of a node.
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Πz,j
d

Ξz,j
d

(vehicles)

a=I(z,i)

b=O(z,j)

(a)

(b)

(z)

(l)

(i)
(j)

(passengers)

Fig. 7. Internal node dynamics: summary.

evaluate vtb = Vb (r
t
b) which is ≥ 0. The position of (m+1)

at t+ 1 follows:

ξm+1,t+1
b = ∆t vtb (21)

Passengers in the passenger queue N t
z,j may board the

particle (m+ 1) as it leaves the node.

4.5 Passenger queue dynamics in a node.

The queues N t
z,j are managed in a FIFO way but they

are continuous. The queue inflow results from passengers
entering the node inside vehicles (subsubsection ”passen-
gers dynamics at a node entry” of subsection 4.3) and

of the passenger inflow at the node Πd,t
z,j . The queue is

parameterized by the passenger index �, which can also
be interpreted as the number of passengers to the exit
of the queue. Thus � ranges from 0 to #N t

z,j . Another
descriptor of the queue is the composition with respect

to destination µd,t
z,j(�). µd,t

z,j(�)d� denotes the number of

passengers with destination (d) whose index is comprised
between � and � + d�. This composition is propagated
according to an advection process since it is an attribute
attached to passengers. The ”propagation velocity” inside
the queue is exactly equal to the outflow of the queue, the
rate of which we denote ψt

z,t. Thus it follows:

∂tµ
d,t
z,j(�) + ψt

z,t ∂�µd,t
z,j(�) = 0 (22)

Passengers exit the queue by boarding vehicle particles of
the vehicle queue M t

z,j within the constraints imposed by
the residual capacity of these vehicles.

5. CONCLUSION

The macroscopic multimodal model introduced in this
paper is based on the GSOM approach and has been
expressed in terms of a set of conservation equations. This
model has been discretized in a semi-discretized lagrangian
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form: discrete vehicles and continuous passenger load. The
description of node dynamics based on a buffer approach
has been carried out. The resulting model allows a syn-
thetic and macroscopic description of large transportation
systems. It has been applied to the management of metro
lines in incident conditions (Lebacque and Khoshyaran
(2018)). The macroscopic approach with discretization
schemes allows us to chose the resolution of the model
and to adapt it to the application.

Further investigations will concern alternative discretiza-
tion schemes: fully discretized eulerian and lagrangian
schemes, and the inclusion of specific attributes such as
communication and information. Specific infrastructures
(parkings) and more precise description of nodes (internal
node travel time for instance will account for pedestrian
links or for boarding/unboarding time) should also be
considered, in order to treat multimodal transportation
system management. Other investigations will concern the
control and management of the system. Indeed manage-
ment measures can be applied at many stages of the model,
macroscopic but also local (passengers boarding vehicles,
dynamics of vehicles and headways etc).
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