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ABSTRACT 

This study deals with the efficiency of Interactive 
Genetic Algorithms for the design of sounds. After a 
definition of a set of acoustic parameters of warning 
signals (pulse duration, interpulse interval, frequency, 
number of bursts, bursts interval, timbre), two methods 
were investigated and compared in order to understand 
and optimize the perceived severity level of alert sounds. 
The first method uses a classical D-optimal Design of 
experiments (DOE), the second method is based on an 
Interactive Genetic Algorithm (IGA). With these two 
methods, two within-subjects perceptual tests (30 
participants) were carried out during a first session. A 
second session was organized with the same participants 
in order to assess the performances of the optimal sounds 
generated by both methods and to compare the results. 
Individual sounds and also sounds at the group level 
were compared, and the possible interactions between 
the different acoustics parameters of the alert sounds 
were investigated. Results show that the IGA method can 
be an interesting alternative to classical DOE to help the 
design of sounds. 

1. INTRODUCTION 

Sounds are nowadays used for many applications during 
interaction with complex products. They can be used to 
present information to the user (auditory display), to give 
a feedback on the state of a Human Machine Interface 
(HMI), to alert the user on potential dangers of a 
situation (aircraft or vehicle navigation systems [1]) or 
even to elicit a positive emotional state and to connote 
the design of a product with particular semantic 
dimensions (sounds of vehicles for example [2]). The 
design of such functional sounds is a complex design 
problem that necessitates coping with many constraints 
and dealing with perceptual aspects. In addition to the 
expertise of a designer, hearing tests are required in order 
to understand the complex relationships between 
acoustic parameters and perceptual dimensions. 

For warning sounds in particular, knowledge of the 
effect of sound parameters on the perceived urgency is 
important to give precise recommendations [3]. 
Recently, new-in car technologies lead to an increasing 
number of sound interfaces, for example for functional 
sounds, navigation or Advanced Driver-Assistance 

System (ADAS). Many studies propose an experimental 
approach with hearing tests to understand human 
perception of warning sounds. In [4], different hearing 
scenarii are proposed to study two objectives, annoyance 
and urgency, with a fixed experimental design. An 
objective measurement of warning sound urgency is 
proposed in [5], where the authors investigate the 
reaction time of participants. In addition to the perceived 
urgency, other dimensions such as the criticality level or 
the severity level of alarms can be studied [6], so as the 
influence of ambient noise conditions [7]. To study and 
understand human reaction to alarm sounds, experiments 
use generally a parameterized sound synthesis and 
classical model-based design of experiments. The 
limitation of such approach is that a model between the 
acoustic parameters and the perceptual dimension must 
be stated in advance, given that the exact form of the 
model is generally unknown.  

A second category of methods, model-free in content 
(contrary to classical DOE, there is no model of the 
behavior of the respondent), but model-driven for the 
solution search, can be used during hearing tests. In this 
case, an algorithm gradually refines the propositions 
made to the users, for example with interactive 
evolutionary computation (IEC) [8]. Particular cases of 
IEC are Interactive Genetic Algorithms (IGA), where 
genetic operators such as recombination, crossover, and 
mutation are used to modify design samples. This 
method has been used for example to capture aesthetic 
intention of participants and to design sign sounds [9].  

We propose in this paper to study the efficiency of 
IGA for the design of warning sounds. The first objective 
is to study to which extent IGA can be used to provide 
efficient sounds according to a given perceptual 
dimension. The dimension studied is the perceived 
severity level of alert sounds. A second objective of the 
paper is to compare the IGA method to the classical 
model-based method using a static design of experiments 
(DOE). For this, hearing tests based on synthesized 
alarm sounds were proposed to a panel of participants in 
a within-subject experiment. In a second experiment, the 
efficiency of the design solutions provided by both 
methods was assessed. It is important to mention that the 
outcomes of this study are more focused on the 
methodological aspects than on the design of warning 
sounds per se. The perceptual test on the rating of the 
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severity of alarms must be more considered as a pretext 
to generate consistent perceptual data than an experiment 
to provide realistic sounds for a dedicated application. 
For this reason, the purpose of the alarm sound in our 
study stays voluntarily vague. The only information 
provided to the participants is that the alarm sound is 
dedicated to assist the driving task of an automobile. 

