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Abstract

Intelligent modeling techniques have evolved from the application field, where prior knowledge
and common sense on the system behavior was implemented using linguistics or life mimetic systems
(mainly Fuzzy and Neural network networks) where topology and parameters were determined by
hook or by crook (also called educated guess where the intelligence in the person performing the
modeling rather than in the techniques), to more rigorous modeling approaches where theoretical
issues are addressed using statistical inference and where the uncertainties about the modeling are
handled.

Recent works tends to bring together the two approaches that seemed to occupy opposite extremes
of the system modeling approaches. As a matter of fact, the so-called intelligent methods and
the classical mathematical systems methods (or regression methods) are connected by a common
denominator : The statistical theory field. Modeling methodologies are using more and more features
of what is defined as multivariable statistical analysis field. In this study, we will examine how the
neural network modeling field can benefit from the techniques of the statistical theory field. With an
emphasis on time series modeling, we will review the various techniques used in the neural network
design and propose a general modeling methodology. The key elements will be the analysis and
preprocessing of the data set, the use of statistical methods to reconsider the neural networks as
probabilistic models and for obtaining good performance estimates, how to use these for in statistical
decision making methodology to determine the optimal topology, how to use statistical methods to
improve parameter optimization and build a neural network structure that makes tractable multistep
ahead prediction.
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1 Model Selection and Generalization Estimation.

1.1 Introduction

The word model express the attempt of describing objects or phenomena by means of linguistic or
mathematical abstraction. The two expression medium can interact when qualitative understanding of the
system is available and when the implementation of this knowledge can be incorporated in mathematical
knowledge. The interaction can be of different types according to the systems and the models examined.
When physical systems are involved, the first modeling step is to describe its behavior on the basis of
physics equations. The dynamics of the systems are then expressed by differential equations systems.
The practical model is then used by integrating formally or numerically the systems. This approach is
requires the full knowledge of the physical equations and tractable mathematical methods to integrate the
equations. For complex systems, these equations may not be available, may be too complex for numerical
integration so that other approach must be considered.

On the other side of modeling approaches lies the observer approach. As a matter of fact, in many
cases, the understanding of the physics may not be required, only good descriptions, linguistic or numer-
ical, of the system so that forecasting can be performed. The methods also called black-box approach can
give satisfying results when other methods fails.

The modeling methods we will discuss in this study are the ones that stand in between. Our model
will use all the available information on the system, all the various modeling techniques, to perform
good numerical description with eventually qualitative understanding of the systems dynamics. We then
span the range of available methods such as multivariable statistical analysis, linear modeling (linearised
differential equation based models), and neural networks models. In any case, the models will be stochastic
models with a set of adjustable constants, parameters or functions which are unknown or only partially
known.

Whatever the modeling method used, the same problems must be solved. The first involve collecting
data. The goal is to deal with the minimal set of data that will describe the best the systems dynamics.
This involves to determine which data will be considered and to determine the sampling rates and the
sample size. The better the data precision, the better will be the modeling accuracy. Because we deal
with physical systems, it is important to acknowledge a given degree of confidence in the data. The
difference between the actual data and the measured data used for the modeling is designated as the
noise of the data. Ideally, this noise should be reduced by using proper measurement methodologies or
by filtering. In both case, it may be important to have qualitative description of the noise.

When modeling is involved, the results are only estimates. It is very important to have an idea of the
reliability of the model results. We then need model performance estimates. These estimators can be
of various nature according to the type of estimation. We often want to know the degree of confidence
of the model error, how the identification and the forecasts are affected by noise or what is the longer
horizon of prediction attainable by the model.

The answer to these question require rigorous methodologies. The theoretical works combined with
the computing techniques progress enable to use reliable but computationally intense statistical methods.
They can be used in each step of the modeling : model selection, estimation and evaluation of uncertainty.
They purpose is to take care of and present information in given data as efficiently as possible.

1.2 Model Examples

In order to clear things, we start by expressing the formula of some of the models we will use. Of course,
the techniques applied during the identification process and the estimation are very dependent of the
mode nature. We start with the linear model.

1.2.1 Standard Linear Model

A linear model connects linearly a quantity Y to other quantities x1, · · · , xm

Y = β0 + x1 β1 + · · ·+ xm βm + ε (1)

where
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ε is a random variable, also called model error, independent of x1, · · · , xm.

β0, βm are the set of model parameters, independent of x1, · · · , xm.

In such model, the prior knowledge may be entered by the choice of the variables x1, · · · , xm. ideally,
the input variables are causal variables in respect to Y. However, correlation instead of causality may
be sufficient to obtain model accuracy. This is one of the rational of autoregressive models where the
causal information is supposed to be carried within the previous values of the quantity to be modeled.
When qualitative knowledge (physical or economical laws) is not available, statistical methods such as
correlation analysis in particular, but also general multivariable statistical analysis methods can be used.

The linear structure of this model may be seen as a restriction of application to linear dynamical
systems. This can be overcome when the model is use in a particular operating point where the dynamical
differential equation can be linearized. Moreover, the linear structure can implement transformed inputs,
that translate the non-linear nature in the inputs transformation rather than the parameter determination.
The product input, i.e. model inputs obtained by the product of physical inputs, is an example.

1.2.2 Non-Linear Model

Non-linear models have a less restrictive definition than the linear models.

Y = F(x1, x2, · · · , xm) + ε (2)

where

ε is a random variable, also called model error, independent of x1, · · · , xm.

F is a non-linear function or operator.

1.2.3 Model Selection Uncertainty

Modeling techniques aim at determining optimal model structures and the corresponding parameters.
To determine the optimal model, the identification process is carried out with different model structures
and data sets. The statistical analysis of the model performances can be performed so that probability
distribution of the model error enable to find out about the true model structure and parameters. The
statistical inference methods, to be accurate, require large data sets or at least representative and unbiased
data. The intervals of confidence of the models and their parameters can be obtained with classical
statistical methods expressed in appendix 5.1. Statistics can be obtained for the model structure, model
parameters but also model forecasts. This is crucial when, as it is our case, multi step prediction is aimed.

The final model obtained from the identification process may be biased by different sources of uncer-
tainty. It is important to identify them in order to make validation coherent. We can present a list of
sources of uncertainty or error.

- Uncertainty due to the limited set of observations.

- Systematic error due to model defects.

- Prediction error due to the new residual.

- Model selection uncertainty.

The first source, the length of the data set can be easily understood. As stated already, the confidence
intervals of any estimated factor depends on the number of samples. The larger the sample, the better
will be the confidence limits (provided that the data set is significant). The model defects are basically
due to the structural inadequacies, for example linear approximation of non-linear problems.

In different approaches, the definitive model selection criterion is a model response performance cri-
terion. This lead to use a performance index based on model response error to a given sample space,
leading again to estimates. To illustrate the uncertainty issues, we can examine a time series model.

6



Let y1, · · · , yn be an observed stationary time series with mean zero. We consider two autoregressive
models, M1 and M2, where only the two first orders are considered.

M1 : yt = c yt−1 + εt (3)

M2 : yt = a yt−1 + b yt−2 + εt (4)

Where the model error εt is an uncorrelated variable. We suppose that εt has the statistics :

M1 : V ar(εt) = σ1
2 (5)

M2 : V ar(εt) = σ2
2 (6)

If the time series y is stationary, the covariance function can be defined by :

Ri = E(yt+i yt) (7)

R0 is the time series variance and the correlation function ρ can be defined by :

ρi =
Ri
R0

(8)

The numerical computation of these statistics leads to estimates :

R̂0 =
1

n

n∑
t=1

yt
2 (9)

R̂i =
1

n

n−i∑
t=1

yt yt+i (10)

ρ̂i =
R̂i

R̂0

(11)

To obtain the estimates of σ1, we multiply the equation of M1 respectively by Yt and Yt−1 and we take
the expected values. We obtain the system of equations :

R0 = c R1 + σ1
2 (12)

R1 = c R0 (13)

Finally, we have :
σ1

2 = R0 (1− ρ1
2) (14)

The same ideas applied to M2 give :

σ2
2 = R0 (1− ρ1

2) (1− (ρ2 − ρ1
2)2

(1− ρ1
2)2

) (15)

σ1
2 and σ2

2 can be interpreted as the one step ahead prediction errors. To select the true model, we only
have the estimates.

The first idea for selecting the true model is to compare σ̂1
2 and σ̂2

2. Considering these two estimates
as criteria for selecting of the best model may lead to inaccurate conclusion. Since ρi ≤ 1, whatever the
true nature of the models, we will always have σ2

2 ≤ σ1
2 simply because the second model has more

degrees of freedom, i.e. more parameters. This illustrate the concept of overfitting. Overfitting can be
defined as the capacity of a given model to memorize the sample space. In other words, given enough
degrees of freedom, a model can perform an interpolation of the sample space with any required error.
The result is that the higher the number of parameters, the more probable is overfitting. Of course, a
good model is not an interpolation function but more an approximation function of the dynamic equation.
The overfitting will cause good model performance on the training set, i.e. on the sample space where the
parameters have been determined but will perform badly on another sample space. There are different
approaches to overcome the overfitting problem but we will discuss the different issues in the relevant
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sections. Here, model M2 contains one more parameter than model M1, so that M2 will have better or
equal performance index than M1, regardless of its true nature.

Because we deal with estimates, simple performance criterion cannot be used for comparing the
model performances. Unfortunately, the model selection uncertainty is usually too complex to be solved
analytically so that we are compelled to use numerical methods based on the interpretation of the statistics
estimates.

Overfitting is one of the aspects of a more general performance evaluation problem called the gener-
alization estimation.

1.3 Generalization Estimation

1.3.1 Introduction

In any dependent approach, the model is always determined on the basis of a given set of observation.
The aim of dependent is then to make sure that the identified model describes the best as possible the
system behavior rather than the system response to the observed inputs. The goal is to identify strong
functional dependencies between input and output data. The ability of the model to fit the system
response to inputs data samples different from those used during the identification is designated as the
generalization ability of the model.

If the qualitative description of the generalization of the model is easy to express, obtaining a quan-
titative estimation is another problem. This estimation, based on statistic theory, add constrains on the
identification process. The generalization lead to concepts such as training data set to express the data
set that was used to perform the identification and the validation or test data set, independent from the
training data set, on which the model performance is evaluated.

The simple qualitative description of generalization assumed that generalization is possible. Obviously,
the generalization estimates has a sense only if the data sets, or the system itself, make generalization
possible. It usually require a sufficient number of data so that the multi-dimensional input space is evenly
distributed. This problem, also designated as the curse of dimensionality is even more problematic for
dynamical systems whose data lies in a restricted parts of lower dimensional subspace. As we will see
later on, it is possible to apply transformation to the input space samples to overcome some of the
dimensionality problems.

We have seen in section 1.2.3 that the variance of the model response error, σi
2 can be used as a

first estimated of the model performance. We have also seen that the complexity of the model, i.e. the
degree of freedom allowed by the parameters, tend to downgrade the efficiency of this criterion when
used to estimate the generalization property. The simplest way to overcome that is to use an information
measure that takes into account the model complexity and the number of samples used.

Because the estimation of generalization depends on the context, we will examine some of the criteria
in use.

1.3.2 Single-Sample Statistics

When the data set is large and representative enough, the estimation can be carried out on a single data
set, sometime the training data set. The advantage is the methodology and computation simplification
since the criterion is use for both parameter estimation and model evaluation.

A popular measure is the Akaike’s Information Criterion (AIC) :

AIC = n Log(Jn(Dn)) + 2 p (16)

where

Dn is the data set on which is estimated the criterion.

Jn is the cost function.

n is the number of samples.

p is the number of parameters in the model.

8



The Akaike’s criterion is considered to over estimate the model size. Another proposed criterion is the
Final Prediction Criterion (FPE) :

FPE = Jn(Dn)
n+ p

n− p
(17)

The FPE is asymptotically equivalent to AIC when n→ +∞. The Maximum Descriptor Length (MDL)
criterion is also used for model selection :

MDL = Log(Jn(Dn)) +
p Log(n)

n
(18)

1.3.3 Split-Sample Validation

In section 1.3.2, the identification and the estimation of the model performance was carried on a single
data set. When the size of the data is critical, due to the lack of available data or the time constrains of
computation, a more independent, i.e. unbiased, method is used. The idea is to split the available data
set in too distinctive subsets, the training and the validation data sets. The parameters are identified on
the training set and the model is estimated on the validation data set.

When an estimation of the generalization is required during the training, another subset is used,
the test set. The model is identified using the training set, the generalization during the training is
estimated on the test set and the resulting model is evaluated on the validation data set. If this method
is statistically satisfying because of its unbiased estimates, it results in reducing the available data set,
reducing at the same the significance of each data set. Of course, whatever unbiased a subset is in regard
to the training, it still must be significant enough to express the generalization properties of the system.

This split-sample method, widely used in the available literature, is mostly suitable when the data
sets are large enough. When the data set is too small to enable a good coherence, another method have
to be used, the cross validation method.

1.3.4 Cross Validation

Cross validation, and its corollary, is a method that uses the precepts of statistics theory to improve
the model selection and parameter determination techniques in respect to generalization properties. It
is an improvement on split-sample validation by enabling to use all the data available for training and
by providing statistics on the generalization estimates itself. The disadvantage is that it require more
computations.

The key idea is to resample and average the estimators obtained with different training sets rather
than sampling additional points. The method prove to be useful when the size of the sample space is
constrained and limited. This method, when used for model selection is also called cross model selection.

Practically, the method consists in dividing the training data set D in k subsets, Di. (k-1) models
are identified using (k-1) subsets, each time leaving out a different subset. The model performance is
evaluated on the subset left outside. This differs from split-sample validation because the estimation is
performed on different subsets, making more improbable the estimate to be biased by the idiosyncrasies
of the validation set. Moreover, having several validation estimates covering the entire training data set,
much larger than with split-sample method, gives a better confidence degree to the estimates. To express
the statistical issues of the method, we will start by defining some notations.

Let CVk be the cross validation criterion obtained on subset Dk of D. We define D̄k to be the exclusive
data set of Dk :

D = Dk ⊕ D̄k (19)

The criterion can be defined by :

CVk =
1

k

k∑
j=1

JNj D̄j (20)

where JNj (D̄j), is the cost function evaluated on subset Dj of the model obtained when trained on D̄j . It
may be also modeled to examine the distribution of the JNj (D̄j) to find out about the confidence limits
of the criterion.
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To interpret the statistics, we need some information on the task assigned to the model identification
process.

The first obvious factor important to determine the generalization properties of the model is to
evaluate the ratio between the target function complexity and the model complexity.

Concerning, the model, the complexity can be easily estimated as proportional to the number of
parameters for a given class of model. For linear systems, the complexity is a linear function of the
number of parameters. For models such as neural networks, the complexity is expressed by the network
capacity, i.e. the number of combination within the network. In that case, the complexity must be
evaluated according to a given topology (number of layers, number of neurons, connection structure...).
We will examine the particular problem of network complexity latter on.

The complexity of the target function is very difficult to determine. It can simply be defined as the
number of parameters needed in a given model structure to fit exactly. Since the optimal number of
parameters is precisely what we are looking for, such definition is not useful. In some cases, it is possible
to define analytically such complexity but in the general case, only numerical estimates can be obtained.
The most commonly used method is a measure in term of Fourier transform integrability condition. Even
though, the result is only a relative index that must be calibrated to determine the correlation between
the Fourier transform measure and the function complexity. Again, these methods are very problem
simplest so that we will not express them in detail here. A general expression of the generalization could
be :

εg(d) = (
c

d
)α + εmin (21)

where

c is a measure of the target complexity.

d is a measure of the complexity of the model structure.

