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Abstract

The aim of this report is to present the most recent ideas related to time-frequency methods and
particularily the so called wavelet transform. Time-frequency methods provides with analysis and
preprocessing tools in the frequency space opening new perspective for time series modeling. These
techniques are expected to provide better analysis tool for nonstationary time series or time series
with pseudoperiodic or chaotic behaviour. Moreover, when used to perform preprocessing of the input
space, these techniques can enable the use of multi-scale or multi-resolution modeling. Finally, we will
examine how they can be put to contribution to address the problem of the complexity determination
essential for topological determination and by mean of consequence the generalization issue.
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1 Introduction

Time Series modeling can be divided into two main parts consisting of the time series analysis and
the time series model optimization. In the first part, the analysis aim at characterizing the properties
of the considered time series using various mathematical techniques. Again, these techniques can be
distinguished into two broad classes of characterization, i.e. the time domain and frequency domain
techniques [1].

Both classes involve preprocessing or transformation of the original time series with either expansion
or extraction of some predominant features. In the time domain, the classical transformations are the
detrending, deseasonalalization and the normalization of the time series. More complex methods lead to
linear transformation and expansion such as Singular Value Decomposition (SVD). These transformations
enable to perform the analysis but also provide with insights on the model choice.

In certain time series exhibiting periodic, pseudoperiodic or even chaotic behaviors, the frequency
domain analysis and transformations provide further insights. As a matter of fact, the time domain
methods usually fail to deal efficiently with such behavior and require the use of higher regression orders
leading to highly correlated input spaces.

Spectral analysis and transformations are amongst the most commonly used frequency domain tech-
niques. It is based on the concept according to which it is possible to decompose the time series into a
sum of sines and cosines of different frequencies and amplitudes. Most of the spectral analysis is carried
out in the frequency space. The frequency space is obtained by a transformation, usually the Fourier
transformation [2].

The Fourier transformation prove to be efficient for stationary signals but miss critical information
in non-stationary signals. For such signals, an efficient analysis and the modelling require to process
the time and frequency domain information simultaneously. This lead to a unifying approach called
Time-Frequency Analysis which in time evolves to multi-resolution analysis and modelling [3].

To overcome the shortcomings of the Fourier transformation, several methods have been developed.
In a first part, we will look at the modifications made to the Fourier transform to perform a more reliable
time-frequency analysis. In a second part, we will examine another approach based on wavelets with an
emphasis on the similarities and differences with the Fourier approach.

2 The Fourier Approach

2.1 Spectral Analysis

The time domain representation of time series is usually the most natural description since almost all
physical signals or economic variables are obtained by receivers recording variations in time. However,
the frequency domain representation is a very powerful way to express the seasonality, the periodicity or
pseudo-periodicity that occurs in physical events.

Spectral analysis is a classical frequency domain method. The variance of the time series is expanded
(or broken down) into number of components, the spectral components. Each component is associated
with a particular frequency. In other words, the time series is expanded into a series of weighted infinite
sine and cosine signals of different frequencies. The relative amplitude of the harmonic represents the
contribution of a given frequency (or spectrum) to the time series variance.

The space defined by the harmonics is the frequency space. Practically, the representation of the
time series in the frequency domain is obtained by the Fourier Transformation. We start by recalling the
definition of the Fourier Transformation.

X(ν) =

∫ +∞

−∞
x(t)e−j2πνtdt (1)

Where

x(t) is the time series (eventually linearly transformed).

X(ν) is the time series representation in the frequency domain.

For Equation 1, the spectrum X(ν) can be viewed as the coefficient function obtained by expanding
the time series x(t) into a family of infinite waves. A characteristic of the waves defined by e−j2πνt is
that they are complex and completely unlocalized in time. For stationary time series, the spectrum is
supposedly invariant in any subsets (large enough with respect to the corresponding period range) of the
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time series. Under the assumption of stationarity, the measured variation in the spectrum can be used
to evaluate the error of the spectrum estimate.

For non stationary time series, the Fourier transform indicate the frequencies contained in the time
series, their amplitude (their relative contribution to the variance)and phase. However, no indication on
their localization in time is given. This will be possible only with frequency localization techniques carried
out in the time-frequency space [4].