The paper is organized as follows. Section 2 presents 
a short background on interactive Genetic Algorithms 
(IGA) and their use in product design. Section 3 presents 
the material and methods for the experiments. It starts 
with a presentation of the sound synthesis method and 
the associated parameters, the description of the two 
experiments designed (tasks given to the participants, 
sound stimuli used), and the method used for the analysis 
of the results. Results are presented and discussed in 
section 4. The concluding section provides implications 
for sound design and perspectives. 

2. BACKGROUNDS ON IGA 

2.1 Principles 

Genetic Algorithms (GA) are evolutionary optimization 
methods [10]. The principle of GA is based on iterative 
generations of population of individuals, converging step 
by step toward solutions, which are adapted to the 
problem. Based on the principle of Darwin’s natural 
evolution theory, the algorithm proceeds to a selection of 
parents, which will spread their genetic dominant 
heritage in the next generation, suitable to a desired 
objective. Classically, the fitness evaluation of the 
individuals is calculated numerically with a 
mathematical function known beforehand. A particular 
category of GA, Interactive Genetic Algorithms (IGA), 
introduces the user in the optimization loop to assess the 
fitness. During each iteration, the user selects solutions 
(products or sounds) that he/she considers as the most 
interesting for the desired objective. After a number of 
iterations, the method may converge towards solutions 
that fulfill the user’s objective. These algorithms are 
used for example to explore design spaces and to 
encourage creativity [11]. Since the user decides the 
individual fitness, there is no need for a prior and unique 
formulation of the fitness function. For some 
applications, such as exploring semantic dimensions [12] 
or integrating complex perceptual processes [13], this 
advantage is crucial. A study using IGA for the design of 
sounds for Electric Vehicles can be found in [14], where 
an exploration of the tradeoff between detectability and 
unpleasantness of the sounds is proposed, showing the 
efficiency of the approach. 

2.2 Implementation of the IGA 

After a definition of the variables of the sounds and their 
corresponding levels, a coding of the designs, 
represented by a chromosome, is proposed. Our 
implementation uses a binary coding and discrete-valued 

variables. A more complete description of the 
implementation of our IGA can be found in [12]. The 
IGA creates an initial population of sounds by randomly 
generating the chromosomes and presents them to the 
user. Based on personal criteria, and according to the 
instructions given to the user for the experiment, the user 
has to rate each individual according to its “fitness”. A 
new population of individuals is then created using one 
of the three operators: crossover, mutation, and selection. 
For each individual of the population, the random choice 
of the operator is controlled by the crossover rate (𝑐!), 
the mutation rate (𝑚!) and the selection rate (𝑠!). These 
values are chosen between 0 and 1 in such a way 
that 𝑐! +𝑚! + 𝑠! = 1. For each individual i, an 
indicator, rand(i), is randomly chosen between 0 and 1 
according to a uniform distribution:  

• If rand(i) < 𝑐!, the operation is a crossover 
(single point crossover – the second parent is 
randomly chosen in the population), 

• If 𝑐! ≤ rand(i) ≤ 𝑐! +𝑚!, the operation is a 
mutation (random mutation of one variable), 

• If rand(i) > 𝑐! +𝑚!, the operation is a selection 
(simple duplication of the individual). 

A fourth important parameter of the IGA is the roulette 
wheel 𝑤!. In the crossover operation, the probability that 
an individual is a parent in the crossover operation is 
increased by the weight 𝑤! >1. An automatic process 
was implemented to tune the different parameters of our 
IGA [12]. This process uses simulated “virtual” users 
and a “target” product in the design space (defined by 
target values of the design variables). To simulate the 
choices of a virtual user, a distance function between the 
individuals of the population and the target is computed. 
By launching several simulations in the same conditions 
(Monte Carlo method), an average estimate of the 
convergence rates of the IGA is computed, given the 
value of the parameters. This process allows the 
experimenter to determine the “optimal” tuning of the 
parameters, given the maximum number of generations 
allowed. 

3. MATERIAL AND METHODS 

3.1 Synthesis of the alarm sounds 

A study of different works on alarm sounds led to a 
list of acoustic parameters that are generally considered 
in perceptual studies [4-5-7]. Based on past experiments 
and pilot tests, 7 variables, that may have a plausible 
effect on the perceived severity level of an alarm, were 
selected. The name and definition of the levels of the 
different variables are given in Tab. 1. All the variables 
are quantitative except G (timbre) that is qualitative. G1 
corresponds to a harmonic sound with 10 harmonics 
(decreasing magnitude in 1/n3), G2 corresponds to the 
superposition of two harmonic sounds with an 
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augmented fourth interval (triton), and G3 to an 
harmonic sound with a sawtooth waveform. 
 