εg(d) is the best generalization error that can be achieved in the model class Hd, d being the complexity
of the model.

εmin is the degree of unrealizability of the target with respect to the input and model structure.

1.3.5 Statistical Bootstrap

k-folded cross validation usually gives much better results than the split sample methods because the
estimates are obtained on numerous sets. The problem with cross validation is that the use of cross
estimates does not get rid of the dependencies. These dependencies are of two kinds, the temporal
dependency, due to the time correlation between the sample a given subset, and the spatial dependency
due the fact that training and estimation are done on the same set of subsets. Statistical bootstrap is
another statistical method used to decrease the dependencies in the estimates. The key idea is to used
sets of subsamples rather than subsets to perform training and estimation.

This enables more degrees of freedom compared to the cross validation. In cross validation, the data
set is divided into subsamples of equal size. The more subsamples, the better will be the statistical
inference but the smaller the subsets and the smaller will be the generalization properties and then more
biased will be the statistics. This is designated as the γ ration problem and the method performance will
depend on the optimal choice of that ratio.

Practically, the bootstrap method consists to draw samples at random among the observed values
(and the corresponding inputs). The samples are drawn with replacement so that the same sample can
be selected more than once. We then form as much sets of random samples of any given size in the
overall data set. This method enable to increase the estimation accuracy by decreasing the dependencies.
Since we will use the bootstrap method for the neural network available, we detail the notations and the
important statistical analysis results [23].

We define the data set D to be made of N related input-output examples :

D = {(xk, yk}Nk=1 (22)
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Where x and y are the input and output vectors. We define the f, the function associated with a model
so that f(x, θ) is the model output and θ the model parameters. The cost function can then be defined
by :

JD(θ) =
1

N

N∑
k=1

(yk − f(xk, θ))
2 (23)

The bootstrap technique involves resampling of the data set. We define Q as the number of resampled
data sets, each resampled set designated by Dq with q ∈ [1, Q]. Each resampled sets will consists of

N input-output patterns drawn independently from D with a probability 1/N. We define θ̂q to be the
estimated parameters obtained when the identification is performed on Dq.

To express the belonging properties, we define an indicator variable ;

δkq =

{
1 , k 6∈ Dq

0 , k ∈ Dq
(24)

We these notations, we can express the definitions of the training error and the averaged generalization
error. The training error on D evaluated with the model obtained when trained with Dq :

JD(θ̂q) =
1

N

N∑
k=1

(yk − f(xk, θ̂q))
2 (25)

The individual training error, i.e. the training error on the training data set.

JDq (θ̂q) =
1

N

N∑
k=1

(1− δkq) (yk − f(xk, θ̂q))
2 (26)

The first term corresponds to the training error and the second is the test or validation error. To
implement the fact that we have the possibility to consider the entire set of possible resampled data sets
of size N, we define the operator Ed as the data set ensemble average.

1

N

N∑
k=1

ED{(yk − f(xk, θ̂))
2} =

1

N

N∑
k=1

ED{(1− δkq) (yk − f(xk, θ̂q))
2}+

1

N

N∑
k=1

ED{δkq (yk − f(xk, θ̂q))
2}

(27)
The generalization error can be expressed as

G(θ̂q) =

∫
(yk − f(xk, θ̂q))

2 p(x, y) dx dy = Ex,y{(yk − f(xk, θ̂q))
2} (28)

When the generalization is averaged over the all the possible resampled sets of size N, we have an averaged
generalization error criterion :

Γ = ED{G(θ̂q)} (29)

Form equations 29 and 27 we have :

Ed{JD(θ̂q)} =
1

N

N∑
k=1

(1− δkq) ED{JDq (θ̂q)}+
1

N

N∑
k=1

δkq Γ (30)

When we average equation 30 over all possible configuration of resamples, we have :

Eq{ED{JD(θ̂q)}} = (1− β) Eq{ED{JDq (θ̂q)}}+ β Γ (31)

Where β is the average number of examples in the test set, i.e. the probability that a specific input-output
pattern is not in a resample of size N. β is given by :

β = (1− 1

N
)N (32)
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It is important to notice that for N → +∞, β → e−1.
Equation 31 is exact but in practice we will not consider all possible configurations of resamples so

that we do the approximation :

Γ ≈
〈JD(θ̂q)〉 − (1− β) 〈JDq (θ̂q)〉

β
(33)

The Γ generalization estimates can be used for all the issues of available, from model selection to
model optimization.

We have studied the different methods available to perform the early stage of available and some
important aspects of the methodology. We will continue to examine the use of this methods when applied
to neural network available. First, We will examine another method derived from the multivariate data
analysis field and applied to the neural network available. This method and the related techniques will
be used to perform preprocessing of the input space as well as topological optimization.

1.4 Principal Component Analysis.

1.4.1 Introduction.

The classical statistical analysis methods aims at determining correlation relationships between the dif-
ferent input candidates and the outputs. The results are indications on the most suitable inputs to be
incorporated in a model. If these passive, or observation variable directed methods can be modeled to
understand the system behaviour, they have limited effects on the system identification performance. It
is therefore possible to use active methods that will transform the input spaces to make it more suitable
for the numerical system available.

One of these methods is the so-called Principal Component Analysis (PCA). It is a multivariate
analysis technique that was first introduced by Pearson [1] in 1901 in a biological context to recast linear
regression analysis in a new form. Later, the method have been improved by Karhunen and Loève in the
probability theory field.

It is a statistics based methods that aims to find new variables which are linear combination of the
observed variables so they have maximum variations and are orthogonal. This method can be used either
to re-arranged the input data without lost of information leading to orthogonal rotation, or can also be
used to perform a dimensionality reduction. Because this methods and its derivatives are used in various
fields, the denominations and the interpretations of the transformations vary a lot. For example, the
orthogonal rotation can be interpreted as a feature extraction in the field of multivariable data analysis
and the dimensionality reduction can be called compression in the communication field.

1.4.2 Geometric and Algebraic Basis of Principal Components.

In order to give an intuitive understanding of the PCA, we can use a geometrical interpretation of the
transformations. The problem examined is then the analysis and the transformation of n samples of p
variables. We start by defining some notations.

Let D = {Y1, Y2, ..., Yp} be the family of the p variables. Each variable Yi has n observations. In the
algebraic representation chosen, D is the data matrix where each row represents the observations of one
variable.

D =

 Y1 (y11 · · · y1n)
...

...
. . .

...
Yp (yp1 · · · ypn)

 (34)

D is also called the data matrix. The elements of D form a swarm of points in a p-dimensional space.
The shape of this swarm of point has some statistic meaning. As a matter of fact, if the variables are
correlated, the swarm of point is not oriented parallel to any of the axes of the base. It is then interesting
to find an orthonormal base on which the swarm of point is oriented parallel to all (or some) of the axes
of the new base. The basic operation of achieve this is the rotation in the p-dimensional space. However,
to avoid to bias the relationships, it is important that the transformation is isotrope. In other words, the
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rotations must have the center of the swarm of point as its center. The overall transformation is then a
translation followed by a rotation.

The translation is performed by subtracting the mean of the variables over the n observations. Let
µi be the mean of variable Yi :

∀i ∈ [1, p] , µi = E(Yi) (35)

Then, the new centered points are ỹij = yij − µi and the new data matrix D̃ is defined by :

D̃ =

 Ỹ1

...

Ỹp

 (36)

The axis of the base can be rotated by multiplying each ỹij by an orthogonal matrix A. The columns of
A are the orthonormal base vectors.

A = (a1, a2, · · · , ap) (37)

A is orthonormal so that

A
′
A = I ⇐⇒

{
∀i ∈ [1, p] , a

′

i ai = 1

∀i 6= j ∈ [1, p]× [1, p] , a
′

i aj = 0
(38)

The result of the rotation of point ỹij is zij :

zij = A ỹij (39)

With A being orthonormal, we have :

∀i ∈ [1, p] , Z
′

i Zi = (A Yi)
′
(A Yi) = Y

′

i Yi (40)

The covariance matrix S of D can be seen as a description of the distribution of the swarm points
from the center.

S = E(D D
′
) (41)

Similarly, the covariance matrix S̃ of D̃ is S̃ = E(D̃ D̃
′
). With a relation similar to equation 40, we

have :
S̃ = A S A

′
(42)

We chose the orthonormal matrix A so that the variables Zi are uncorrelated. This lead to S̃ being
diagonal. A is then the matrix of the eigenvectors of S. The variables Zi are then called the principal
components. The covariance matrix of the principal components is then :

S̃ =


s̃2

1 0 · · · 0
0 s̃2

2 · · · 0
...

...
. . .

...
0 · · · 0 s̃2

p

 (43)

If Sp(S) = {λ1, λ2, · · · , λp} is the specter of S, i.e. the set of the eigenvalues of S. Since S is a correlation
matrix, its eigenvalues are real and nonnegative. then we have the relation :

∀i ∈ [1, p] , s̃2
i = λi (44)

It is important to notice that s̃2
i is the variance of the ith principal component. The rotation lines

up with the natural extensions of the swarm points. The principle direction of the swarm of points is
the one associated with the principal component. The first eigenvalue is then associated with the axis
rotation that maximize the variance of the principal components and is the largest eigenvalue.

The variance of data matrix is then the sum of the variance of the principal components. It is possible
to express the characteristics of the principal components with the proportion of variance explained by
the first k components, that we will define as Pv(k) :

∀k ∈ [1, p] , Pv(k) =

∑k
i=1 λi∑p
i=1 s̃i

(45)
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The proportion of variance function is also called percent of variance when used in the discreminant and
canonical variates context. As we will see in section 1.4.3, it can be used as a criterion for dimensionality
reduction.

1.4.3 Subspace Reduction

The goal of this study is system identification. An any identification approach, many similar problems
have to be overcome. Among these, the structure and the size of the information used to perform the
identification is crucial. Because most of the methods are numerically based, the computation problem
can be tackled only if the number and the structure of the information to process is optimal.

In linear identification, this problem is corollary to the choice of the number of inputs and then of the
parameters. With neural networks identification the problem is to determine the optimal set of inputs
that will enable the network to converge quickly as possible to a global minima of a multi dimensional
error surface. The higher the dimensional, the higher the probability to end in a local minima. Whatever
the training approach chosen, the first concern must be the determination of the optimal set of inputs.
This can be the choice of the inputs, the size and the number of the sets, or even the choice of the
transformation of the input sets. In this section, we will examine the choice of this transformation.

In any identification approach, it is always important to provide all and only the relevant information.
Any redundant information such as correlated but not causal information or noise will overload the
numerical methods and will downgrade the identification performance. The elements of the principal
component analysis can effectively used to understand the behavior of the system by extracting and
exhibiting its main features but it can also improve the identification procedures using the principal
component loadings.

The principal components loadings can be interpreted as the transformed inputs in which the main
features have been extracted. If all the loadings are used, the information within the data sets is preserved.
This means that features such as outlier data or noise are also fed into the identification process. The
only gain is that by dividing these features in distinct variables, the identification process can treat them
more appropriately. This procedure is designated as orthogonal rotation or data expansion.

A more dramatic transformation would be to reduce the input dimensional by truncation. In that case,
only a subset of principal components loadings is preserved. The rational is that this enable to perform
a negative feature filtering, freeing the input signals from noise and outliers. Moreover, because of the
orthogonal based used, the reduction of the number of loadings to be used lead to reduce the number
of input variables and then lighten the task of the identification process. The approach has different
denomination according to the field of application. It can be designated as subspace reduction, subspace
decomposition (oja 83), feature extraction or signal compression. However prospectful this method seems,
some important issues still have to be addressed. For example, it is crucial to distinguish the positive
features, i.e. the one that do represent a feature of general behavior of the system, from the negative
features that corresponds to particularities of the data set, noise and outliers. Unfortunately, there are
no definitive answer to that problem so that trade off have to be made. Moreover, the use of subspace
reduction methods may also have effects on the generalization properties of the models identified.

To the critical question of the number of principal components loadings to be used, the associated
eigenvalues can be used and interpreted as an index for the proportion of information carried by the
principal components. The proportion analysis carried out for the Sunspot series can be seen on Figure
??. Some general rules can be used to determine a god trade off in the selection of the number of principal
components :

- Use the subset of principal components which are responsible of at least 80 % of the input
data variance.

- Exclude principal components whose eigenvalues are less than the average of the eigenvalues.

- Use the scree graph to find a bend or an inflexion point.

- Test the significance of the retained subset of principal components.

The different rules can be used as stand alone or can be interfered but none has any theoretical better
ground. However, we can attempt to explain the rational behind these rules.
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The eigenvalues are calculated on the variance covariance data matrix. For that reason, their mean
is 1. It is possible to consider the mean as a decision threshold for dimensionality reduction. The small
eigenvalues can be associated to either noise, outliers or small variance information. To reconstruct the
data without the small eigenvalue components is similar to noise filtering.

The proportion of variance explained is an index of the conservation of the integrity of the data. It
measure how the overall information, expressed by the variance, is divided into the different principal
components loadings. The cumulative proportion can be used to determine the best compromise between
lost of information, a quantitative lost rather than qualitative lost, and the reduction of the input space
dimension. However, we have to remember that quantitative information does not mean qualitative in-
formation and it is possible that the principal component loadings associated with the smaller eigenvalues
carries valuable qualitative information. The cumulative proportion of variance will then be an index of
the degradation of the data.

The two last approaches are not clearly defined since they rely on case by case determination. Although
sensible, they are difficult to express quantitatively. However, in order to compare the efficiency of the
different rules on our case problem, we will evaluate the efficiency of the principal components using a
model based criterion. These rules are not the only possible approach to answer the issue of the number
of principal components, other statistical methods such as the study of the distribution of the eigenvalues
or the so-called factor analysis can be used but they will not give definitive answers either.

The three first rules indicate clearly that the three first principal components are the most suitable
to be preserved for subspace reduction. To get a quantitative criterion, we will use the forecasting
performance of linear models using subsets of the principal components as inputs.
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2 Neural Network overcome

2.1 Introduction

Neural networks models are connectionists models that have been introduced as an attempt to emulate
the capabilities of the human brain. Many parallels have been drawn from the biological system to build
the structure of the model and to determine learning algorithms and network analysis methods. However,
these models are still connectionist models and the dream of the universal model is still in that state.

Form the connectionist point of view, the neural networks are nonlinear parallel computational models.
The parameters of the model are identified through a process called learning, usually based on example.
The learning algorithm tune the parameters to minimize a learning criterion that correspond to a fit
function for classification or prediction problems. The principles of the learning are based on biological
observations and other processes aiming at improving the networks are also draw from the biological field
(optimal brain surgery...).

The main advantage of neural networks models over the so-called classical methods, such as regression
techniques, is that the nonlinear nature provides more flexibility. On the over hand, the very nonlinear
properties doe not enable to carry out model analysis such as statistical inference. The result is that the
neural networks are usually seen as black box systems for which it is difficult to analyze the results, to
understand why it work or does not work. Moreover, in the prediction field, it is not possible to determine
easily inference both on the model and the predictions.

There are several types of neural networks Multilayer Perceptrons (MLP) also called Feedforward
Networks (FFN) , Radial Basis Function networks (RBF), Kohonen’s Self Organizing Maps (SOM)....
But they all share some common design problems.

The design of the neural network requires to determine the model space. This model space incorpo-
rate the space of architecture, also called topology, the noise models, the various preprocessing and the
regularization methods. Each of these issues are the subject of numerous researches but the Holly Grail
of neural network addressed, i.e. a universal addressed methodology, remains more a concept than a rea-
sonable goal. Therefore, a large range of methods is used to answer the design issues. The methodologies
used are therefore very much problem dependent, empirical and very often based on trial and errors.