2.2 Frequency Localization

For certain time series, it is necessary to characterize the signal simultaneously in the time and frequency
domain. Such analysis is called frequency localization or, using its counterparts based on a statistical
approach, frequency dispersion.

In order to express qualitatively the issues involved in frequency dispersion, we first have to define some
notations. We will consider a probabilistic approach where the localization is related to the probability
of a given spectrum to be present in the time series at a given moment.

We first consider the squared modules of the representations of the time series in the time domain and
frequency domain respectively. ‖x(t)‖2 and ‖X(ν)‖2 are two probability distributions. When considered
in the two-dimensional time-frequency space, their product defines the localization density of probability
function.

We define Ex to be the energy of the signal (assumed finite).

Ex =

∫ +∞

−∞
‖x(t)‖2dt (2)

From Equation 2, it is possible to define the averaged time and averaged frequency of the time series,
tm and νm respectively.

tm =
1

Ex

∫ +∞

−∞
t‖x(t)‖2dt (3)

νm =
1

Ex

∫ +∞

−∞
ν‖X(ν)‖2dν (4)

In the (t, ν) time-frequency space (plane), tm and νm are the averaged values, i.e. the locus of main
energy localization, or, in the statistical approach, the locus of maximum variation in the time series.
From these averaged values, we can define the deviation of the spreading both in time and frequency.

T 2 =
4π

Ex

∫ +∞

−∞
(t− tm)2‖x(t)‖2dt (5)

B2 =
4π

Ex

∫ +∞

−∞
(ν − νm)2‖X(ν)‖2dν (6)

In Equations 5 6, T 2 and B2 are the time spreading and frequency spreading respectively. In the
signal processing field, B is defined to be the bandwidth of the signal.

The product T ×B, called the Time-Bandwidth product, is an important qualitative characteristic of
the time series.

A version of the Heisenberg Principle of Uncertainty can be applied here to bound the Time-Bandwidth
product. It can been shown [2] that a time series (or a signal in general) cannot have simultaneously
small support in time and frequency.

It is possible to qualitatively express that condition using the Heisenberg-Gabor inequality :

T ×B ≥ 1 (7)

The lower bound of the of the inequality is reached for a Gaussian function. Therefore, if the Time-
bandwidth product is used as a complexity criterion, a Gaussian function will the reference function to
which the complexity of the signal is compared.
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2.3 Instantaneous Frequency

2.3.1 Introduction

We have seen in the previous section that the Fourier analysis provided with the full spectrum present in
the entire signal or data set. In order to localize in time the frequency components in nonstationary time
series, we introduce the concept of instantaneous frequency. This concept is based on the assumption
that there exists only one spectra or harmonic for a given time index. This unique spectrum is called the
principal component and the instantaneous frequency techniques are referred as mono component analysis
techniques [3].

2.3.2 Analytic Signal

It is well known that the Fourier transform provides symmetrical spectra or double-sided spectra. The
spectra is symmetrical since the time series or the signal are usually real. To define the instantaneous
amplitude and frequency functions, we first have to introduce the analytical signal or time series of x(t).

xa(t) = x(t) + jHt(x(t)) (8)

Where

Ht is the Hilbert transform.

xa is the analytic signal or time series associated with x.

The main property of xa is that in the frequency domain Xa is single-sided. Basically, the negative
frequencies are removed while the amplitude of the positive frequencies are doubled to ensure that the
DC component is unchanged. This can be summarized by :

Xa(ν) = X(0) if ν = 0
Xa(ν) = 2X(ν) if ν > 0

2.3.3 Mono-Component Analysis

Since x(t) is a real signal, Xa contains all the information contained in X. Using the analytic signal, it is
possible to define real values instantaneous amplitude and frequency distribution.

a(t) = ‖xa(t)‖ (9)

f(t) =
1

2π

∂arg(xa(t))

∂t
(10)

Equation 9 10 represents the instantaneous amplitude and frequency function used to characterize
locally the frequency behaviour as a function of the time. To illustrate the concept of instantaneous
frequency, we can examine the application to a chaotic time series [5] that exhibit particular pseudoperiod
features.

Figure 1 represents the 2000 samples of the chaotic time series. An interesting feature is the succession
of oscillatory modes with increasing amplitude that occur locally. In order to analyze in more detail these
feature, we use the instantaneous frequency function on the analytic time series.