Label Name Levels and unit 
A Frequency of the pulse 570-900-1600 (Hz) 
B Number of bursts 2 - 3 - 5 
C Interburst duration 0.1 - 0.25 - 0.5 (s) 
D Number of pulses 2 - 3 - 4 
E Interpulse duration 0.01 - 0.1 - 0.25 (s) 
F Pulse duration 0.1 - 0.25 - 0.5 (s) 
G Timbre of the pulse G1 - G2 - G3 

Table 1. Definition of the design variables of the sounds 

A 0.01s transient (onset and offset) was added to all 
the sounds. The representation of a typical alarm sound 
in the time-domain is given in Fig. 1. 

 

Figure 1. Illustration of the variables of the alarm sound 
in the time domain.  

3.2 Hearing test 

The objective of the hearing test was to assess the 
perceived severity level of alarm sounds. Participants 
were informed that the sounds are dedicated to assist the 
driving of a vehicle (e.g. warning of a low external 
temperature, or exceeding the speed limit) but no 
particular application was described. 

30 participants (20 males), with no reported auditory 
deficiencies, performed the tests. The audio stimuli were 
presented with the same hardware desktop configuration, 
sound card and software, as well as Beyerdynamics DT-
990 headphones in a quiet environment. In the beginning 
of the experiment, a short tutorial was proposed, during 
which basic explanations on the severity level and on the 
use of the interface were given by the experimenter. The 
participants were asked to adjust the audio volume to a 
comfortable level and to not change this level during the 
experiment. After the hearing of the alarm sound, 
participants were asked to rate the perceived severity 
level on a continuous structured scale, from “not severe” 
to “extremely severe”  (example in Fig. 2). 

 
Figure 2. Structured scale for the assessment of the 
severity level.   

The hearing test was divided in two sessions: 
Experiment 1 (on the DOEs and with the IGA) and 
Experiment 2 (hearing of the optimal sounds) few days 
later. 

3.3 Experiment 1 

This experiment consists of two parts:  

• Hearing test according to a fixed set of alarm 
sounds, defined by an experimental design 
(DOE) 

• Hearing test according to the IGA experiment 
(IGA) 

All the participants did both parts (within-subject 
experiment) in a balanced order. The duration of the 
experiment was around 30mn. 

3.3.1 DOE experiment 

A set of alarm sounds, defined by a DOE-software, was 
proposed to the participants. Two models were 
considered to define the experimental designs: a 
quadratic model with interaction terms (Eqn. (1)), 

 
 𝑦 = 𝜇 + 𝑎.𝐴 + 𝑏.𝐵 + 𝑐.𝐶 + 𝑑.𝐷 + 𝑒.𝐸 + 𝑓.𝐹 + 𝛼! +
𝑎!.𝐴! + 𝑏!.𝐵! + +𝑑!.𝐷! + 𝑎!".𝐴.𝐺 + 𝑏!".𝐵.𝐶 + 𝑏!".𝐵.𝐷 +
𝑐!".𝐶.𝐸 + 𝑑!".𝐷.𝐸 + 𝑑!".𝐷.𝐹 + 𝑒!".𝐸.𝐹 + 𝜀  (1) 

 

and a linear model without interaction (Eqn. (2)), 

 
 𝑦 = 𝜇 + 𝑎.𝐴 + 𝑏.𝐵 + 𝑐.𝐶 + 𝑑.𝐷 + 𝑒.𝐸 + 𝑓.𝐹 + 𝛼! + 𝜀  (2) 

with 𝛼i: coefficient of level Gi of the qualitative 
variable G, with 𝛼! = 0!

!!! . The terms considered in 
Eqn. (1) (number of parameters p = 20) were introduced 
according to past studies on the effect of acoustic 
parameters on the perception of alarm sounds.  