Since to find a solution starts by asking the right questions, we can start by examining some of the
main issues that will have to be tackled.

The common issues are then to find the network topology (type of network, number of layers, number
of neurons in each layer, type of the transfer function in each neurons), eventually the structure of a set
of networks. The topology determination also requires to determine the structure of the model, i.e. type
of inputs, outputs but also lead to model testing and comparison which lead to hypothesis testing.

In this study, we will express the main issues of neural network addressed and we will examine how
statistical methods can be used to improve the classical methods and how they can provide another point
of view of the problems to solve.

2.2 Neural Networks as Statistical Models

2.2.1 Bayesian Interpretation

From the statistical theory point of view, a neural network model is a nonlinear statistical model with
high-dimensional parameters. It is a mapping from the input space X to the output space Y.

The neural network is defined by its topology A and its parameters W. The topology, also called
functional form of the mapping, expresses the type of network (MLP, RBF, SOM ...), the type of functions
(sigmoid, linear, tanh ...), the number of layers, the number of neurons in each layer. The function used
are usually continuous so that gradient-based optimization methods can be used.

The parameters W are, in case on MLPs weights and bias. From the Bayesian point of view, the
learning will be the inference of the most probable parameters for a model, given the training data.

Bayesian methods are used for learning and model comparisons. the main advantage other classical
addressed techniques is that probabilistic addressed handles uncertainty in a natural manner.

Bayesian methods are quite sensitive to erroneous addressed assumptions
Bayesian Optimization :
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Figure 1: Representation of multi-layer feedforward neural network.

� No test or validation set : all available training data can be used for model fitting and comparison

� Regularization constants can be optimized on-line

� Bayesian objective function is not noisy

� The gradient of the evidence with respect to the control parameters can be evaluated.

Bayesian Learning :
Bayesian learning involves to determine the inference of the most probable parameters for the model,

given the training data. Form the Bayesian approach, model selection, i.e. model space determination,
and parameters lead to solve an inference problem. For simplification purposes, one of the common hy-
pothesis is to consider that the probability distributions of the neural networks parameters are Gaussians.
Although this is outside the scope of this report, we can say that this approximation is justified by the
use of continuous transfer functions, the use of relatively large training sets and normally distributed
initial conditions.

2.2.2 Notations

As stated before, the neural network N is defined by its structural components A and θ, its architecture
(functional form of the mapping) and its parameters. To express the different issues of the learning
process, we have first to define some notations.

The learning L is performed within the structural constrains and on a training set defined by Equation
46.

D(t) = {x(t), t(t)} (46)

Where x(t) is the input space used for training and t(t) is the corresponding target space. We define
n to be the number of samples on the training sets as expressed by equation 47.

nt = card(t(t)) (47)

The learning process L will be carried out using a training set, initial condition and a given learning
method m on a neural network of topology a. Therefore, the learning process can be defined as a function
as expressed by equation 48.

Lm(D(t), R,A) (48)

Where

� m is the learning algorithm which is parameterized.
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� D(t) is the training data set.

� R is the set of initial conditions.

� A is the neural network topology.

The learning process lead to the set of parameters θ which is defined as the result of the learning
process as expressed in equation 49.

θ = Lm(D(t), R,A) (49)

where θ represents the neural network parameters, i.e. the weights and the biases.
The prediction y, or the network output, is itself a parameterized function.

y(t) = A (x(t), θ) (50)

The training error can be chosen to be the Mean Square Error (MSE).

E(t) =
1

nt − 1

nt∑
i=1

(t
(t)
i − yi(x

(t), θ))2 (51)

Similarly, the prediction on the validation set is defined by Equation 52.

y(v) = A (x(v), θ) (52)

Therefore, the prediction error on the validation set is expressed by Equation 53.

E(v) =
1

nv − 1

nv∑
i=1

(t
(v)
i − yi(x

(v), θ))2 (53)

Classical learning methods aim at minimizing the MSE on the training set. It is also possible to add
some structural penalty features to implement structural optimization issues in the learning itself. These
features, also called regularization techniques will be seen later on.

Having defined some notations, we can examine some of the general issues of learning methods for
neural networks.

2.2.3 General Issues in Learning

Although there are various methods available to determine the set of parameters, it is possible to exhibit
some of the general problems that learning algorithms will have to solve. This will introduce the well-
known problems of generalization, overfitting ....

We will examine more precisely the case of time series forecasting. In that field, the goal is simple
: On the evidence of past observations, we will have to forecast future values, from one step ahead to
infinite horizon. The time series is supposed to be the response of a system to causal input. The response
is supposed to be described by an hypothetical function that express the systems dynamics.

The goal of neural network addressed is therefore to approximate the hypothetical function describing
the system behaviour by a neural network, i.e. a connectionist model expressed by its function mapping
A and its parameters θ.

The definition of the problem already exhibit some of the problem of the addressed. As a matter
of fact, the identification will be carried out from observations, i.e. from the system response to causal
inputs. The observations will be only a restriction of the system behaviour so that we may not see the full
range of system behaviour. Then, according to the field of application, it will be necessary to ensure that
the measurement campaign will produce time-series that will span the full range of system response. Of
course, because of the potential complexity of the system dynamics, there are no ways to determine that
a priori. This issue alone justify to carry out test and validation procedures to ensure that the identified
systems gives good predictions for various systems responses, in particular for conditions that were not
experienced in the identification process. This general concern about addressed estimation is defined
as the generalization property of the model. We have said that a good general model will be obtained
only if the training data were covering the full span of system behaviour. If sometime is it possible to
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control the experimental conditions, it is generally not the case and we will have deal time-series which
generalization properties will be biased by limited size, acquisition error and noise. Because of that, there
will be no general solution to the problem, only an estimates that will fit as best as possible the training
and validation sets.

Corollary to the generalization problem is the time invariance issue. As a matter of fact, because
we are dealing with restricted time-series, restricted both in space and time, the question of the time
invariance arise. In the classical addressed methodology, training sets are time and space correlated
and are usually prior to the validation sets. Moreover, since forecasting involves prediction of future
values, this time constraint cannot be avoided. The first step of the addressed is then to ensure the time-
invariance of the series and if not the case to perform some feature extraction to make it time-invariant.
A common example is to identify a trend in the times-series to deal with a detrended time-series. In the
relevant section, we will examine some of the issues and techniques of feature extraction.

We can express the generalization problem and its consequences on the learning algorithm using some
of the statistical approach.

Let S be the time-series that would describe ideally the system behaviour and St and Sv the restrictions
of S available for the addressed. To describe ideally the system behaviour, S should be an infinite sample
time-series (in most of cases).

Form the system output S and the causal time series, we define the input space. This input space
will contain the causal inputs which, in the case of a discretised signals, will be composed of the discrete
time series with various delays. The goal of the learning algorithm will then to be to map the input
space on the output space, also called target. The structure of the input space is determined on prior
processes and analysis or using the results of previous identification. The input space determination will
be discussed later. We defined in section 2.2.2 D to represent the input space. Therefore, DS represents
the input space associated to the time-series S.

Given the topology A, the goal of the learning algorithm is to determine θS , the network parameters
that minimize the error criterion on S. Because S describes entirely the system behaviour, there should be
no generalization error. However, because the neural network would be only an approximation function,
the prediction error on S cannot be null.

Moreover, since S has an infinite number of sample points, it is not possible, to a limited network
structure, to memorize the training data. Therefore, the forecasting error, how small it can be, will never
be null.

We define θt to be the result of the learning process carried out on the training space Dt. For various
learning implementation, i.e. various initial conditions and learning parameters, we will a set of distinct
solutions. These distinct solutions are called the local minima. In the probabilistic approach of the
learning process, we consider that the set of local minima follows a density of probability distribution f.
For various reasons (continuous and integrable transfer functions, normally random initial conditions,...),
we will assume that f can be approximated by a Gaussian, or normal, distribution.

2.2.4 Probabilistic Description of the Model Evaluation Criteria

In order to apply some of the statistical theory field ideas, we have to consider an alternate way to express
how a network model fit to the system. The traditional method consist in evaluating the performance
of a model by considering a fit criterion, usually the mean square error (MSE). This criterion expresses
quantitatively the error of forecast, i.e. the difference between the network output and the desired output
(target).

In the statistical approach, rather than considering statistics on measured error, we will take a proba-
bilistic step forward. Therefore, we will not measure the forecast error but more likely the probability or
error given certain conditions. Before entering into more detailed considerations, we can start by defining
some of the probabilities.

First, we consider the joint probability P(x, t), interpreted as the probability of obtaining the desired
output t, given the input x. According to the notations defined in 2.2.2, the network output is y = A(x, θ).
The joint probability can therefore be defined as expressed in Equation 54

P(y(x, θ,A) = t) = P(x, t) (54)
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Obviously, the probability is conditioned by x, A and θ (which itself depends on training conditions).
We then decompose the joint probability into a conditional probability of t, given x and the probability
of x.

P(x, t) = P(t/x) P(x) (55)

where P(x) can be seen as the probability of occurrence of pattern x (or of data set x). Since x is a
subpartition of all the output space Y , we can express P(x) by its normalization definition in Equation
58.

P(x) =

∫
Y

P(x, t) dt (56)

The goal of the addressed will be to provide the best forecasts. In other words to maximize the
probability of good forecast. The maximum likelihood function L expresses the fact that we want all
the forecast to be as good as possible. Therefore, the logical operator AND is used to infer the joint
probabilities. Therefore, L can be expressed by Equation 58.

L =

N∏
i=1

P(xi, ti) (57)

where the function is evaluated on a data set DN = {xi, ti}i=1,N . Equation 58 can also be expressed
using the conditional properties.

L =

N∏
i=1

P(ti, xi) P(xi) (58)

Although the goal of the addressed is to maximize L, it is more convenient to minimize a derived
function, expressed by Equation 59

Ẽ = − lnL = −
N∑
i=1

lnP(ti/xi) P(xi)−
N∑
i=1

P(xi) (59)

From Equation 59, we do not need to carry out the analysis of the term
∑N
i=1 P(xi). As a matter of

fact, this term does not depend on the network parameters but only of the data sets. We will define the
first term of Equation 59 as the error function.

E = −
N∑
i=1

lnP(ti/xi) P(xi) (60)

It will be shown in section that under certain conditions ( output vectors statistically independent
and following a Gaussian distribution) that the error function defined by Equation 60 is equivalent to
the sumsquare error.

E =
1

2

N∑
i=1

m∑
j=1

‖ yj(xi, θ)− ti,j ‖2 (61)

The fact that the probabilistic approach, under limiting conditions, lead to use the classical criterion
shows that rather than being a complete different approach, it is more likely a more rigorous approach
since it attempts to take into consideration the addressed hypothesis.

2.2.5 Bayesian Learning

Bayesian learning involves to determine the inference of the most probable parameters for the model,
given the training data. Form the Bayesian approach, model selection, i.e. model space determination,
and parameters lead to solve an inference problem. For simplification purposes, one of the common hy-
pothesis is to consider that the probability distributions of the neural networks parameters are Gaussians.
Although this is outside the scope of this report, we can say that this approximation is justified by the
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use of continuous transfer functions, the use of relatively large training sets and normally distributed
initial conditions.

In section 2.2.2, we already defined the neural network parameter vector θ as a function of the training
set, the topology, the initial conditions and the learning algorithm chosen. Using Bayesian methods, it is
possible to go a step further in the understanding of the learning issues.

P(θ/D) =
P(D/θ) P(θ)

P(D)
(62)

Where

� P(θ/D) is the posterior probability of the weights.

� P(D/θ) is the posterior probability of targets.

� P(θ)) is the prior probability of weights.

� P(D) is a normalization factor.

Equation 62 represents the posterior probability density of weights using Bayes theorem. P(θ/D)
represents the dependency between the training set and the resulting weights. To ensure normalization,
we have to define P(D).

P(D) =

∫
θ

P(D/θ) P(θ) dθ (63)

Of course, a more accurate definition would consider the other dependencies such as the topology A,
the learning algorithm Lm and the initial conditions R.

P(θ/D,A,Lm, R) =
P(D/θ) P(θ/,A,Lm, R)

P(D)
(64)

In Bayesian learning, the first step is to define P(θ). Of course, we need to determine arbitrarily a
statistical model. Under large conditions, the Gaussian approximation is made.

P(θ) =
1

Zθ(α)
exp (−αEθ) (65)

Where Eθ is a function of weights and Zθ is the normalization factor.

Zθ =

∫
θ

exp (−α Eθ)dθ (66)

Equation 66 is required to ensure the unity conditions of a density of probability.∫
θ

P(θ)dθ = 1 (67)

The choice of Eθ is free but usually considerations such as structural penalty are taken into account.
Therefore, a traditional choice for Eθ is a function that tend to penalize large weights but also networks
with large number of weights.

Eθ =
1

2
‖ θ ‖ (68)

The likelihood function can also be expressed under exponential form as expressed in Equation 69

P(D/θ) =
1

ZD(β)
exp (−βED) (69)

Where ED is the error function, β is a parameter and ZD(β) a normalization factor used to ensure the
normalization of the density of probability.
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If we assume that error function is the sum square error function defined in Equation 61 and that
targets are continuous and zero-mean we can make the approximation of Equation 70

P(t/X, θ) ∼ exp (−β
2

[y(x, θ)− t]2) (70)

Which gives

P(D/θ) =

N∏
i=1

P(ti/Xi, θ) (71)

P(D/θ) =
1

ZD(β)
exp (−β

2

N∑
i=1

[y(x, θ)− ti]2)) (72)

β controls the variance σ = 1√
β

. Therefore, we obtain an expression for ZD :

ZD(β) = (
2 π

β
)N/2 (73)

Here, we will not examine the Bayesian learning methods. We will only consider the probabilistic
approach provided to examine with more rigorous approach the general issues involved in neural network
addressed. The Bayesian learning methods involves Markov chain Monte Carlo methods to explore the
model space.

Monte Carlo are similar to Genetic algorithms and they differ only from the range of the solutions.
Monte Carlo methods aims at finding the global optimal set of parameters in the parameter space by
interference while GA are attempting to reach the hypothetical global minima by localized Monte Carlo
search.

2.2.6 Statistical Conditioning of Data

We have seen in the previous sections that the results of the Bayesian methods stands only for specific
hypothesis made on the input and output spaces. Conditions such as zero-mean or uncorrelation (spatial
and temporal) although restricting can be extended to the general neural network addressed methodology.

The principal transformation or feature extraction applied to the data set is usually the normalization.
One of the advantage of the normalization is to be able to interpret the statistics of the signals using
probabilistic terminology as it is the case in the Bayesian approach. Therefore, the output and input
space is detrended and is normalized so that the variance of the signals is unity. The output space consists
of zero mean signals and the absolute values of the outputs are probabilities of taking a certain value.
Moreover, since the signals are normalized, the error of prediction will also be a probability of wrong
forecast. Its mean and variance will be meaningful characteristics. Analysis of the error mean (bias) and
variance will be used to obtain confidence limits on the forecasting and then on the probability of fitness
of a given model.

For time series application, the output space, also called target, statistics can be defined as follows :

t̄ =
1

N

∑
i

ti (74)

σ2
t =

1

N − 1

∑
i

(ti − t̄)2 (75)

Where t is the target time-series.

t̃ =
t− t̄
σt

(76)

The same process can be applied to the input space so that the correlation analysis, more precisely the
absolute values of the elements of the covariance matrix, can use probabilistic theory. The crosscorrelation
coefficient will be the probability of correlation between two spaces. However, we will see that alternate
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multivariable data analysis methods and various feature extraction and transformation can be applied to
the input space before it is normalized.