The analytic time series associated with the chaotic time series is represented on Figure 2. It appears
clearly that the frequency in varying in time but the instantaneous frequency function does not provide
an accurate and qualitative reading of the modulation. This can be a typical effect of simultaneous
harmonic as well as noise (large frequency range).

It is clear that for noise free stationary signals, the instantaneous frequency function give good results
but for real life application, better methods must be used. The first step to overcome the effects of noise
(white noise) and the single component limiting assumption would be to implement multi component
analysis techniques.

2.4 Multi-Component Transformations

2.4.1 Atomic Decomposition

As we already explained, the Fourier transform is not well adapted to non-stationary signals principally
because it is based on the expansion in infinite waves (sinusoids) which are delocalized in time. In the
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Figure 1: Chaotic Time Series.

section 2.3.3, we have seen that the primary attempt to localize the spectrum using the instantaneous
frequency principal lead to lose valuable information. To combine the multi-spectra or multi-resolution
capacities of Fourier analysis and the need for localization of the frequency, we introduce another concept
called Atomic Decomposition also known as Linear Time-frequency Representation [3, 6].

The main difference with the instantaneous amplitude and frequency functions is the fact that the
new function issued from the atomic decomposition will be bi-dimensional. The bidimensionality implies
that for a given time index, the full spectrum (or at least a portion of it) with be available. Atomic
relates to the fact that the signal or the time series will be somehow truncated into elementary time
intervals on which the spectrum will be evaluated. Of course, behind atomic decomposition lies more
mathematically sound principals and definitions but we will limit the spectrum of this report on practical
applications. Therefore, we will introduce the transforms based on atomic decomposition, the Short-term
Fourier Transform, also called the Windowed Fourier Transform.

2.4.2 Short-Time Fourier Transform

The main idea behind Short-Time Fourier Transform (STFT) (also called Gabor transform) is to introduce
a time dependency in the Fourier transform. The term dependency relates to a more general approach
of the identification and modeling issues based on statistical theory.

The simpler solution consists to pre-windowing the signal around a particular point in time and
calculating the Fourier transform over that window. The STFT is obtained by translating the window
over the full signal or time series length. The resulting bidimensional function is called STFT or Short-
Time Spectrum.

Fx(t, ν, h) =

∫ +∞

−∞
x(u)h∗(u− t)e−j2πνudu (11)

where

x(u) is the time series.

h(t) is the short-time analysis window.

Fx(t, ν, h) is the short-time Fourier transform of x.

Equation 11 represents the definition of the STFT function. In other words, it is a local spectrum of
x around time t. This transform can be inverted by :

x(t) =
1

Eh

∫ +∞

−∞

∫ +∞

−∞
Fx(u, ξ, h)h(t− u)ej2πtξdudξ (12)
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Figure 2: Analytic Time Series and Instantaneous Amplitude and Frequency.

Where Eh is the term related to the short-time analysis window h and used to normalize the relation.

Eh =

∫ +∞

−∞
‖h(t)‖2dt (13)

Equation 12 can be seen as the expansion equation : the signal is expanded into a sum of weighted
elementary waveforms. The elementary waveforms are obtained form a primary or elementary function,
here the window function h. This interpretation, although it seems to complexify what is a simple Fourier
transform variation, is important to understand how another transform, the wavelet transform, is defined.

In order to detail the elementary waveform approach, we introduce the concept of atoms : An atom
is an elementary waveform obtained by translation in time and frequency (modulation) of a primary
(mother) function. In the SFTF context, the mother function is the window function h. Therefore, the
elementary building block or atoms as defined by :

ht,ν(u) = h(u− t)ej2πνu (14)

The corresponding transformation group of (t, ν) translation is called the Weyl-Heisenberg group.
Being aware of the fact that the results of such transformation are not obvious, we can examine an
example. A simple window function is the Gaussian window centered in the origin and with a variance
of 1. From that Gaussian we will defines two atoms or atomic functions, obtained from restriction of the
ht,ν function. Practically, we chose to fix the time index, i.e. location to 5 and we set the frequencies
(or what will be called later scales) to respectively 1 and 3. The window function and the two atoms
respectively called Atom 1 and Atom 2 are represented on Figure 3.