The second model (Eqn. (2) – p = 9 parameters) was 
considered to define to which extent a simple linear 
model is able to represent the perceptions of the severity 
of alarms. With the model Eqn. (1), a DOE with 35 
designs was defined (DOE-Q) according to the 

Time 

Frequency 

Pulse 

A : 
Frequency 

Burst 

C : Interburst duration 

E : Interpulse 
duration 

G : 
Timbre F : Pulse duration 

D : Nb pulses 

B : Number of bursts 
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optimization of the G-efficiency criterion [15] (G-
efficiency = 57%). For the second experimental design 
corresponding to Eqn. (2), in order to limit the number of 
sounds to assess (limitation of the fatigue of the 
participant), we decided to include the 16 designs of 
DOE-Q located at the frontier of the experimental 
domain, and to complete it with a reasonable number of 
additional designs. A DOE with 24 designs (DOE-L) 
was defined according to the optimization of the G-
efficiency criterion (G-efficiency = 84%). To test the 
lack of fit of the models, 2 repetitions of a particular 
design of DOE-Q (nearly a center point) were added to 
these DOEs.  

In total, the DOE experiment counts 35+(24-16)+2 = 
45 sounds to assess, presented in a random order to the 
participants. 

3.3.2 IGA experiment 

The assessment of the alarm sound according to the 
severity level has been included in an IGA iterative 
experiment. The fitness function of the IGA was simply 
the severity score given by the participant (the higher the 
severity score, the higher the fitness). With this 
definition, the IGA test may converge toward sounds that 
represent severe events for the user. The problem of IGA 
tests is to manage a good balance between convergence 
properties and fatigue of the participant. After different 
tests, we considered that the assessment of 6 populations 
of 10 sounds was enough to not fatigue the participant 
(60 sounds to assess). This corresponds to a test duration 
of around 15mn. An automatic process was implemented 
to tune the different parameters of our IGA [12]. The 
optimal tuning parameters of the IGA are as follows: 

• Wheelrate: 𝑤! = 25 

• Crossrate:  𝑐! = 0.85 

• Mutation rate: 𝑚! = 0.1 

The initial population of sounds was randomly 
generated, different for each participant. 

3.4 Experiment 2 

The objective of this second experiment is to compare 
the efficiency of “optimal” sounds (optimal according to 
severity) defined from data of experiment 1. The choice 
of this objective function is of course arbitrary: we 
should have chosen to optimize according to the least 
severe sound, or even to take into account multiple 
objectives, for example severity and unpleasantness (as 
in [14]). This choice is not important given that we focus 
mainly on the methodological aspects.  

One week after experiment 1, after the processing of 
the data of the two tests, the same participants were 
asked to rate a set of “optimal” sounds according to 
severity (similarly to experiment 1 (Fig. 2)), defined 

from their ratings. In this paper, we limit the presentation 
to the following six sounds1: 

• The individual sound (participant i) with the 
highest severity score, given by the DOE-Q 
model: 𝐷𝑂𝐸_𝑄!

!"# (quadratic model), 

• The individual sound with the highest severity 
score, given by the DOE-L model: 
𝐷𝑂𝐸_𝐿!

!"#(linear model), 

• The individual sound with the highest severity 
score, given by the IGA test: 𝐼𝐺𝐴!

!"#, 

• The global sound with the highest severity 
score, given by the DOE-Q model fitted to the 
average participant: 𝐷𝑂𝐸_𝑄!

!"# (quadratic 
model), 

• The global sound with the highest severity 
score, given by the DOE-L model, fitted to the 
average participant: 𝐷𝑂𝐸_𝐿!

!"#(linear model), 

• The global sound with the highest severity 
score, given by the IGA test and a selection 
process (see below): 𝐼𝐺𝐴!

!"#. 

The fitting of the models to the “average participant” 
was made after a verification of a large enough 
consensus between the participants (consonance analysis, 
see below). 

To define the optimal global sound for the IGA test, 
several procedures were considered. We choose to report 
in this paper only the results of the following process: 
given the individual optimal sound of each participant 
𝐼𝐺𝐴!

!"#, the occurrences of each levels of each variable 
were computed. The global optimal sound 𝐼𝐺𝐴!

!"# was 
defined as the design with the largest occurrences for 
each variable (most occurring level). 

In addition to the six sounds defined, two sounds, 
considered as “not severe” by the experimenter (LOW1 
and LOW2), were added to the set of sounds. 