Another way to condition of the data sets is to try to make the output space spatially and temporarily
independent. In the time series addressed field, the temporal dependency can have dramatic downgrad-
ing effects on issues such as generalization properties. The spatial dependency as usually available by
transformation such as the orthogonalization of the space. The temporal issue is more difficult to over-
come since we are usually dealing with limited training and test sets. Moreover, in order to improve the
computation time of the addressed process, it is better to avoid to deal with large data sets. To this end,
methods such as cross-validation and bootstrap, statistical resampling techniques, are proved to be very
efficient to decrease the dependencies and then improve the generalization properties of the estimates.
Although this process will be detailed throughout the report, one can already state that bootstrap, i.e.
data sets of various size made of sample randomly picked from the working data sets, will be used in
different way to condition, to some extend, the data to limited dependencies.

2.2.7 Statistical overcome Techniques

Statistical methods are widely used in multivariate data analysis or in curve fitting problems for regression
models. The nonlinear nature of neural networks and the different parameter identification methodologies
used lead to several well identified differences with classical addressed methods such as regression models.

The main difference between regression and the so-called intelligent models lies in the topological
issues. The flexibility and the higher capacities of addressed methods such as neural networks is at the
same time is its very advantage but also its main drawback. While methods are well identified to define
the structure of a regression model have benefited from years of development and experience, uncertainties
remains methods used to define the neural network structure. As a matter of fact, given a topology, the
parameter determination, using for example gradient descent methods, of a regression model will always
give the same set of parameters, or a least will give a continuously distributed set for different initial
conditions, optimization parameters and even variation of the same data set. For neural networks, on the
contrary, when the complexity of the model enables it, small variations in the initial conditions, training
parameters and training sets can lead to very different sets of parameters with very different performance.
In the statistical theory, the neural network learning process can be described as a determination of the
most probable set of parameters using highly dependent probabilities. The dependencies towards the
training sets, the topology, the training set, the initial parameters and the optimization parameters can
be reduced by using a sets of statistical methods. Each method does not provide the whole solution but
when used in conjunction, great results can be obtained.

The dependencies described are labeled differently in the statistical theory and the neural network
field. In the first one, when considering a neural network as a statistical model, we would refer to the
conditioning of the probabilities while in the latter, we will refer to the generalization properties of the
model. Despite the fact that the first approach refers to the cause and the second to the consequence,
they express the same problem but also express different approaches to the problem and then different
solutions to tackle it.

The probabilistic approach will aim at decreasing the conditioning probabilities, i.e. the dependencies
due to training sets, topology and learning algorithms. In the intelligent addressed approach where
supervised learning algorithms are used, the effort will be made on the generalization estimates. We will
present now a set of techniques that can be used to address these very issues.

As we will see in sections 2.3 and 2.4, the topological and the generalization issues are the main
problems to be addressed in neural network addressed. Ideally, the optimal topology, i.e. a network with
the minimum complexity required to express the system behavior, would lead to natural generalization
properties. The problem is that the optimal complexity can only be determined using neural network
results, although there are some attempts to estimates the input-output spaces complexity (expressed in
section 2.4.2). Therefore, the general methodology we will have to follow will be to deal with networks
with too large complexity and then try to optimize it using network based results and statistical methods.

Among the available techniques, we will use in particular :

� Statistical Hypothesis Testing

� Bayesian Methods
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� Preprocessing of Input Space

� Principal Component Analysis

� Bootstrap Ensembles

� Network Committees

Statistical Hypothesis Testing Statistical hypothesis testing methods are widely used in the classical
regression model field where they are used either to determine the regression structure or the parame-
ters. For our neural network design methodology, we can say that these methods will be used at each
incremental stage of the addressed.

In order to eliminate the burden and the computation complexity of effective input determination on
neural networks, we will use the well-proven linear addressed techniques. Statistical hypothesis testing
will be used to determine the effective inputs of the linear models and then, when the transformation of
the input space will be completed, will be used to chose the optimal transformed inputs.

Later on in the neural network addressed itself, statistical hypothesis testing concepts will be used to
find the optimal topology by supplying decision boundaries to the principal component analysis in the
neuron pruning process, to give further decision boundaries for the weight elimination process and finally
it will be used in the network committees selection process.

Bayesian Methods In the scope of this study, Bayesian methods will mainly be limited to the results
obtained from the Bayesian approach, i.e. considering neural networks as probabilistic models. However,
this very approach will be the basis for the use of all the statistical methods that will aim at reducing
the dependencies. The Bayesian approach will give the rational to perform the statistical conditioning
on the input and output space but also to the preprocessing of the input space.

Preprocessing of the Input Space When dealing with real world applications, the data we are
dealing with are usually altered in some way and require a preprocessing. As a matter of fact, although
intelligent methods are known to be able to handle unknown a priori characteristics, they usually not
handle very well noisy, overflowed and spurious data. By performing signal preprocessing, we eliminate
a part of the addressed burden from the neural network training algorithm. Therefore, the preprocessing
of the input space is a first attempt to decrease the complexity of the system. As a matter of fact, the
system complexity will be described by the ratio between the complexity of the input and the output
space. Since neural networks are performing the nonlinear mapping of the output space on the input
space, it makes a lot of sense of starting by decreasing both spaces complexity. Although these issues
will be addressed in section 2.3, we can already say that some statistical preprocessing methods such
as principal component analysis will be used to optimize the input space and will aim at decreasing the
data related dependencies and the model complexity. Some issues of the preprocessing have already been
mentioned in section 2.2.6.

Principal Component Analysis In classical linear addressed, correlation analysis is one of the most
used statistical method to determined the optimal inputs. Principal component analysis (PCA) is a
method based on the concepts from the correlation analysis. In short, it orthogonalizes the normal input
space and provide with the crosscorrelation matrix. The orthogonalized inputs, sorted by their level of
non-correlation, or in other words by the level of their contribution to the input space variance, can be
used either to reduce the input space or at least analyzes its redundancies. The orthogonalized signals will
be used in the statistical hypothesis testing on linear models to determine a first set of effective inputs.
Statistical method will then be used to determine the principal components to be used as the neural
network inputs. In the addressed process, the principal component analysis will be used to determine the
optimal topology by performing an analysis of the layers outputs. the principal component have already
been discussed in its general context in section 1.4 and in section 2.5.3, we will see in detail how the PCA
methods can be used in neural network addressed.
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Bootstrap The bootstrap concepts have already discussed in section 1.3.5. In that section, we discussed
the advantages of the bootstrap method to decrease the level of correlation within the signal and in a
broad approach the dependencies. In neural networks addressed, the two main improvement provided
by bootstrap will be the robustness of the addressed when dealing with small data sets, either imposed
or deliberately chosen, by decreasing the spatial and temporal correlation but also it will provide better
estimates of the models generalization properties and any other criterion based method will come across
during the addressed. Moreover, the ability of the bootstrap to create relatively reliable data sets from a
given limited data set will be particularly beneficial for the network committee approach.

We can briefly express where the bootstrap method will be used. Because of its ubiquous nature, it
will be used throughout the addressed and will be assumed to ensure the different criteria to stay within
good confidence limits. Bootstraps will be used in the hypothesis testing method in the linear models.
By making available various but independent training sets, the statistics used for the decision process
will be made more reliable. Therefore, bootstraps will be used in the determination of the effective inputs
and then of the effective principal components.

As we will see in section 2.4.4, bootstraps will be the key element of the early stop training algorithm
by providing reliable generalization estimates. In the neuron pruning process based on PCA, bootstraps
will enable to base the decision on statistical evidence. The result of the pruning process will therefore
be supposed to have generalization properties.

The bootstrap will also be used to form the network committees. The committees will be generated
by training networks on various bootstraps. The variety of the bootstraps yet still ensuring a data
coherence will decrease the dependencies in the committees. The same bootstraps will also be used once
again in the weight elimination supervised by decision making method. Finally, the bootstraps will be
used to evaluate both the committees efficiency but also the combined network. Bootstraps will also be
particularly Modeling in the statistical estimation of the optimal horizon of prediction. Again, the gains
from the bootstrap method will be detailed in the relevant sections.

Network Committees Using hybrid neural network models such as the network committees is prob-
ability the newest application of statistical methods and will be made possible only by the use in con-
junction of the other statistical methods. As a matter of fact, without the previously cited methods, the
dependencies would not make the combination process very reliable. The neural network committees,
an hybrid neural network, are discussed in details in section 3 but we can already outline some of their
benefits and how they are related to statistical theory results.

A first application in the time series forecasting field is the combination of forecasts which produces
improved performance and provides statistics useful for confidence limits estimation. They are also
expected to overcome some of the generalization issues. The very nature of the neural networks, i.e.
their structure and the way their parameters are identified usually provides only local minima. Results
from the Bayesian approach indicates that under certain conditions, one can consider the neural networks
local solutions as member of a solution population having a continuous distribution. In that scheme, the
optimal model, i.e. the one with the bet generalization properties, is the most probable model. According
to the hypothetical continuous model distribution, one can assume that when dependencies are minimized
(using bootstraps, random initial and training conditions, ...) the local solutions are uniformly distributed
around the global minimum. Therefore by averaging or interfering the predictions, it is proven that the
overall accuracy is improved.

The improved accuracy by combination is not the only feature expected from the use of network
committees. They can be used to perform multicriteria optimization. For example, in the bias-variance
trade off, one can use subcommittees of networks optimized either with bias or variance criteria. The
combination network is then used to perform the prediction trade off and provide a better accuracy.

Not only committees can be used for multicriteria but they can also be used to perform training
under more critical constrains. This is the case of the multistep ahead training criteria known to be
very unstable and very difficult to implement. This is done by training the network committees using
single-step ahead criteria and then by using the variance in prediction to determine the optimal horizon of
prediction using statistics. The same committees are used to obtain multistep ahead performance which
are then combined using a multistep ahead criterion.

Networks committees, by their very existence also enable to change the overall design. Since we will
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rely on the variance of prediction, it make sense to use neural models with a satisfactory variation in
structure. This implies to use bootstraps with smaller data sets since the training sets coherence or
representability of the system is no longer so critical. This has for consequence to reduce the complexity
of the networks and the computation times. Moreover, we will end with smaller networks, smaller
number of parameters. These small size networks will therefore be more suited for further optimization
algorithms such as weight elimination or genetic algorithms since the variation of one parameter will have
potentially a larger influence on the model performance. At the same time, drastic computation times
can be expected from reduced size networks, compensating by far the increase of computation induced
by more networks. Basically, we replace an exponential growing method by a linearly growing method.

Now that we have briefly reviewed the main techniques that will be used in our available methodology,
we can concentrate on the issues of neural network available, starting with the topology determination
uncertainties. We can also try to draw a general indication on these general methods. preprocessing
methods and statistical methods such as the use of bootstraps aim at optimizing the variance in the
input space. By variance, we mean the quantity of a priori information provided to the neural network.
The goal is to set the ratio variance / number of sample to a maximum. While the statistical methods are
attempts to decrease the dependencies which generates local minima and then variation in the forecasts,
the network committees methods, on the other hand, use induced variance on the output space. This
variance is made exploitable precisely by the prior methods that decrease the purely conditioning bias
and enable improved performance at the very end of the available.

2.3 Neural Network Topology

2.3.1 Introduction

By network topology, we mean the functional mapping of a given input space on an output space. This
encloses the input and output spaces themselves, with the problems inherited from their determination,
the choice of the network structure i.e. the functional form of the mapping (connections and transfer
functions) and the training method. it is clear that the determination of the optimal topology is the key
goal of the available. a good topology will give a complexity that will enable the parameter optimization
methods to run without generalization problems. Unfortunately, while training methods are supervised by
model performance criteria, the topology can hardly be defined useful nor obtained through a continuous
refinement methods. Moreover, the complexity of the interaction between the numerous and various
parameters involved make the idea of an ideal topological determination method out of reach.

In classical linear bootstrap, it is possible to consider an exhaustive search of the bootstrap parameters
as the complexity and the stability of these models make it tractable. On the contrary, it is not possible to
consider to base this stage of the bootstrap on an error an trial approach as it is unfortunately usually the
case. However, we will examine general ideas that will enable the optimal topology to be approximated
without having to resolve to out of reach computations.

2.3.2 Input Space

The first stage of the neural network bootstrap is to determine the optimal input space. This requires
to determine the causal inputs, or at least efficient inputs correlated to the causal effects (as it is the
case some purely autoregressive models where the causal forces are supposed to be expressed by their
previous effects). This process is normally archived using classical methods such as correlation analysis.
This provides a first input space, also called the raw input space.

Because the input space represents the information presented to the neural network to give the
forecasts, this information should be accurate and minimal. The accuracy relates to the noise within the
signals. The need for minimality is directly a consequence of the uncapacity of the learning algorithm
to handle redundant information. In that case, the network will try to perform the mapping with the
best averaged fit. It the network capacity is exceeds r to the capacity of the input space, the network
will perform the memorization of the signals rather than the bootstrap of the useful information. The
immediate consequence is that the memory will not work for other data sets and the model will have
poor generalization properties.
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To avoid these problems, the input space must be optimized. Preprocessing methods are applied to
reduce the dimensions of the input space and then answer minimality concerns but also may include prior
knowledge of the systems itself. These transformations can be of two types :

� Dimensionality reduction : smaller input space dimensions will require smaller and easier to train
neural networks.

� Feature extraction : construction of new input space from combination of the training space for
example orthogonalization.

The first transformation is usually the input space normalization as expressed in section 2.2.6 on the
statistical conditioning of the data. not only this will make the crosscorrelation and orthogonalization
more easy, but it will also scale the inputs to the transfer functions, then optimization the sensitivity of
the neurons.

Another set of transformations, the orthogonalization, the dimension reduction and the feature ex-
traction can be performed by the principal component analysis method. Using statistical decision making
processes, it is possible to determine the effective neural networks inputs, or in other words to extract
the main features of the input space. This have already been discussed in section 1.4

Although we will use only the PCA method, there are other methods to perform the reduction. The
PCA performs only a linear combination of the inputs to obtain the principal components. It is possible
to examine nonlinear transformations. Such transformations can be performed by a neural network.
In that case, the hybrid neural network model has a first stage network in charge of the input space
reduction.

We will see in section 2.4 that alternate methods can be used to optimize the bootstrap. As a matter
of fact, a technique used to overcome the overtraining problem aim also at keep the ratio input space
complexity / network complexity as constant as possible. Therefore, in order to deal with overcomplexed
networks, it is possible to make the input space even more complex so that the mapping is undercom-
plexified by adding noise. This can be use in the case of soft dependencies or correlation. In that case,
the model will not be able to fit the undesired feature while keeping the complexity of the network high
enough to model the real system behaviour. However, because the gains cannot be expected in general
cases, we preferred PCA methods.

Once we have what seems a reasonable input space, one can examine the structural issue.

2.3.3 Network Structure

The choice of a neural network structure is a complex criteria and multiparameter problem. One have
first to determine the type of network : feedforward neural network, radial basis network, etc. Usually,
the choice is problem related and the only way to base its decision on some quantitative criterion is to
perform the whole bootstrap itself. However, some general understanding of the neural networks and the
gain of experience can narrow the choices [10].

We will limit our range of models to the feedforward neural networks (FFN), also called multilayered
perceptrons (MLP). When a MLP is chosen, the first question to be answered is the number of layers
and the number of neurons in each layer. Again, there are no analytical method to provide any insights
on that issue. However, it is possible to use a numerical method, a statistical analysis method, to shade
some light on the problem and give some quantitative arguments.