Figure 3 represents two atomic functions obtained from a specific Gaussian window. The two atoms
correspond to the point in time t = 5 and for frequencies ν = 1 and ν = 3 respectively. Of course, the
atomic functions are complex so that so simplicity, the real part (line) and the imaginary part (dash line)
have been represented. Broadly speaking, the atoms can be seen as attenuated sinusoids of frequency 1Hz
and 3 Hz respectively with symmetrical envelopes centered on t = 5 and variances equal to the variance
of the initial window, the mother function.

The time series or the signal is then expanded as the summation of the weighted atoms. These weights
are correlated with the presence of the given spectrum within the time series. Of course, when we use
the term frequency, it will have some minor differences with the Fourier frequency as we will see later.

Before examining an example, it is interesting to examine yet another understanding of the atomic
decomposition. If we define the STFT function in the Fourier space, we have :
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Fx(t, ν, h) =

∫ +∞

−∞
X(ξ)H∗(ξ − ν)ej2π(ξ−ν)tdξ (15)

Where X and H are the Fourier transforms of x and h.
Equation 15 can be interpreted as the result of a band-pass filter whose frequency response is given

by H (ξ− ν). As we have seen in Figure 3 where the atoms had a constant envelope variance (in the time
domain), similarly in the frequency domain, the band-pass filters have constant bandwidth. Just like in
the time domain, the bandwidth is determined by the mother filter H(ξ). For that reason, in the signal
processing fields, STFT is assimilated as a bank of band-pass filter with constant bandwidth.

Before discussing the issues of time-frequency resolution, we first examine an application on the
competition time series.

Figure 4 represents the short-time-frequency tranform over the first 1024 samples of the competition
time series. It seems that the energy density is maximum for frequencies in around 0.026 Hz, i.e. a period
of 38 samples. Between t = 400 and t = 600, another spectrum corresponding to very low frequency, i.e.
large periods, seems to become predominant while components such as 0.035 Hz coexists.

Before interpreting further the results, it is important to consider the issues of time-frequency resolu-
tion. In other words, it is clear that the use of windows truncate the information so that different spectra
are not estimated with the same accuracy.

2.4.3 Time-Frequency Resolution

The use of windows to obtain localized Time-Frequency multicomponent at first a good approximation.
The windowing can use basically two types of windows function : a box function where all the signal within
the interval is considered evenly or smoothing functions such as Gaussian functions. With smoothing
function, the calculation of the spectrum will emphasize the information contained in the signal inverse
proportionally to the distance from the actual time index. In that case, the window function can be
seen as a density probability function, the density of probability for a given sample to be used in the
Time-Frequency evaluation [3].

In both case, the multi-frequency component are obtained on a restriction of the input signal whether
the boundaries of the interval are crisp or fuzzy. This interval will be constant for all frequencies.
Therefore, it is quite clear that frequencies associated with periods smaller that the restriction interval
will be estimated with much better accuracy than the one associated with larger periods.

9
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Figure 4: STFT of the Competition Time Series.

In order to quantify that issue, we first define these intervals. In the box function case, the interval is
simply defined by the width of the box function. In the Gaussian function case, we will use an interval
that will provides with a cumulated probability of membership of 95 %, i.e. an interval of width 2σ where
σ is the standard deviation parameter associated with the Gaussian function. As stated before, these
intervals will be fixed for the entire frequency spectrum and will be called T.

To quantify the time resolution, we examine a simple case, the Dirac impulse. Let the signal x be a
Dirac delta function also called impulse function.

x(t) = δ(t− t0) (16)

One of the properties of the Dirac delta function is that its Fourier transform is the unity.∫ +∞

−∞
δ(u− t0)e−j2πνudu = 1 (17)

The impulse signal has a flat spectrum, i.e. all frequencies are present at unit strength. When can
then examine the short-time Fourier transform of the Dirac delta function.

Fx(t, ν, h) =

∫ +∞

−∞
δ(u− t0)h∗(u− t)e−j2πνudu (18)

The Dirac delta function is equal to zero in all point except in t0, therefore, the integration gives :

Fx(t, ν, h) = h(t− t0)e−j2πνt0 (19)

In the ideal case, the short-time frequency function should be equal to 1 in t0 and zero elsewhere.
Therefore, it appears that the time resolution, i.e. the spread of the Fx(t, ν, h) around t0 is proportional
to the duration of the analysis window h.