3.5 Analysis of the data 

3.5.1 Inter-subjects agreement (consonance analysis) 

Before fitting a model to the “average participant”, it is 
necessary to verify that the panel is consensual enough 
(otherwise, poor results, not representative of the 
assessments, may be obtained). The verification of the 
agreement between participants is made by consonance 
analysis, a method based on a principal component 
analysis (PCA) of the assessments [16]. Observations of 
this PCA correspond to the sounds of the DOE, whereas 
variables correspond to the subjects. The principle of the 
method is to assess the deviation from unidimensionality 

                                                             
1 Additional sounds were proposed, not reported in this paper 
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by an examination of the variance accounted for by each 
component of the PCA. A consonant panel should obtain 
high variance on the first component, and low variance 
on the other components (under the condition that the 
variable points are on the same side of the first 
component). Two standardized PCA are carried out on 
each DOE (DOE_Q and DOE-L) and the percentage of 
variance on the two first components is examined. 

3.5.2 Statistical tests on the ratings of experiment 2 

Differences in the ratings of the set of sounds 
(experiment 2) are analyzed with a linear mixed model 
(equivalent in our case to an ANOVA) [17]. Two factors 
are considered in the model, a factor “sound” with a 
fixed effect and factor “subject” with a random effect. 
Paired comparison tests between sounds are next 
performed using a Duncan multiple comparison tests 
(post-hoc). 

3.5.3 Agreement IGA/DOE 

For each participant, his/her DOE model can be used to 
compute the predicted severity scores on the entire 
design space (full factorial design). In particular, the 
severity score of the sound selected in the IGA test, 
𝐼𝐺𝐴!

!"#, can be computed with the DOE model of 
participant i. A high severity score of the 𝐼𝐺𝐴!

!"# product 
is a sign of an agreement between the two tests, whereas 
a low severity score represents a disagreement. It has to 
be mentioned that this agreement between the tests 
includes the effect of the method and also the 
consistency of the participant between the two tests: if 
the participant radically changes his/her opinion about 
the severity between the two tests, the agreement may be 
low. To measure the assessments’ consistency between 
the two tests, the proposed method consists in 
positioning the predicted score of the 𝐼𝐺𝐴!

!"# product in 
the total distribution of the scores of the complete design 
space (we choose the full factorial of 37=2187 designs). 
For each participant, the predicted severity scores 𝑍!"##!  
of the 2187 designs were computed using the 30 
individual DOE models and the global models. After a 
ranking of the designs in an increasing order according 
to the score 𝑍!"##! , the IGA final choice 𝐼𝐺𝐴!

!"# is located 
in this ranking. The individual discrepancy between the 
two tests for participant i is characterized by the 
agreement 𝐴𝑔! % (Eqn. (3)), corresponding to the 
percentage of designs with a lower score than the 𝐼𝐺𝐴!

!"# 
sound: 

 𝐴𝑔! % = 100. !"#$(!
! !"#!

!"#)
!"#$

        (3) 

4. RESULTS 

4.1  Inter-subjects agreement (consonance analysis) 

The results of the standardized PCA on the subjects’ 
severity ratings (subject S1 to S30) are presented in Fig. 
3 (DOE for the quadratic model DOE-Q) and in Fig. 4 
(DOE for the linear model DOE-L). 

 
Figure 3. PCA of the ratings for the quadratic model 
(DOE-Q) (plane of the variables) 

 
Figure 4. PCA of the ratings for the linear model (DOE-
L) (plane of the variables) 

The percentage of variance on the first component is 
very high (58.8% for DOE-Q and 60.8% for DOE-L), 
whereas the percentage on the second component is very 
low (5.5% for DOE-Q and 6.3% for DOE-L). All the 
arrows point in the same direction, the panel can be 
considered as consensual enough and a global model can 
be fitted to the “average participant”.  
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4.2 Analysis of the DOE models 

4.2.1 Fitting of the models 
The determination coefficients R2 of the individual DOE 
models are generally large, above 70%, except for three 
subject S15, S27 and S29 that got R2 between 50 and 
60%. The lack of fit test is generally not significant. The 
determination coefficients R2 are large for the global 
models DOE-Q (97%) and DOE-L (92%). 

4.2.2 Effect of the variables on the severity level 
The coefficients of the global DOE models that are 
significant (p<.05) are given in Tab. 2. 
 