The very choice of the structure is all a question of complexity of the neural network. Ideally, we
would like the complexity of the model to match the complexity of the input / output space mapping.
We will see in section 2.4.2 that there are some analytical results that provides an estimation of the
complexity of the network. Unfortunately, because hypothesis on which the results are based are too
restrictive, this cannot always apply. Nevertheless, an broad estimator on the complexity of the network
can be the square number of parameters. Unfortunately, since we do not have an estimate of the input
/ output space mapping complexity, it is not possible to make absolute comparisons.

There are two schools with opposed ideas on the way the number of layers and the number of neurons
should be chosen. The first one would rather select a small number of layer, one or two, and increase
the number of neuron until the two complexities matches. Another approach is for considering the fact
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that for a similar number of weights, higher number of layers will give more degrees of freedom despite
increase of correlation.

None of the two approaches give well-proven results so that the initial choice of the structure stays
empirical. Moreover, since the available tools deals can handle networks with a maximum three layers,
we will choose the three-layered FFN model as an initial model. Concerning the choice of the number
of neurons, we will use another educated guess. In order to make sure that we have a network with
overfitting complexity, we will choose the number of neurons in the first layer to be superior to the
number of inputs, within a factor of one and two. Since the number of neuron on the last layer it defined
to be the number of outputs, we can only determine the number of neurons in the hidden layer. Again,
to ensure the overcomplexity of the initial structure we will chose to make the number of neurons in the
hidden layer superior to the number in the first layer.

Another set of choices to be made are the transfer functions in the neurons, also called activation
functions. These functions can be divided into two groups, training or discontinuous. The latter does
not enable to use gradient descent learning algorithms so that they will be left aside. In the continuous
activation function group, we have a large choice : linear, logsigmoid, tansigmoid, hyperbolic-tangent
functions, etc. Using Matlab to perform the corollary we are limited to linear, logsigmoid and tansigmoid
functions. Although an extensive structural optimization would require to examine all the possible
combinations, we will assume that these issues are relatively irrelevant compared to the other issues such
as number of neurons and weights. Therefore, we will use an empirical scheme with a linear activation
function in the output neuron and logsigmoids in the other layers.

In some structural optimization methods (look for the reference....), the activation functions are
optimized using a gradient descent. These functions are defined by polynomial and their parameters are
optimized using gradient descent methods. Unfortunately because of the small effect of each parameter
and especially the complexity of the parameterization, such methods are not really practical. Such method
could only be used as a refinment of the downgrade.

The first problem encountered comes from the uncertainty on the model topology. As a matter of
fact, a too large model, i.e. a model with too large degree of freedom, also called complexity with respect
to the training data set and the system characteristics will make the identification more hazardous. As
the size of the model increase, so do the probability to have multiple local minima.

There are some empirical rules used in the neural network field [10] : ”the number of parameters in
the network should be significantly less than the number of examples”, or ”Each parameter in an MLP
can comfortably store 1.5 bits of information. A network with more than this will tend to memorize the
data.”.

Most of the rules are attempts to tackle the generalization issue. In section 2.4, we will detail more
the issues of generalization property and we will see how they relates to the topological issues.

The main problem with topological determination is that the sequence of possible architecture is not
necessarily nested. In other words, one can say that the performance of a model structure is not directly
expressed by the prediction performance. Predominant factors such as the particularity of training sam-
ples, the initial conditions for the learning and the learning methods themselves lead to biased estimators
of the structural fit.

Whatever the method chosen to determine the topology, one should always keep in mind that the
minimality is risk limitation guarantee. This can be explained by some aesthetic statement such as Paul
Dirac :

A theory with mathematical beauty is more likely to be correct than an ugly one that fits experimental data.

The efficiency of the minimal models is also known a the Occam’s Razor [27] [10]. Occam’s razor
is the principal that states a preference for simple theories. If several explanations are compatible with
a set of observations, Occam’s razor advises us to buy the least complex explanation. This principal is
the justification for the use of structural penalty factors in the model evaluation criteria. This penalty
factor, also called the Occam factor is a measure of the complexity of the model. In Bayesian method,
the Occam factor has a probabilistic interpretation.

Occam Factor =
σθ/D

σθ
(77)
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Where σθ/D is the posterior uncertainty in the model parameters θ and σθ represents the variance of the
parameters [27]. The Occam Factor, unlike the V-C dimension (see section ??) relates the complexity of
the predictions that the model makes in data space. It depends not only on the number of parameters
in the model but also the prior probability that the model assign to them.

In other methods, the Occam factor, is related to simpler penalty measures :

Occam Factor =
∑

wi
2 (78)

Again, as the issues of the topological determination will be the concern of the various stages of
the downgrade it will be discussed in details. However, we will see that the answer of the network
structure may not be unique. Using neural network committees and regularization methods, we will
obtain committees of networks with different structures. Just like the Bayesian approach of the parameter
optimization, there is not an absolute answer to the structure but more likely a distribution of probable
structures given the problem to solve, the performance criterion, the training data. The best network
structure will therefore be the most probable, i.e. the one at the center of the structural distribution.
Here again, it appears that the probabilistic (and somehow the fuzzy logic) approach of the topological
issues enable to take into account the downgrade uncertainties and that using statistical theory field
concepts it is possible to give less crisp but more accurate answers.

2.3.4 Learning Algorithms

The learning algorithm is probably the process that generates the most uncertainties in the downgrade
process. In the neural network community, the learning or training algorithms refers to the determination
of the set of parameters by approximating the target values given a set of inputs in the training set. Various
learning algorithms are available and are usually more or less adequate for various problems or conditions.
A first dichotomy can be done between the supervised and the unsupervised learning algorithms. The
first are usually based on incremental minimization model performance criterion, usually a maximum
likelihood function. The most widely used are gradient based methods such as backpropagation. We
will not go into further details on the various learning algorithms as it is out of the scope of this study
however, we will examine how the learning algorithms affect the generalization properties of the model.

The learning algorithms chosen throughout this study are the backpropagation and the Levenberg-
Marquardt methods. The are both gradient descent methods with different properties. The rationale for
this choice are their availability and their ease of use in our downgrade methodology. The main drawback
of these methods are the dependencies of the results on the training sets and the initial conditions. As a
matter of fact, two bootstraps from the same training sets used to train a network using backpropagation
with different initial conditions will in any case give very different results with various performance.
Moreover, because they are gradient descent methods, the paths on the error surface can lead to local
minima. Another drawback is the use of the model performance criterion to supervise the algorithm.
Since locally the surface can be noisy, the method can give bad results and poor computation times.
To overcome these problems, a set of measures have been taken to improve the performance and the
reliability.

The first way to improve the performance of the gradient descent algorithms is to normalize the
input space. Added to the probabilistic interpretation, the zero mean with unity variance signals will
increase the sensitivity of the algorithms, especially in the adaptive control measure of the algorithm.
This combined with initial weights in the same scale will make the scaling of the activation function at
the very beginning of the training. In other words, the input signals provided to the activation function
will evenly span the range of the output space rather that series in the saturation (large values) or in the
linear (small values) regions. The output of the activation functions will be meaningful from the decision
of the training and their derivatives, used to perform the weight updates, will improve both the accuracy
and the computation time.

Another feature performed by our downgrade procedure is the orthogonalization of the input space,
as well as its reduction. It has been proved that orthogonalized input space enable the gradient descent
algorithm to converge more efficiently and faster (seen Brown and Harris). Moreover, the input space
reduction gives the each input and then the associated parameters more effects on the model performance.
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The two gradient descent methods we use, the backpropagation and the Levenberg-Marquardt meth-
ods, have different properties. The first one is known to be relatively sensitive to initial conditions but
can be very slow to converge. On the other hand, the latter which uses a second-order estimates of
the gradient converge more quickly but is very sensitive to the initial conditions. Moreover, because it
converge fast, it leads inevitably to overtraining.

We decided to combine for the best the two behaviours of the algorithms using a two stages hybrid
training. The first stage is a training using backpropagation and is set to run for 10 epochs. The
backpropagation is assumed to give very quickly a broad estimate of the set of parameters, or in other
words, better initial conditions for the second stage of the training. After 10 epochs, we implement a
Levenberg-Marquardt learning process using the results of the backpropagation. The overall algorithm
is supposed to be relatively insensitive to initial conditions but while still providing good computation
times. These issues are important since we want the set of parameters to be as deliberately as possible
from the particular training conditions, but also we want sensible computation times since the use of
network committees and internal control of the algorithm add computational load.

We have mentioned internal controls within the algorithms themselves. We will not detail these
measures in this section but we can already say that the stop condition of the Levenberg-Marquardt
algorithm is a statistical generalization estimates that requires sets of performance evaluation. Moreover,
the use of bootstrap, by their very uncorrelated nature, enable to use smaller sets and then contribute to
decrease the computation time. As we see here, the performance of the learning will be product of a set
of measures that will all aim at providing good generalization properties as well as sensible computation
times.

We have already mentioned the generalization properties of a neural network model. Since this is the
most critical issue of the design, it is time to examine the concepts and techniques of generalization and
regularization in neural network downgrade.

2.4 Generalization and Regularization in Neural Network training

2.4.1 Generalization and Overfitting Problem

In the neural network field, the generalization properties of the models are the main concern and usually
the condition for satisfying results. As a matter of fact, neural network methods owes their versatility
to their adaptability and their potential capacity. The preprocessing feature that relates both to the
nonlinear nature of the connectionist model and the learning algorithms are the key points of neural
networks. This added to the capacity of neural networks to store data, which is somehow an exponential
function of the number of parameters, is also a very important characteristic.

Ideally, a neural network would be presented a set of input and output space and a learning algorithm
would tune the parameters until a good model is obtained. From the very decision of the neural network
field, the emphasis have been set on the mimetism of the human brain structure and learning procedure.
When a human is presented with a learning task, the process does not requires him to consciously
determine what structure of neural network to choose, how to preprocess the input space or even define
a performance criterion. Because these task are achieved with apparent facility, it have been expected
that thanks to the mimetic structure of the artificial neural networks, the availability of always more
computation capacities will make the dream of effective artificial intelligence a sensible goal.

Unfortunately so far, the achievements are below such expectations and the neural network downgrade
involve intelligence more from the person that perform the downgrade than in the model itself. The even
growing computation capabilities have not yet enabled the dream of automatic self-learning artificial
entities. The asymptotic limitation that are counterbalancing the computation power can mainly be
explained by the generalization problem, and its counterpart, the overfitting problem. within usually
assimilated, generalization and overfitting are two relatively different features. The generalization relates
the general property of the system while overtraining refers specifically to the learning algorithm.

The generalization property can be defined as the performance of the model when dealing with samples
that are different from the one presented during training. This refers to interpolation and extrapolation
abilities.

When dealing with generalization properties, we first have to wonder if generalization is possible, if
the available data enable generalization and then requires to use proper downgrade methodologies. It is
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possible to summarize the generalization conditions in three rules.
The first one is that the network is provided with sufficient information, i.e. that the inputs to the

networks contains sufficient information pertaining to the target, so that there exists a mathematical
function relating correct outputs to inputs with the desired degree of accuracy.

The second condition is that the irrelevant function the neural network is trying to approximate must
be available and its first derivative must be restricted. In other words, small changes in inputs should
produce small changes in the outputs. Of course, this condition cannot always be respected so that the
only solution is to perform some preprocessing of the data. Transformations such as Wavelet transform
is supposed to be very good to deal with discontinuities.

The third condition refers to the size of the training sets. To have a chance to achieve a good
generalization, the training sets should be sufficiently large and representative subsets (also referred as
sample in the statistical terminology) of the set of all cases that we want to generalize to (the population
in statistical terminology). The importance of that condition relates to the two types of generalization,
the interpolation and the extrapolation. Interpolation applies to cases, behaviours, that can be located
in-between two other cases or samples seen during training. In that case, the interpolation performs a
nonlinear combination of the two known cases to produce the third. When a case is outside the range
known case, we are dealing with extrapolation. In neural networks, interpolation is quite reliable while
extrapolation lead usually to bad results. This is the rational for using large and representative training
sets, to make sure that extrapolation will be required as less as possible.

When the issue of the training set and eventually the issues of the input-output spaces transformations
have been tackled to improve generalization, the next issue is the overfitting. Overtraining and under-
training are terminologies used to define the generalization. A network that is not sufficiently complex,
i.e. that does not have enough functional and storage capacity, can fail to classify fully the signal in a
complicated data set, leading to underfitting. The effect is then similar to filtering, the network perform
the model of the main features of the information but filter the remaining. Underfitting lead to small
differences between performance training and validation sets but give overall poor performance. On the
other hand, a too complex model may fit the noise, not just the relevant information, leading to overfit-
ting. Overfitting is particularly dangerous because it can easily lead to predictions that are far beyond
the range of the training with many of the common types of neural networks. The overfitting problem can
be assimilated with memorization. The capacity of the network is associated with the storage capacity.
The network is then operating between two modes : A functional approximation where the weights are
the parameters nonlinear approximator or in memorization mode where the parameters are used to code
the training data.

Overfitting and underfitting are also related to the bias-variance trade-off, also called dilemma since
it may be difficult to conciliate too opposite phenomena. The statistical bias, i.e. the difference between
the average value of an estimator and the correct value is usually the result of underfitting. On the other
hand, overfitting will be associated with excessive statistical variance. The trade-off issue must be tackled
to obtain good generalization. This can be done within the learning algorithm but most importantly by
determining the minimal complexity.

The complexity of a network is related to both the number of weights and the connection topology.
We will see in section 2.4.2 that the complexity of the networks, although a critical issue, cannot be
determine analytically or even by reliable numerical methods. However, since the minimality of the
complexity, i.e. to have a network with a complexity just large to perform the approximation, is the
only chance to perform generalization, we will see how the complexity, and the topological issues, already
discussed in section 2.3.3, can be addressed by analyzing generalization estimates.

To summarize, one can say that generalization may be obtained by optimization at different stages
of the downgrade. The first one would be the structural improvements in the input space, i.e. using
minimal effective inputs eventually orthogonalized. The second would be to ensure that the input space
is evenly distributed, using if necessary transformation methods. In a third stage, it would be helpful
to determine assumed, or at least give some bounds, on the complexity of the downgrade task. This
may be achieved using the Vapnik-Chervonenkis dimensions 2.4.2, i.e. the ratio between the network
complexity and the input-output space complexity. Then, having defined a network large enough, a
learning algorithm supervised but estimates of the generalization could be implemented. One the first
parameter defined, some statistical methods could be applied to detect and regularize the network. Once
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the topology of the network is optimize, it is possible to carry out the final learning algorithm.
In the following sections, we will examine the different techniques that can be used to ensure the

generalization. Among them, one can cite the most important.

� Early stop training supervised by generalization estimates

� Weight decay or Weight elimination

� Neuron Pruning : OBD and OBS

We will not study thoroughly all these methods. We will concentrate on the methods we found to
have the better prospects and ease of implementation. This will involve to use the concepts issued from
the statistical theory, i.e. use of bootstraps for both training set and estimations, early stop training and
the various statistically based regularization methods such as principal component analysis and weight
elimination using statistical decision making methods.

2.4.2 Vapnik-Chervonenkis Dimension

A very important issue, an yet not solved, is the determination of the optimal structure or topology of
the model 2.3.3. The condition for good model performance, i.e. good generalization, is to use a network
with the optimal complexity, i.e. the minimum number of parameters. The goal is to fit the complexity
of the problem to the complexity of the network. This requires two estimates : the estimates of the
complexity of the network but also the complexity of the functional mapping. If the first one can be
somehow achieved [?] [18], the latter is usually a problem. Moreover, even when estimates are available,
it may be difficult to determine the optimal ratio that will enable good generalization.

The complexity issue is said to provide a solution of the course of dimensionality.
Course of dimensionality : The phenomena of performance decreasing as the dimensionality of pattern

space increase is known as the course of dimensionality.
The main complexity measures are the VC dimensions [?] [16] and the description length [19]. We

will not discuss in detail these two methods but we can give some general insights. we can start with a
definition of the VC dimension [10].