In order to examine the frequency resolution issues, we consider another signal with some particular
properties, a complex sinusoid.

x(t) = ej2πν0t (20)

Where x(t) is a complex sinusoid of frequency ν0. The Short-time Frequency transform is given by :
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Fx(t, ν, h) =

∫ +∞

−∞
h∗(u− t)e−j2π(ν−ν0)udu (21)

If H is the Fourier transform of the window function h, we have :

Fx(t, ν, h) = e−j2πtν0H(ν − ν0) (22)

Similarly as in the time resolution case, the width of the window function in the frequency domain is the
cause of the spreading in frequency. The width in frequency domain is the bandwidth of the band-pass
filter corresponds to h. Here, it appears that the frequency resolution is proportional to the bandwidth
of h.

In order to quantify further, we can consider the box window function. If the discrete signal is sample
with time interval δt and the width of the window is T, then the available frequencies will go from T−1

to (2δt)−1 (Shannon principle). This put limits on low and high frequencies. If the higher frequency
boundary is fixed by the sampling rate, the lower frequency bound depends on T. The large T, the lower
the frequency bound.

Therefore, a good frequency resolution requires a large window function while the good time reso-
lution is obtained with smaller window functions. This demonstrate the problems associated with the
Heisenberg-Gabor Inequality expressed in section 2.2.

In practice, several windows functions as well as widths will have to be used to find the best tradeoff
for the analysis. Nevertheless, the inequality will remain so that for better accuracy, another technique
must be used.

In the next section, we will examine a candidate transformation that will eliminate the tradeoff
problem by using windows with widths varying with the frequency or scale.
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3 Wavelet Transform

3.1 Continuous Wavelet Transform (CWT)

3.1.1 Definitions

We have seen in section 2 that the Time-Frequency localization problem could be addressed by deriving
the Fourier approach for spectrum analysis. In the short-time frequency transform (windowed Fourier
transform), a signal or a time series is expanded into a series of elementary wave called atoms obtained
from the translation of an elementary function (window function or mother function).

One of the limitation of the STFT approach is the Time-Frequency resolution tradeoff due, in parts,
to the fact that the atoms are obtained only by translation of the elementary function. As a consequence,
the atomic functions have the same width for all frequencies [3, 9].

In the Wavelet transform, the atoms will be obtained by translation but also by dilation of the elemen-
tary function. In order to match the notations used in the wavelet field, the atoms will be called Wavelets
while the elementary function associated with the window function will be called mother function.

Just like we have defined the Short-time Fourier transformation in Equation 11, we can give a similar
formulation for the Wavelet transformation [7, 8].

Wx(t, a,Ψ) =

∫ +∞

−∞
x(u)Ψ̄t,a(u)du (23)

Where

x is the time series.

Wx(t, a,Ψ) is the Continuous Wavelet transformation of x.

Ψ∗t,a is the wavelet function Ψ ∈ L2(<).

a is the scale factor.

In STFT, ht,ν was obtained from the translation of the elementary h window function as expressed
in Equation 14. The wavelet function is defined by :

Ψt,a(u) = ‖a‖ 1
2 Ψ(

u− t
a

) (24)

In the definition of the wavelet in Equation 24, the role of the scale factor appears clearly as the dilation
factor. With a > 1 the elementary wavelet or mother wavelet is scaled down while the values superiors
to one lead to dilations [?]. For a unity scale, the wavelet is located around the single frequency ν0. In
the wavelet field, we will no refers to scales rather than frequencies (in the Fourier analysis acceptance
of the term). However, it is possible to define the relationship between scales and frequencies.

ν =
ν0

a
(25)

The continuous wavelet transform is said to belong to the affine transformation because it is covariant
by translation in time and scaling.

For the transformation to be inverted, the wavelet Φ must satisfy the so-called admissibility condition.
To define the admissibility criterion, we introduce the parameter CΦ.

CΦ =

∫ +∞

−∞

‖Φ̂(w)‖2

w
dw (26)

Where Φ̂ is the Fourier transform of the wavelet Φ.
The admissibility condition imposes that CΦ is finite. That condition is responsible for much of the

properties of the wavelet functions.