 DOE-L (linear) DOE-Q (quadra) 
R2 92% 97% 
µ 4.50 5.27 
A 0.37 0.41 
B 0.48 0.50 
C -0.22 -0.20 
D 0.54 0.49 
E -0.42 -0.43 
F 1.30 1.25 

G1 -0.64 -0.71 
G2 0.24 0.24 
G3 0.40 0.47 

C*E - 0.21 
A2 - -0.53 

Table 2. Significant coefficients (p<.05) of the global 
DOE models. 

There is a large agreement between the two models on 
the effect of the acoustic variables on the severity score: 

• Increasing the frequency A, the number of 
bursts B, the number of pulses D, the pulse 
duration F increases the severity, 

• Decreasing the interburst duration C, the 
interpulse duration E, increases the severity, 

• The timbre G3 (harmonic sound with a saw 
tooth waveform) corresponds to the largest 
severity. 

These results are rather in agreement with previous 
studies on the perceived urgency of alarm sounds [4-5-
7], even if the definition of the sounds and the perceived 
dimension studied in our study are slightly different. 
This agreement strengthens the validity of our 
experimental protocol and the ability of our panel to 
produce consistent ratings. 

Concerning the quadratic model DOE-Q, only two 
additional terms, the interaction C*E and the term A2, are 
significant. Their effect is very slight and does not 
modify the previous conclusions. We have to conclude 
that the linear model is sufficient to represent the data, 
and that the quadratic model is in overall not necessary. 

4.3 Agreement between the IGA and DOE tests 
For each participant and for the global models, the 
percentages of agreement Ag% between the IGA and the 
DOE tests are given in Fig. 5, for both models DOE-L 
and DOE-Q. 

 
Figure 5. Percentage of agreement Ag% between the 
IGA and the DOE tests for all the subjects (S1 to S30) 
and the global model.  

The agreement is important, above 60% for a 
majority of participants. The average agreement (across 
participants) is 83% for the DOE-Q and DOE-L models. 
The quadratic model does not improve the agreement, 
sign that confirms that the linear model is satisfactory to 
represent the data. Two subjects S15 and S29 obtain low 
Ag% (lower than 50%). It is interesting to mention that 
the fitting of the DOE models (R2) of these subjects was 
also very low (around 50%), making their assessments 
suspicious if not inconsistent. 

Overall, the individual results of the participants are 
rather consistent between the two tests. The confidence in 
the data is large, except for the two subjects S15 and S29. 
For the global model, the Ag% is 100% for the DOE-L 
model (𝐷𝑂𝐸_𝐿!

!"#sound is exactly the same than 𝐼𝐺𝐴!
!"#) 

and 99.95% for the DOE-Q model (𝐷𝑂𝐸_𝑄!
!"#sound is 

slightly different (difference of one level on only two 
variables) of 𝐼𝐺𝐴!

!"#). At the group level, the two tests 
lead to similar conclusions concerning the most severe 
sounds, the agreement between the results of the two tests 
is very important.  

These results show that the two approaches (DOE and 
IGA) lead to similar conclusions concerning the most 
severe sound. The IGA method converges and the 
experimental protocol designed is satisfactory. 

4.4 Comparison of the optimal sounds 

Given that the two optimal sounds 𝐼𝐺𝐴!
!"#and 𝐷𝑂𝐸_𝐿!

!"# 
are exactly the same, only 5 optimal sounds are 
considered for comparison.  

The ratings of these 5 sounds plus the sounds LOW1 
and LOW2 by the 30 participants according to the 
severity score (experiment 2) were analyzed with a linear 
mixed model. The results of the analysis give a 
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significant effect for the sounds (F(6,174)=89.5 – 
p<.0001) and a significant effect for the participant 
((F(29,174)=6.5 – p<.0001). The results of the post-hoc 
tests with the Duncan multiple comparisons test are 
presented in Fig. 6. 

 

 

Figure 6. Duncan multiple comparisons test. Non-
significant pairs (p>.05) are connected with a continuous 
line. 

The results show first that the two sounds LOW 1 and 
LOW 2, considered as particularly not severe by the 
experimenter, are also perceived as such by the panel of 
participants. This confirms the validity of the 
participants’ ratings. The differences between the optimal 
sounds are very thin, the only slight significant difference 
concerns the sound 𝐼𝐺𝐴!

!"# that is perceived as less severe 
than two other sounds (a PCA (not reported here) showed 
that this fact is due to a subgroup of 3 subjects (S15 S16 
S19) that assessed their optimal sound 𝐼𝐺𝐴!