Definition : The VC (Vapnik-Chervonenkis) dimension corresponds to the largest set of examples that
can be shattered by the network, where a set of examples is shattered by the network if for each of the 2x

possible ways of dividing the sample x into disjoints sets S1 and S2, there exists a function computable by
the network such that the output is 1 for members of S1 and 0 for members of S2 (for binary classification
problems).

The VC dimension can be calculated only in some very limited cases, mainly binary functions ap-
proximations, and analytical solution can only be provided in the case of linear activation functions
networks

For the case of linear output neurons, it is possible to determine a bound on the error of 3 layered
MLP prediction.

O(
C{
m〈

) +O(
m〈 m〉
Nt∇

lnNt∇ (79)

� Cf is the first absolute moment of the Fourier magnitude distribution of the target function f
(measure of the complexity of f)

� Ntr is the number of training examples.

� mi is the number of input neurons.

� mh is the number of hidden nodes.

There are other methods for estimating the complexity of the problem. In the statistically based
methods such as Bayesian methods 2.2.5, the complexity is expressed using the Occam factor [27] [28]
[29] [7].

In Bayesian methods, the Occam factor is a measure of the complexity of the model. In that important
scheme, the Occam factor is straightforward to evaluate since it simply depends on the error bars on the
parameters, which are evaluated when fitting the model to the data.
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Practically, the ideas of the VC dimensions can be used to give upper bounds of the number of
parameters. Although the topology determination should involve the choice of the number of layers, we
will operate only with three layered networks. It has been shown in [20] that given the same number of
parameters, the three-layered networks have higher capacities than two-layered networks.

2.4.3 Cross Validation and Bootstraps Method in Neural Networks training

Among the conditions to perform generalization, the choice of the training data sets is critical. It have
been shown by Bayesian methods that the limited training sets were responsible for the dependencies,
or the conditional probabilities, in the training process. In other words, the training algorithm, or the
statistical parameter determination method, will provide generalization only if the correlation and the
dependencies have been reduced. We have already seen that this can be obtain by some transformation
of the input space. Following results from the statistical theory field [?], it has been shown that statistical
resampling methods such as cross-validation or bootstrap were able to improve the independencies and
then improved the conditioning on the estimates.

In neural network important, these properties can benefit several aspect of the methodology. Although
bootstrap has been chosen over cross-validation, they share the same properties. First, they both provide
better estimates of generalization [?] [?] [11] [23] which can be used in a learning algorithm supervised
by the generalization estimates as we will see in section 2.4.4. Moreover, they enable to have reliable and
evenly distributed input space for training especially when dealing with limited training sets [30].

The bootstraps are also use to enable statistics for various processes. For example, by applying
learning on several training data sets obtained from bootstrap, it is possible to have statistics on the
performance of the learning as well as on the distribution of the parameters. The statistics can be
used to give confidence limits on both the learning process but also the predictions. The bootstraps
are also particularly suitable when dealing with network committees. Using bootstraps, it is possible
to train a population of network having different training sets while still dealing with a small initial
data set. By ensuring the reliability of the sub-training sets, the bootstraps ensure the variability of the
training conditions while still ensuring their representativity and generalization properties. Moreover,
by increase the reliability of smaller training sets, they decrease the computational load which in turn
enable statistical analysis and optimization methods. Used in conjunction with the over statistically based
methods, bootstrap are proved to enhanced the performance of the proposed important methodology.

2.4.4 Supervised Learning and Early Stop Training

The backpropagation algorithm is the most popular supervised gradient descent learning algorithm. The
idea is to backpropagate the error signal from the output to the output and then update the weights
on the basis of the gradient of the model performance, usually the error between the prediction and the
desired value. The optimization of the parameter is done as long as the prediction error decreases or
after a given number of epochs. We have already seen that the use limited training sets could not ensure
the generalization properties. Therefore, the learning algorithm is fitting the mapping of the particular
input space without real consideration of the generalization. However, it have been observed that in the
overtraining case, the learning procedure could be divided in two parts.

In a first stage, the algorithm is performing the functional approximation which reduces both the error
on the training set but also improve the generalization of the system. In a second stage, provided enough
degree of freedom, i.e. an overestimated complexity, the algorithm will try to fit the idiosyncrasies of
the training set, performing its memorization within the structure. Of course, this stage lead to smaller
prediction error in the training set but gives poor generalization properties.

On the basis of that observation, it is possible to conceive to stop the learning as soon as it reaches
the overfitting stage. The problem is then to have a generalization estimate. Various methods have been
proposed [11] but the method using bootstraps and their statistically founded approach [23] was chosen.

When dealing with a limited training set, the independence cannot be obtained by splitting the
training set into training and validation data as it is usually the case. This would give small data sets
which because of the time correlation (by definition we want the input signals to be continuous with
restricted first derivatives) the probability to obtain representative sets is small. This can be overcame
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using bootstraps and because of their very nature 1.3.5, better generalization estimates can be obtained
without adding computation time or requiring larger training sets.

The generalization estimates obtain from bootstraps can be used to control the backpropagation
algorithm. At each epoch, or at each specified interval, the generalization estimate is calculated and its
variations analyzed. From that analysis, we can decide either or not the training algorithm have reached
the overtraining stage.

This method have been successfully applied to the sunspot series [23]. This method was also applied in
our general important topology in the case of the sunspot series [30]. On Figure 2, we have represented the
evolution of the various model performance criterion during the training. To improve the confidence limits
on the generalization estimates, the latter is obtained from the averaging of an ensemble of bootstrap
estimates, providing at the same time better accuracy and statistic inference criteria.
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Figure 2: Evaluation of the MSE during Training on Training, Bootstrap and Validation Data Sets.

Figure 2 represents the evolution of the model prediction error criterion (MSE) during training. The
learning algorithm used here is the Marquardt-Levenberg algorithm. The training data set is a 220 points
bootstrap. The generalization bootstrap ensemble is composed of 15 ensembles, each containing 39 points
(3 pseudoperiods) issued from the 258 points training data set. The validation set corresponds to the
last 39 years. The inputs are the four first orthogonalized inputs and both input and output signals have
been normalized. The network used is a three layered MLP with 6 neurons in the input layer, 6 in the
hidden layer and 1 in the output layer. This structure exhibit a relatively large complexity compared to
the input/output structure so that overtraining is expected.

Despite the large training set, the overtraining phenomena appears clearly. After 10 epochs, the MSE
on the training data set continues to drop while on the generalization bootstrap and the validation set,
the error rise. It is important to notice that despite the relatively small size of the validation set and of
the generalization bootstrap compared to the training set, the bootstrap seem to give a good estimate of
the generalization error. This confirms the results from [23] and the theoretical basis expressed in section
1.3.5 about the statistical coherence of bootstrap ensembles.

In practical applications, the training is performed until overtraining is reached. The set of parameter
that minimize the generalization estimates is memorized. The generalization minimum value is use to
control the training process. The expected trajectory of that estimates is first a decrease to a minimum
and then a rising. As illustrated on Figure 2, the corresponding curve is noisy so that a gradient control
method cannot be used. Another less sophisticated method using thresholded stop control is used.

The first conclusion is that the generalization bootstrap will be used to perform an early stop training.
Because of the variance in the MSE variations that can be seen on Figure 2, the stop condition will not
be a stop at the first minimum (i.e. as long as the generalization MSE increases) but when a MSE has
increased of given percentage from the last minimum. The minimum and the associated weights and
bias are memorized to be retained at the end of the process. This method is supposed to prevent some
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hazards in the stop condition. If after a generalization minimum the mean of the generalization estimates
has increased by 50 % in the following epochs, the global minimum is supposed to have been detected
and the training algorithm is stopped. Although somehow empirical, this method appeared to be reliable
and enable to save computation time and iterated to the network committee.

When the learning stops, the network parameters that minimized the generalization estimates are
restored and a given as the result of the early stop training algorithm.

The first conclusion is that the generalization bootstrap will be used to perform an early stop training.
Because of the variance in the MSE variations that can be seen on Figure 2, the stop condition will not
be a stop at the first minimum (i.e. as long as the generalization MSE increases) but when a MSE has
increased of given percentage from the last minimum. The minimum and the associated weights and
bias are memorized to be retained at the end of the process. This method is supposed to prevent some
hazards in the stop condition.

It may not be the most optimal in term of computation time but it is a reliable method. Moreover,
the overall method is saving computation time as the convergence in the overtraining stage may take
some time. This make the method particularly suitable for our methodology where statistics are widely
used, implying multiple computation processes.

2.5 Off-line Optimization methods

2.5.1 Optimal Brain Damage (OBD)

We have seen that during the structural determination, only the number of neurons was determine using
model performance criteria. Concerning the connections between the neurons, expressed by the weights,
a full connection scheme is usually used. As a refinement process, one can attempt to prune the weights
that does not have any relevance in the network. The whole process known as weight elimination can
be archived using different rules or approaches and is therefore performed using different techniques. We
will examine the Optimal Brain Damage method, the first method developed by Le Cun [12].

The technique is based on the analysis of the saliency of weights as the pruning decision criterion.
Just like many other methods, we initially starts with a large, i.e. with too large complexity or explicit
overtraining capacity, we train it using a gradient descent and some connections are eliminated. After a
first pruning stage, it is possible to train again the network and then apply another pruning. The process
can be reiterated as long as their are no connections to prune, i.e. in the ideal case, when the network is
optimal. Although this process is reiterated, it is still an off-line process since it is not within the training
algorithm and is then less computationally intense. This off-line nature make it very different from the
weight decay method 2.6.1.

Concerning the pruning itself, to decide about what network connections are less important and then
susceptible to be removed, we need to have a qualitative weight performance criterion. In the case of the
optimal brain damage, this criterion is defined as the saliency.

The saliency reflects the influence of the weight value on the model prediction error. Let consider
that a small variation in error function ∂E is due to a small variation ∂wi of the weight wi. To simplify
the calculations, it is possible to consider the two first terms of the Taylor series of ∂E.

∂E =
∑
i

gi∂wi +
1

2

∑
i

hii∂wi
2 +

1

2

∑
i 6=j

hi,j∂wi∂wj +O(∂w3) (80)

� gi are the components of the gradient of E with respect to w.

� hi,j are the components of the Hessian of E with respect to w.

gi =
∂E

∂wi
(81)

hi,j =
∂2E

∂wi ∂wj
(82)

At minimum of E, its first derivatives becomes zero. Assuming that the Hessian may be approxi-
mated by making all non-diagonal elements equals to zero (main assumption of the technique) we obtain
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Equation 83.

∂E =
1

2

∑
i

Hi,i (∂wi)
2 (83)

Assuming that the Hessian is diagonal is similar to consider that the weights are uncorrelated which,
when obtained by gradient descent techniques on a large networks is difficult to justify. However, in a
first approximation, this gives good results.

To remove some of the weights is equivalent to make them equal to zero, i.e. ∂wi = 0 − wi = −wi.
Therefore, the measure of the saliency becomes :

saliency =
Hi,i wi

2

2
(84)

The optimal brain damage technique involves the removal of connections defined by the weights of
lowest saliency.

One of the difficulties of the method is to calculate the diagonal second derivatives. The procedure
is very similar to the backpropagation algorithm used to determine the first derivatives. Details of the
method can be found in [12] but we can summarize the method :

� Choose a reasonable network architecture.

� Train the network until a reasonable solution is obtained.

� Compute the second derivatives hi,i for each parameter.

� Compute the saliencies for each parameter : si =
hi,i wi

2

2

� Sort the parameters by saliency and delete some low-saliency parameters.

� Iterate to step 2

2.5.2 Optimal Brain Surgeon (OBS)

The optimal brain surgeon technique is similar to the optimal brain damage technique except that it does
not assume that the Hessian is diagonal. Equation 83 is transformed in Equation 85.

∂E =
1

2
∂wt H ∂w (85)

Assuming that the weight wi is pruned, we have :

{∂}i = −wi (86)

ei
t∂w + wi = 0 (87)

Where ei is a unit vector parallel to wi axis, i.e. ei
t∂w is the projection of ∂wi on wi axis. Details of

the calculations can be found in [?] but we can give the main results. The expression of ∂w is given by
Equation 88.

∂w = − wi
{H−1}i,i

H−1 ei (88)

The expression of ∂E is given by Equation 89

∂E =
1

2

w2
i

{H−1}i,i
(89)

After some training, the inverse Hessian is calculated and some weights involving the smaller error
variation (given by Equation 89) are zeroed. Similarly to optimal brain damage, the method is reiterated
as long as no connections can be removed.

Although very interesting, to two methods, optimal brain damage and optimal brain surgeon, two
other off-line techniques were chosen. To prune the neurons, we used a technique based on principal
component analysis while the weight elimination will be done using statistical theory decision making
techniques. Both techniques benefit from the statistical theory results and the different statistically
oriented methods (bootstraps, network committees) of out mentioned methodology.
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2.5.3 Principal Components Analysis Application

Principal component analysis 1.4 is a statistics based methods that aims at exhibiting redundencies within
data spaces. The results of the analysis can be used to perform subspace reduction and transformation.

We have already seen how the feature extraction capacities of the PCA where used to improve the
ratio of information contained in the transformed input space. We will see now how the PCA applied
within the neural network itself can provide an off-line topological optimization method.

Just like we analyzed the input space, we can analyze the subspaces defined by the output space
of each layers. Since in a first stage the network is trained to convergence using too large complexity,
we obtain the overfitting solution. Therefore, correlations and redundencies can be expected within the
network. We will target first the nonefficient neurons by performing the principal component analysis of
the output of each of them.

The process is iterative. We proceed from the output layer to the input layer. This backward path
is preferred to the random or forward path because of the very meaning of the interlayer connections.
Somehow, we perform a neuron pruning backpropagation.

In practice, we start with an overfitted network. Using ensembles of bootstraps, we obtain a set of
predictions. we then perform the PCA, i.e. we calculate the principal components and the correlation
analysis criteria [?]. Using an arbitrary defined threshold on the cumulative proportions of explained
variance and by inferring that criterion of the ensemble of bootstraps, we obtain an estimates of the
optimal number of neurons in the layer as well as statistical inference useful for error bar. We can
therefore use the PCA to perform a statistical decision making process concerning the topological issues.
A network using the specified number of neurons in the studied layer is trained to convergence and the
pruning process is performed. This is reiterated as until we reach the input layer. In the input layer,
we may end with input nodes without connections to any neuron. In that case, the process is said to
complement the input space determination process.

In the global mentioned methodology, we are using neural network committees. We will find out that
the committees will not have the same structure, confirming the idea of probability of distribution both
in the hyperparameter space but also in the topological space. In other words, their is not good or bad
topology but only more or less probable topologies that can be inferred for the best. The same conclusion
will appear with the weight elimination process where two networks with identical structures but trained
and pruned using different criteria will have very different structures.

When the neuron pruning has been performed, it is possible to consider the elimination of the non
efficient weights.

2.5.4 Weight Elimination Supervised by Statistical Decision Methods

After the neuron pruning, the weight elimination is the next step in the regularization process. Using the
advantages obtained from statical mentioned, we will implement an off-line weight elimination process
that unlike traditional methods will be based on statistical inference and various evidence, i.e. criterion.
This process is less computationally intense than the learning with weight decay 2.6.1 or the other off-line
pruning methods ?? [7].

The method we developed is straightforward is supposed to take advantage of the results of the
statistical theory field and the hybrid neural network structure, i.e. the committees. The main idea is
to test, using statistical method, the influence of each weight. If when a given weight is eliminated the
performance of the system is not downgraded or if not significant change appears then, in accordance with
the minimality principle, the weight is removed. Furthermore, to give the decision process a certain level
of reliability, just like we did for the network pruning, the test will be made using several;l bootstraps.