First, ‖Φ̂(w)‖2
w must be define by continuity in zero which imposes :

Φ̂(0) = 0 (27)

The immediate consequence of Equation 27 is that the wavelet functions must exhibit oscillatory be-
haviours.The second consequence is that to converge, the norm must be bounded by a function that
converge when integrated.
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‖Φ̂(w)‖
2
w < w (28)

Equation 28 requires the wavelet function to decay. In other words, a wavelet function must have a
zero mean and be localized both in time and frequency. As a matter of fact, the wavelet functions were
given that name because they look like attenuated symmetrical oscillation, like small waves (ondelette in
French).

When the parameter CΦ is known, it is possible to give the inverse transformation definition.

x(t) =
1

CΨ

∫ +∞

−∞
Wx(u, a,Ψ)Ψu,a(t)du

da

a2
(29)

In order to refine the mathematical definition, we have to distinguish the time t parameter used in
the time series and the one used to define the wavelet function. As a matter of fact, even is a wavelet
is defined by two parameters that can be associated to time and frequency, it is more accurate to used
the terms of nondimensional time parameter and scale parameter. From now on, in the definition of the
wavelets, the parameters η and s will be substituted to the t and ν parameters respectively [14].

Although a wavelet will be a function these two parameters, the mother wavelet from which the others
are defined is defined for the initial scale s0. In that case, the mother wavelet is defined as a function of
η. An example is the Marr or Mexican hat wavelet :

Φs0(η) = (1− 2η2)e−η
2

(30)

To further simplify the notation Φ0(η) will also be used to express the mother wavelet function.
The Mexican hat function is a particular case of a family of mother wavelet functions called DOG

(Derivative Of a Gaussian) and is obtained for a second derivative order. This function is said to have
two vanishing moments.
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Figure 5: Mexican Hat Wavelet and its Fourier Transform

We will see later that the mother wavelet will define a basis and are therefore also called wavelet basis
functions.

3.1.2 Continuous Wavelet Transform of a Discrete Sequence

When the continuous wavelet transform is applied on continuous signals, the integration are replaced by
summations. Because this particular case is the most common case, we will detail the definitions.

First, we characterize the sampled signal or time series. The time series xn is defined by N samples
(n = 0 · · ·N − 1) with a sampling period δt.

Equation 23 gave the relation for the continuous transformation on continuous signals.

Wxn
(nδt, s,Ψ) =

N−1∑
n′=0

xn′Ψ̄nδt,s(n′δt) (31)

Equation 31 give the definition of a wavelet transform with a discrete signal. Similarly as in Equation
24, we have :

Ψ̄nδt,s(n′δt) = (
δt

s
)

1
2 Ψ(

(n′ − n)δt

s
) (32)
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In order to simplify the notation, the continuous wavelet W will be expressed as Wn(s) and the wavelet

function Ψ( (n′−n)δt
s ).

In some case, it is faster to calculate the wavelet transform in th Fourier space. In the continuous
limits, the transform of Ψ(t/s) is Ψ̂(sw) (where )̂ is the Fourier transform operator. In that case, the
wavelet transform is given by Equation 33.

Wn(s) =

N−1∑
k=0

x̂k
¯̂
Ψ(swk)eiwknδt (33)

Where the angular frequency is defined by :

wk =

{
2πk
Nδt if k ≤ N

2
−2πk
Nδt if k > N

2

(34)

We will give the relation for the reconstruction of xn in the section 3.2 as the most common case is
the use of discrete wavelet transform on discrete signals.

Before introducing the notion of frames, we first examine the Time-Frequency resolution issues.

3.1.3 Time-Frequency Resolution

The scaling is the responsible for the main differences between wavelets and windowed Fourier transforms :
when the scale changes, the bandwidth and the duration of the wavelets are changed but unlike the STFT,
the shape of the function does not change. If we look at the wavelets under the window angle, we could
say that the transformation uses short windows for high frequencies while it uses large windows for low
frequencies. In that case, the Time-Frequency resolution is almost constant through the Time-frequency
space [15].

The Heisenberg-Gabor inequality expressed in Equation 7 no longer applies and is replaced by :

B

ν
= Q (35)

Where

B is the bandwidth.

ν is the frequency.

Q is the constant.