!"#as less 
severe than the other optimal sounds. A first conclusion is 
that the IGA method does not allow the participant to 
design a sound that is significantly most severe than the 
other optimal sounds. At most (if subjects S15 S16 S19 
are discarded), sounds are perceived as equivalent. This 
result, rather disappointing, could be explained by the 
weak number of generation allowed for the IGA method 
(6 generations only) and also could be due to the 
convexity of the objective function (if the optimum is 
unique, all methods converge to it).    

A second conclusion is that at the group level, the 
different methods and models considered in the study 
provide equivalent results. No method outperforms the 
other in the definition of an optimum.  

For information, the definition of the two optimal 
global sounds (𝐼𝐺𝐴!

!"# = 𝐷𝑂𝐸_𝐿!
!"#) and 𝐷𝑂𝐸_𝑄!

!"# are 
given in Tab. 3. These two sounds are very similar, the 
only differences concern the frequency (1300Hz instead 
of 1600Hz for the quadratic model) and the number of 
bursts (4 instead of 5 for the quadratic model). 

 
 

 

Var. Name 𝐼𝐺𝐴!
!"#− 𝐷𝑂𝐸_𝐿!

!"# 𝐷𝑂𝐸_𝑄!
!"# 

A Frequency 
of the pulse 

1600 Hz 1300 Hz 

B Number of 
bursts 

5 4 

C Interburst 
duration 

0.1s 0.1s 

D Number of 
pulses 

4 4 

E Interpulse 
duration 

0.01s 0.01s 

F Pulse 
duration 

0.5 s 0.5 s 

G Timbre of 
the pulse 

G3 G3 

Table 3. Definition of the optimal sounds (largest 
severity) at the group level 

To be perceived as severe, an alarm sound must, with 
the definition of our variables, have a high frequency (A), 
a large number of bursts (B) and of pulses (D), a short 
interburst (C) and interpulse (E) duration, a large pulse 
duration (F) and the timbre G3 (sawtooth waveform). 
This is in agreement with previous studies. 

4.5 Discussion 

In this paper, our objective was to study the ability of 
IGA to design optimal sounds (with the largest severity) 
in a perceptual study using hearing tests. The results 
show that at the individual level, the IGA method does 
not allow the participant to design a sound that is very 
different to other proposal obtained by the classical DOE 
method. This result a little disappointing is perhaps due 
to the choice of the sound parameters and the perceived 
dimension under study (the severity of alarms) that make 
the objective function convex. Further studies should be 
designed to investigate this aspect. 

The experiment also does not allow the highlighting 
of the superiority of a model-free method in the 
integration of interactions effect in the definition of 
optima. Our objective in the beginning of the experiment 
was to fit two models, a linear model (DOE-L) and a 
quadratic model (DOE-Q) in order to show that the 
optima obtained by the IGA method would be closer to 
the optima of the quadratic model than the optima of the 
linear model. We were not able to prove this given that 
no interaction nor square effect were significant and very 
important in our perceptual study. Further studies where 
clear interactions between variables occur should be 
designed to prove this advantage.   

Nevertheless, this study provides interesting 
outcomes: the IGA method is at least as efficient as the 
DOE approach, for a number of ratings that is 
comparable (45 sounds for the DOE-Q model, 60 sounds 
(6 generations of 10 sounds) for the IGA). We could use 
the DOE approach to rough out the main variables of a 
design problem, important for a perceptual study, and 
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use in a second stage the IGA method to optimize the 
design on a low number of variables, where interaction 
and quadratic effect could be influential. 

5. CONCLUSIONS 

We showed in this paper that hearing tests based on IGA 
are an interesting method to optimize a given perceptual 
dimension (the severity level of alarm sounds) and to 
define relevant sounds. It can be a valuable alternative to 
classical design of experiments (DOE), in particular 
when no model is a priori available between the design 
variables and the perceptual dimension. On the case 
study designed (severity of alarm sounds), we showed 
that the quality of the results given by the IGA method is 
equivalent to those of the approach using DOE with a 
quadratic or a linear model. 

Further studies are needed to prove the superiority of 
IGA when important interactions between the design 
variables occur. In addition, this method can be used to 
customize sounds and adapt to the customer taste. This 
will be the purpose of next experiments. 
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