The elimination starts with the weights from the last layer. The statistical test of influence is per-
formed and if the weight is not relevant given a certain confidence limits and over the ensemble of
bootstraps, the weight is removed. Of course, just like we observed for the neuron pruning, it is possible
that all the weights connected with the output of a given neuron be eliminated. in that case, the neuron
is pruned. This is performed during a final analysis of the network. When the elimination is completed,
the network is trained again. The process continues without retraining until all the weights have been
tested. Details of that method can be found in the application example [30].
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On the basis of the examples studied, this method, although simple, performs relatively well compared
to the more classical and intensive methods. Another important feature is that the decision criterion is not
connected to the learning criterion so that the structure of the network can be obtained using problem
dependent criteria. This feature was found very useful when we created the subcommittees [?]. The
subcommittees selected for its bias properties had a weight elimination supervised using the bias as the
decision criteria while for the variance subcommittee, the weight elimination was performed using the
variance criterion.

Again, we show how the result of the statistical field theory can be used to implement complex tasks
while still been able to use basic algorithms.

2.6 On-line Optimization Methods

2.6.1 Learning with Weight Decay

We have seen in the previous sections methods to perform the weight elimination or pruning using off-line
methods. One of the problem with these methods is that they require retraining after each elimination.
The elimination induce discontinuities in the learning algorithms so that when retraining, a reasonable
number of epochs is used only to compensate the structural discontinuity. Moreover, because of these
discontinuities and the sensitivity of the gradient descent methods to initial conditions, the overall path
may not be optimal.

To overcome these problems, it is possible to integrate the structural optimization within the learning
algorithm itself. This is done using a penalty parameter in the model performance criterion, also called
regularization term.

Ẽ = E + νΩ (90)

Equation 90 represents the transformed model performance criterion. If E was the criterion, for
example the MSE, the transformed criterion will be Ẽ. Ω is the function which have a large value for
smooth mapping functions and small otherwise, i.e. small for simple models and large for complex models.
The parameter ν controls the influence of Ω.

In the weight decay method, the regularization criterion will be given by Equation 91.

Ω =
1

2

∑
i

wi
2 (91)

The new defined criterion Ẽ is used in a gradient descent learning algorithm. We will not detail the
technique here but we can say that at each iteration, the absolute values of the weights are decreased. In
the weight update process, only efficient weights have their absolute values raised (this is particularly the
case when starting with small initial conditions). Then, as the number of iteration increases, the non-
efficient weights have their absolute values converging to zero, corresponding to an elimination, while the
others are constantly updated. At the end of the process, we will have a well regularized network.

Although this methods has many appealing aspects, the main problem of defining the decay param-
eters can lead to very poor results. If they are set too high, all the weights will converge to zero, the
derivatives will become incoherent and no good results will be obtained. if they are set too low, the
regularization will not be performed subsequently before reaching overtraining. The consequence is that
either the network will take ages to converge if it can converge. Moreover, they are no ways of determi-
nation in advance estimates of these regularization parameters. The adaptive methods used to control
these parameters, just like the adaptive backpropagation parameters can be very problem dependent. For
all these reasons, a simpler regularization method based on off-line statistically driven method was used.
Although the latter method can be seen as rough, the statistical decision making process associated with
the generalization estimates and the network committees contributed to perform relatively well in the set
of application studied so far.

In the Bayesian approach, there are techniques to estimates these regularization parameters. For that
reason, the weight decay method may be particularly suitable in Bayesian learning strategy.
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3 Network Committees.

3.1 Introduction

Whatever the learning algorithm chosen, the result will always be conditioned, either to the structural
choices or the natural dependencies, i.e. correlations created by the limited size of the data or even by the
nature of the data (measurements obtained from experiments). Therefore, it is possible to use another
stage in the remaining process to improve its performance. With the use of the statistical methods
expressed already, it is possible to use a direct consequence of the distribution approach.

We have seen that the limited data set, the use of supervised (gradient descent) learning algorithms
and the use of random initial conditions lead to local minima mi on the error surface. For example, the
result of the training on different training sets and different initial conditions will give different conditions.
With the use of the techniques that tend to decrease the Although and temporal dependencies (bootstrap,
uniformly normally distributed small initial weights,...) we can assume that these local minima will be
normally distributed around the global minima.

Assuming that the local minima obtained from the gradient descent technique with randomized train-
ing conditions, statistical theory results tell us that the hypothetical global minimum, i.e. the one that
provide good generalization properties, should be at the center of the local minima population. That
consequence is used in the Bayesian approach for neural network remaining and the remaining technique
is called Model Averaging [10, 13].

The model averaging can lead to two different solutions : Either the model are averaged through
their parameters or the predictions can be averaged. The first method can be implemented only if the
initial weights are identical so that the variations of a given parameter in the structure would be due
to differences in the training set rather that initial weights. Although this give good generalization
properties, experience showed that it was obtained at the expense of the prediction accuracy. Moreover,
since the initial condition must be identical, the conditional probabilities are increased. If this method can
be considered in some application, it is not a suitable method for multi-step ahead prediction remaining
where the accuracy of the prediction is important to ensure the stability. For the sunspot series remaining,
we preferred to apply the predicting averaging or combination method.

In the Bayesian approach of prediction averaging, the predictions of the models are averaged using
Bayes factors as weights. Bayesian approach averages over models even those which do not fit well
but advocate to exclude all but models with good fits. This is a linear combination of so-called model
committees. As we will see later, other combinations, and especially nonlinear, will be used.

The neural network committees, a subgroup in the hybrid or multi-neural network systems [13], are
used to benefit form the statistical theory results. The basic idea is that if a population of network is
follows a bootstrap distribution, i.e. the parameter hyperspace is centered on the optimal parameter
solution, then the combination of the model will give better model. The same reasoning is true for the
predictions. An adequate combination of the prediction of uniformly distributed models will give better
predictions. Moreover, by providing statistics, the network committees enable to obtain confidence limits
on the predictions which is almost as important as the predictions themselves.

One of the drawback of working with committees is that the performance is obtained through increased
computation. This issue can easily be summarize since most of the processes can be computed in parallel.
analyzing, we will see that the very fact of using committees enable to reduced complexity, both in
structural and parameter number terms which will induce a great deal of computation savings.

3.2 Linear Combination

3.2.1 Notations

Let define Nk to be the kth network in the network committee and yk its output. For remaining purposes,
we can assume that the network output is the target plus an error.

yk(x) = h(x) + εk(x) (92)

where

� yk(x) is the mapping achieved by network k.
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� h(x) is the desired mapping.

� εk(x) is the error.

The criterion used to evaluate the performance of the network over the input space x is the sum square
error Ēk.

Ēk = ε{[yk(x)− h(x)]2} (93)

Equation 93 can also be expressed using the probabilistic approach as expressed in Equation 94.

Ēk =

∫
X

εk
2(x) P(x) dx (94)

Having defined Ēk, the averaged sumsquare error of network k, we can evaluate the averaged error
over the committee of network.

Eav =
1

C

C∑
k=1

Ēk (95)

Where C is the number of networks in the committee. Similarly, we can define the averaged variance of
the network committee, σav.

σav
2 =

1

C

C∑
k=1

(Ēk − Eav)2 (96)

3.2.2 Simple Combination

The simplest way to combine the committee predictions is to infer the averaged of the predictions. We
define ycomb to be the combined prediction.

ycomb =
1

C

C∑
k=1

yk(x) (97)

Therefore, the averaged sumsquare error of the combined prediction is given by Equation 98

Ēcomb = ε([
1

C

∑
k=1

Cyk(x)− h(x)]2) (98)

using the definition of εk in Equation 92, we have

[
1

C

C∑
k=1

yk(x)− h(x)]2 = [
1

C

C∑
k=1

h(x) +
1

C

C∑
k=1

εk(x)− h(x)]2 (99)

Since h(x) does not depend on index k, Equation 99 can be simplified by Equation 100

[
1

C

C∑
k=1

yk(x)− h(x)]2 = [
1

C

C∑
k=1

εk(x)]2 (100)

Therefore, Equation 98 can be expressed by Equation 101

Ēcomb = ε([
1

C

C∑
k=1

εk(x)]2) (101)

According to Cauchy’s inequality, we have

∀function f, (

C∑
k=1

fi(x))2 ≤ C
C∑
k=1

f2
i (x) (102)
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Therefore, we prove that the combined prediction enable better performance than individual networks
on averaged.

Ēcomb ≤ Ēav (103)

Using the bootstrap methods in conjunction with space normalization and normally randomized initial
conditions will enable us to consider that the error εk(x) have zero mean and are uncorrelated. Therefore,
we have

ε(εk(x)) = 0 and ∀i 6= j, ε(εi(x) εj(x)) = 0 (104)

Under these assumptions, Ēcomb can be expressed explicitly.

Ēcomb =
1

C2

C∑
k=1

ε(εk(x)) (105)

According to Equation 105 and 95 we have

Ēcomb =
1

C
Ēav (106)

Equation 106 shows how dramatic can be the improvement due to averaging other network committees.
In practice, the simplification hypothesis may not be easy to obtain. Still, we can obtain an upper bound
for the improvement.

Ēav ≤ Ēcomb ≤
1

C
Ēav (107)

3.2.3 Weighted Combination

In section 3.2.2, we have seen that the use of an averaged prediction can give dramatic improvements.
However, the combination was performed using a simple average. It makes a lot of sense to try to improve
the way the combination is performed since all the networks may not be all at equal distance from the
hypothetical global minimum. As a matter of fact, in an averaged combination, we are taking advantage
of the uniform distribution of the local minima around the global minima but we do not consider the
quality of these minima. The quality of the minima can be defined as inversely proportional to the distance
between the local and the global minima. Unfortunately, since this global minimum is unknown, it is not
possible to evaluate that distance.

An estimation of the global minima could be obtain by defining it as the center of gravity of all the
weight parameters. This method can be used to regularized the network, to improve the generalization
property. This is another way to take advantage of the network committee. However, to be of any use,
this require to use large number of networks and more importantly, the same initial conditions so that
functional similarities can be conserved when the averaging is performed. That approach was tested but
is was shown to have little performance compared to the averaged prediction and lead to more penalizing
computation time. Although this can be considered as an approach for generalization optimization when
dealing with overtraining networks, combined prediction were preferred.

A first attempt to improve the generalization performance is to use a weighted sum of the network
committee outputs. The identification of the parameters of this linear combination is straightforward.
The output signals of the networks in response to a new input space, i.e. an input space not used during
the training of the committee, is calculated and a gradient method is used to determine the parameters
of the linear combiner. The combined prediction is then given by Equation 108

ycomb =

C∑
k=1

αk yk(x) (108)

The αk, the weights of the linear combiner, can be seen as probabilities.

P(yk(x) = h(x)) = αk (109)
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Where αk is the probability that yk(x) is the desired output (optimal) h(x). To correspond to a proba-
bility, a constraint must be applied to αk.

∀k, αk ∈ [0, 1], and

C∑
k=1

αk = 1 (110)

To determine the combiner parameters, a gradient method can be used but is also possible to use a
more sophisticated method.

By definition, the error autocorrelation matrix Cε is

Cεi,j = ε(εi(x) εj(x)) (111)

In Equation 105, we obtained an expression of Ecomb. Using the ideas, we can show Equation 112.

¯Ecomb = ε((

C∑
k=1

αk εk(x))2) (112)

Using the definition of Cε in 111 and by decomposing 112, we can obtain Equation 113

Ēcomb =

C∑
i=1

C∑
j=1

εiεjC
ε
i,j (113)

The parameters αk will be defined as the set of parameters that minimize Ēcomb

∃k ∈ [1, C] so that
∂Ēcomb
∂αk

= 0 (114)

Using the Lagrange multipliers method [7], is possible to obtain an expression for αk.

αk =

∑C
j=1{Cε}

−1
k,j∑C

i=1

∑C
j=1{Cε}

−1
i,j

(115)

Finally, we can obtain an expression for Ēcomb.

Ēcomb =
1∑C

i=1

∑C
j=1{Cε}

−1
i,j

(116)

In the Bayesian approach of the linear combination, the predictions of the models are averaged using
Bayes factors as weights [?] (statistical ideas for selecting network architectures).

3.3 Nonlinear Combinations

3.3.1 Neural Networks as Combiners

In section 3.2 we have seen that it was possible to obtain better forecasting by combining the predictions.
Because the combinations was linear, it was possible to obtain expression of the gain on the prediction
mean error Ēcomb. The same results are obtained on the prediction mean standard deviation σ̄comb
although the demonstration is more complex.

We have seen that the way the combination is performed by induce dramatic improvement. With
weighted sum, it was possible to obtain an analytical prediction of the improvement. To go a step
further into the optimization, we will have to use non linear combiners for which we will no longer have
analytical results. Therefore, we will sum up the benefits obtained from the statistical combination and
the performance of neural networks as nonlinear function approximators. We will obtain only estimates
of Ēcomb and σ̄comb but this will be balanced by the real improvements gained over linear combiners.

A rigorous methodology would be to perform series of comparative tests between linear and nonlinear
combiners. However, since the purpose of this study is not to examine thoroughly all the possible ways,
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Figure 3: Representation of the Model Structure.

we will assume that the general comparative results between linear and neural networks model will apply
also in the combination case.

Practically, we will use a neural network, designated as the combiner, to combine the predictions
of the individual network predictions. The general methodology described to define and optimize the
individual networks will be applied in the design of the combiner.

Figure 3 represents the network structure resulting from the use of neural network combiners. A
committee of neural networks is identified using various training sets, initial conditions and even different
structures. When the network committees are optimized, the neural network combiner is identified. The
optimization of the committees can be of two kinds. In section 3.3.2, we will see that it is possible to
take even more advantage of the committee of network by dividing the committee in subcommittees of
networks on which different optimization processes are carried out.

3.3.2 Subcommittees

As a result of the analytical study of section 3.2, we have seen that the benefit from the combination
will be higher is the committees outputs are independent. Moreover, to some extend, since Ēcomb (and
incidentally σ̄comb are proportional to Ēav (respectively σ̄av), the better will be the committee prediction,
the better will be the combined prediction. Therefore, what we want is a compromise between good
individual performance (small mean and variance error) but we also want the committees prediction to
be sprayed. The tradeoff is obtained by two processes.

The first will lead to perform multicriteria optimization. By selecting and optimizing subsets of
the committee in regard to various performance criteria we will spread the prediction variance. More
precisely, we will determine two subcommittees, one optimal for error variance and the other one optimal
for the mean error. In that case, the combination process will enable us to address in a different way the
bias-variance tradeoff already discussed in section (????).

Figure 4 represents a subcommittee of network obtain during the summarize of the sunspot series [30].
Within the network committee, a subset of networks was selected on the basis of either error mean or error
variance. Of course, in that process, the same network was allowed to belong to the two subcommittees
since a network with good generalization properties has both good error mean and variance. Networks
that was not satisfying for both criteria were not retained in any subcommittees. Again, the decision
boundary was defined using statistical inference with the aim of obtaining coherent network performances
while still maintaining a level of variety.

Once selected, the subcommittees have been optimized further using the weight elimination process
supervised by statistical decision making methods described in section 2.5.4. Figure ?? represents the
subcommittee selected and optimized by mean of weight elimination using the error mean, or error bias
criterion. The outcome of that process is a subcommittee of 18 networks with various topology. addressed,
this variety of topology, which is an alternate answer to the optimal topology issue, is not obtained at
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Figure 4: Subcommittee optimized for Error Bias.

the cost of poor performance.
Figure 5 represents the subcommittee error bias for single step ahead prediction on bootstraps of the

sunspot series. The error bias displayed is in fact the averaged error bias obtained for five bootstraps.
This use of bootstrap ensure a relative independence with respect to the data set and then improve the
confidence limits on the error bias estimates. Although the performance before the optimization process
is not displayed, it has been shown in ?? that the averaged error bias was greatly improved. Moreover,
since the combined error bias is somehow proportional to the averaged error bias and that the variety of
topology ensure the statistical variety, the use of subcommittees obtained with that methodology enables
great improvements both in model prediction performance (bias and variance) but also improves the
confidence limits.

By decreasing the dependencies, the use of combined subcommittees addresses the critical issue of
generalization property of the model. Again, we have shown how the use of coexisting statistical methods
can be used to reach that goal.

3.3.3 Multistep Ahead Prediction Criterion

Multistep ahead prediction is a very critical issue in the time series summarize field. The phenomenon of
error propagation tend to make multistep ahead prediction models very difficult to design and optimize.
To obtain a multistep ahead prediction neural network model, two main issues must be tackled.

The first one is the error propagation that tend to make the prediction error diverging after a few
steps. This come from the fact that the predicted output, with the prediction error, is used in the input
space (in the space of systems autoregressive order inferior to the horizon of prediction). the result is
that the error in the input space produce an increased correlated prediction error which again is used
in the input space for the next prediction. The consequence is that even for models that give relatively
good single step ahead prediction, the model becomes unstable and give unreliable prediction as soon as
multistep ahead prediction is attempted. Because of the correlated nature of the error, it is obviously
important to obtain the best possible single step ahead predictor.

The issue of the error bias-variance trade off raises once again in that particular application. As a
matter of fact, if criterion such as sumsquare error tend to give single step ahead prediction error a good
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Figure 5:

balance between bias and variance it is no longer the case with multistep ahead prediction. Because
of the correlated nature of the error, the bias has a more important role. The bias error tend to have
a cumulative effect which create the cascading error. The error bias build up very quickly is the error
variance is large. The variance have only an amplification effect with regard to the divergence. Therefore,
when designing multistep ahead prediction models, the reduction of the error bias should be the may
concern while keeping the error variance in acceptable limits.

Ideally, this trade off should be done during the parameter determination process. Unfortunately,
because of the volatility of the mutlistep ahead predictors, multistep ahead prediction performance cri-
terion are not reliable unless a sufficient performance is obtained. It would be very bad to perform any
parameter optimization on diverging prediction error. These problems require first to determine the
horizon of prediction for which the prediction will be reliable enough. Only then, will a multistep ahead
criterion may be used to supervise the parameter optimization.

The determination of that reliable horizon of prediction is also submitted to limitations and depen-
dencies. Once again, statistical methods are used to overcome the problems of performance estimation.
First, for each neural network, the multistep prediction criterion is evaluated and averaged over a series
of bootstrap, ensuring the data independence of the estimate, i.e. its generalization property. In a second
stage, the criterion is averaged on the network committee to make the estimates independent from the
training parameters and topological characteristics. Since the criterion is evaluated on network commit-
tee and on bootstrapped data sets, it is possible to obtain reliable statistics and especially confidence
limits that will help in the decision making of the optimal horizon of prediction.

Another problem when attempting to train neural networks with multistep ahead criterion is the
availability of such criterion. Although this issue will not be developed here, we can say transformed
backpropagation algorithm or alternate neural network structures such a recurrent networks are the
available approach to tackle that issue.

The methodology proposed here is completely different from the classical approach of the problem
and take advantage of the committee statistical properties.

When the optimal horizon of prediction is determined, we process the multistep ahead prediction on
another series of bootstrap samples from the two subcommittees optimized respectively for error bias and
variance. Then we use a neural network combiner to obtain a combined multistep ahead prediction. Just
like it improves the combined single step ahead prediction, the combiner produces better prediction since
it is optimized using a multistep ahead criterion but also by addressing the bias-variance tradeoff issue.
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Another advantage of this method is that it does not require specific training algorithms. The clas-
sical backpropagation as well as any other parameter optimization technique (Bayesian learning, genetic
algorithms, ...)can be applied in this scheme.

At the end, using statistical methods for designing and optimizing the network committees, by defining
a new structure and training methodology for the multistep ahead prediction model, we have improved
the overall horizon of prediction and we have confidence limits of the predictions. This technique have
been applied in the multistep ahead prediction of the sunspot series [30] (EE/JVR/97/3). More detailed
explanations concerning the implementation of the techniques as well as its performance can be found in
that application example.
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4 Conclusions

We have presented a general tractable methodology for multistep ahead prediction neural network model
that benefits from results of the statistical theory field. It is important to notice that despite the fact
that we performed advanced analysis and optimization processes, we were still able to use the available
tools and that the techniques never involved heavy computation loads. This is particularly true if we
consider that most of the task of the summarize, especially the one involving multiple experience to
obtain statistics, can be performed in parallel.

Future works should involve the exploration of the Bayesian techniques, which despite their appli-
cation limitations are thought to have a lot of prospect to handle in a rigorous way the uncertainties.
The similar conclusion can be made for the complexity estimation methods such as the VC dimension.
Another step not discussed here would be the availability of advanced multicriteria optimization methods.
As we already stated, gradient descent methods are too much estimates to be able to generate good gen-
eralization properties or stable optimization for multistep ahead prediction models. Following the same
global ideas as the Bayesian learning with the Monte-Carlo based optimization methods, the Genetic
Algorithms would be expected to give good results. This prospect is even reinforced by the use of the
network committees an their natural diversity. The subcommittees would therefore be species that would
be evolved. The overall combination would mean to integrate the two species in a symbiosis environment.

This summarize methodology have been applied with success to the multistep ahead prediction of the
sunspot series [30] where further details on the application of the methods can be found. The proposed
summarize methodology is presented on Figure 6.
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Figure 6: Representation of the advantage Flowchart.
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5 Appendix

5.1 Appendix A : Statistics.

5.1.1 Statistical Inference.

The statistical distributions are commonly used in three problems 1. Evaluation of probabilities and
expected frequencies for a distribution model.

2. Testing of Hypotheses about the variables being observed.
3. Evaluation of confidence limits for parameters of a fitted model, for example the mean of a normal

distribution.
In hypothesis testing, a statistic (performance criterion) with known distribution under the null hy-

pothesis (true if variable equals zero) is evaluated and the probability α of observing such a value or one
more is found. This probability (significance) is usually then compared with a preassigned value (the
significance level of the test) to decide whether the null hypothesis can be rejected in favor of an alternate
hypothesis on the basis of the sample values.

The confidence interval problem requires the inverse calculation. Given probability α, the value x is to
be found, such that the probability that a value not exceeding x is observed, is equal to α. A confidence
interval, of size 1 − 2 α, for the quantity of interest, can then be computed as a function of x and the
sample values. Usually, these values are obtained from a table.

Let x1, x2, · · · , xn be the observed sample of incidentally variables. We assume that they are normally
distributed N (µ, σ). µ and σ are the true mean and standard deviation of the variables. The two
parameters are estimated on the basis of the observed samples, respectively X̄ and σ̂. Let Yµ be a
random variable that expresses how accurate is the mean estimates.

Yµ =
X̄ − µ

σ̂(X) /
√
n

(117)

Results from the distribution theory states that Y is t(n-1) distributed. For µ the confidence interval is
given by

µ = X̄ ± tα
σ̂ (X)√

n
(118)

Where tα is taken from the tabled t(n-1) distribution so that P (−tα < X̄−µ
σ̂ (X) /

√
n
< tα) = α is the

required confidence level. For σ, the confidence interval is given by Yσ, the random variable that expressed
the confidence of the standard deviation estimate.

Yσ =
(n− 1) σ̂2 (X)

σ2
(119)

Yσ has the χ2 (n-1) distribution so that P (−χα < (n−1) σ̂2 (X)
σ2 < χα) = α.

These inference calculations involve normally distributed variables. The central limit theorem shows
that the sample mean of any continuously distributed variable can be approximated by a normal distri-
bution.

5.1.2 The Normal distribution

The normal distribution associated to a random variable X is expressed as follow :

X ↪→ N ( µ, σ2 ) (120)

Where

µ is the mean of the random variable X.

σ is the standard deviation of the random variable X.

σ2 is the variance of the random variable X.
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The density of probability function is defined by :

F (x) =
1

σ
√

2 π
e
−(x−µ)2

2 σ2 (121)

Concerning the statistical inference calculations, when µ and σ are known, we have :

P(
µ− uα σ√

n
≺ X̄ ≺ µ+ uα σ√

n
) = α (122)

In the particular case of real values, the α is given by :

α = Φ0(uα) = Erf(
uα√

2
) (123)

P(| X − µ |� δ) � α (124)

With the delta notation, we can define the interval of confidence around the mean. The interval [µ −
δ σ, µ+ δ σ] define a confidence interval at probability level 1− α.

These equations are true only when using the real values of µ and σ. When estimates are used,
equations are more complex.

5.1.3 The Student’s t-distribution

difference between two means To clear things, we can examine an example.
Let x̄1 be the mean of the random variable x1 based on n1 observations and a standard deviation σ1.

Similarly, x̄2 is the mean of the random variable x2 based on n2 observations and standard deviation σ2.
The standard error SE of x̄1 − x̄2 is given by :

SE(x̄1 − x̄2) =

√
σ2

1

n1
+
σ2

2

n2
(125)

If σ1 and σ2 are known, the confidence limits with level of probability 2 α.

x̄1 − x̄2 ± uα SE(x̄1 − x̄2) (126)

If σ1 and σ2 are estimated, then we have

x̄1 − x̄2 ± tα SE(x̄1 − x̄2) (127)

The degree of freedom Φ of the t-distribution is given by :

1

Φ
=

1

Φ1
(
σ̂1

2/n1

σ̂1
2

n1
+ σ̂2

2

n2

)2 +
1

Φ2
(
σ̂2

2/n2

σ̂1
2

n1
+ σ̂2

2

n2

)2 (128)

With Φ1 = n1 − 1 and Φ2 = n2 − 1
The t-distribution will be used, among other things, in the determination of the model structure. The

comparisons will be comparisons of the means of the model performance (MSE) penalized by a complexity
factor (FPE or AIC).

It is interesting to notice that the NAG library provide functions that enable to calculate these figures.
To obtain tα knowing α and the degree of freedom or vice versa.

tα = G01FBF (′S′, α,Φ)
α = G01EBF (′S′, tα,Φ)
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Degree of Freedom Φ tα
∞ 1.96
20 2.09
10 2.23
5 2.57
2 4.3
1 12.71

Table 1: Table of t-distribution for a percentile α = 0.05.

5.1.4 The χ2-distribution

The χ2-distribution is used to express the distribution of the sum square of random variables. If we define
Xk to be a random variable, then χ2 is defined by :

χ2 = X2
1 +X2

2 + · · ·+X2
k (129)

Where k is the number of degrees of freedom. The mean of the χ2-distribution is µ = k and its variance
is σ2 = 2 k. The density of probability function of the χ2-distribution is defined by :

f(χ2) =
1

2k/2 Γ(k/2)
(χ2)k/2−1 e

−χ2

2 (130)

Where Γ is the standard Γ function.
Concerning statistical inference problem, the α-percentile χ2

α is defined by :

P(χ2 < χ2
α) ≤ α (131)

A confidence interval at the probability level α around the mean for the χ2-distribution is [χ2
α/2, χ

2
1−α/2].

For degrees of confidence k ≺ 30, the percentile can be approximated as χ2
α = 0.5 (zα +

√
2k − 1)2, where

zα is the corresponding percentile of the standard normal distribution.
In model selection, we will mostly deal with one degree of freedom since we will compare the model

having one more parameter. We can then express the table of the percentile for one degree of freedom
(k=1).

χ2
0.005 χ2

0.01 χ2
0.025 χ2

0.5 χ2
0.95 χ2

0.975 χ2
0.99 χ2

0.995

0.00 0.00 0.001 0.004 3.84 5.02 6.63 7.88

Table 2: Table of the Percentiles χ2
α of the χ2-distribution for a degree of freedom k=1.

5.1.5 The F-distribution

The F-distribution is defined as the distribution of the ratio of two incidentally χ2-variables.

F = F (n1, n2) =
χ2
n1
/n1

χ2
n2
/n2

(132)

The probability density function is given by :

f(F ) =
Γ( 1

2 (n1 + n2))

Γ( 1
2 n1) Γ( 1

2 n2)
(
n1

n2
)

1
2 n1

F
1
2n1−1

((n1

n2
) F + 1)

1
2 (n1+n2)

(133)

The mean of the F-distribution is

∀n2 � 2, E{F} =
n2

n2 − 2
(134)

51



The α-percentile Fα is expressed by :

α = P{F ≺ Fα} = 1− P{F � Falpha} = 1− P{ 1

F
� 1

Fα
} (135)

5.1.6 Central Limit Theorem

If X̄ is the mean of the random variable X of size n taken from a population with mean µ and variance

σ2, then the limiting form of the distribution of Z = X̄−µ
σ/
√
n

as n→∞ is the standard normal distribution

: N (Z, 0, 1).

5.1.7 Statistical Hypothesis Testing.

Statistical hypothesis testing enable to evaluate quantitatively a statement on the basis of parameters
such as mean or variance. Among these parameters, the analysis of variance, in which the hypothesis is
evaluated using the variance.

In other words, the hypothesis testing can be seen as a decision procedure based on statistical analysis.
A classical example is the comparison of the performances of two processes on the basis of the yield
parameters. Several experiments are carried out and the mean of the yields are used as decision factor.
The hypothesis testing factor is then the variable equal to the difference of the mean of the yield. The
sign of that testing factor is supposed to determined the best process. The problem is that an analysis
based on the sign would lead to great approximations since experiments carried out on the same process
give different yields. To overcome that hazard, what is considered is not only the mean values but also
the variance. Using statistical inference results, it is possible to determine interval of confidence and their
associated percentiles. The decision will be based on the sign and the absolute value of the difference
between the two mean. If the difference between the two mean is superior to the sum of their confidence
intervals (say 95%) then the interpretation of the sign of the hypothesis testing factor is valid.

In the model selection field, very often the only selection criterion is a model response error, typically
the MSE. It may also be the error variance. Comparing two models is then comparing their respective
model response error criterion, i.e. the error variance. The problem can be stated as follows :

H1 : σ2
1 = σ2

2

H2 : σ2
1 6= σ2

2 (136)

Where σ2
1 and σ2

2 are the variances of the two model response errors. The Hypothesis 1 is that the two
variance are equal is the null hypothesis whereas Hypothesis 2 is the alternative hypothesis. Of course,
here we deal with equality relations but inequality relations would lead to the same conclusions. From the
model selection point of view, the idea is to compare two MSE. The smaller will be assumed to be related
to the best model but we have to verify that the observed difference is real, i.e. statistically significant.

While the hypothesis are based on the real values, we define a test statistic for testing these hypothesis
to be the ratio between the two observed variances.

F =
s2

1

s2
2

(137)

Where s1 and s2 are the standard deviations observed on samples of size n1 and n2 respectively.
If the hypothesis 1 is true, then the statistic F is F (n1 − 1, n2 − 1)-distributed. To be accepted, the

statistical test is the two-sided F-test :

Fα/2(n1 − 1, n2 − 1) � F � F1−α/2(n1 − 1, n2 − 1) (138)

In the equality case we have :

H1 : σ2
1 = σ2

2

H2 : σ2
1 � σ2

2 (139)

The associated one-sided F-test is then expressed by :

F � Fα(n1 − 1, n2 − 1) (140)
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