It is possible to make an analogy with the windows used in short-time Fourier transform. We will
consider that the wavelet function defines the window. Therefore, the center and the width or the window
are defined by :

x̄ =
1

‖Ψ‖2
∫ +∞

−∞
x‖Ψ‖2dx (36)

Equation 36 defines the center of the hypothetical window while Equation 37 defines its widths in the
time domain.

∆2
x =

1

‖Ψ‖2
∫ +∞

−∞
(x− x̄)2‖Ψ‖2dx (37)

Similar definition can be obtain to define the center and the width in the frequency domain (s̄, ∆2
s).

An important property is that the area corresponding to the wavelet window is constant and is given
by 4∆x∆s.

3.2 Discrete Wavelet Transform (DWT)

3.2.1 Definition

In the continuous wavlet transform, the parameters η and s are defined on continuous intervals. However,
we when they are restricted to a set of discrete values, the continuous wavelet transform is called Discrete
Wavelet Transform [12].

We can define the sampling of the time-frequency plane, or (η, s) plane, by :

(η, s) = (nt0s
−m
0 , s−m0 ) (38)

Where
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η0 > 0

s0 > 0

n,m ∈ Z

In that context, the discrete wavelet transform is given by :

Wx(n,m,Ψ) = s
m/2
0

∫ +∞

−∞
x(u)Ψ̄n,m(u)du (39)

The wavelet function is then defined by :

Ψn,m(u) = Ψ(sm0 u− nη0) (40)

The field of Theory of Frames, provides with an insights on the choice of the optimal discrete values
of s and η (see [16]). In short, a can be a set of vectors that defines a non-orthonormal basis.

A very popular frame is the so-called dyadic grid where the scale and nondimensional parameters take
the following values.

Dyadic Grid ⇒
{
s = s02−j
η
s = l

(41)

Where j and l ∈ Z.
For discrete signal or time series, the Shannon theorem indicates that the minimum useful period is

twice the sampling period. For that reason, a popular choice are η0 = 1 and s0 = 2.
The use of such a grid is also referenced as a dyadic sampling of the time-frequency plane. In order to

make some comparisons, we can examine the sampling plane for four transformations, the Discretization,
the Fourier transform, the Short-Time Fourier Transform and the Discrete Wavelet Transform.

Figure 6: Sampling in Time-Frequency Plane.

Figure 6 represents the four basic grids used in time series analysis. The first one represents called
Shannon corresponds to the discretization of the time series. The continuous plane is divided into time
intervals. In the Fourier transform, the time-frequency plane is divided into frequency intervals (defined
by multiples of the basic frequency 1

2δt ) and the spectrum is evaluated on the entire time series. In the
Short-Time Fourier Transform, the plane is divided into square areas of equal dimensions, the windows.
For the wavelets, we can see that the windows have different sizes for different frequencies and that
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the sizes follow a geometric progression. The lower frequencies (longer periods) are evaluated on large
(time direction) windows while the high frequencies are evaluated on smaller (time dimensions) windows.
However, it is important to remember that the surface defined by the windows are constant.

Almost as important as the definition of the transformation, the inverse transformation is also very
important when the wavelet are used not only for time series analysis but also for feature extraction or
multiresolution modelling. However, before addressing these issues, we will first examine some particular
wavelets.

3.2.2 Nonorthogonal Wavelets

There are many wavelet function used in the wavelet field so that it is not possible to perform an
exhaustive enumeration. However, the reasons we will detail in section 3.2.5, the use of nonorthogonal
wavelet function seems to be more adapted for time series modelling [14].

It is possible to classify the wavelet as orthogonal or non-orthogonal, real or complex, defined analyt-
ically or by recursive definitions dilation equation. Here, we will first examine a set of wavelets defined
analytically.

Name Ψ0η Ψ̂0(sw) e-folding times Fourier Wavelength

Morlet π−1/4ejw0ηe−η
2/2 π−1/4H(w)e−(sw−w0)2/2

√
2s 4πs

w0+
√

2+w2
0

Paul 2mjmm!√
π(2m)!

(1− jn)−(m+1) 2m√
m(2m−1)!

H(w)(sw)me−sw s/
√

2 4πs
2m+1

DOG (−1)m+1√
Γ(m+ 1

2 )

dm

dηm
(e−η

2/2) jm√
Γ(m+ 1

2 )
(sw)me−(sw)2/2

√
2s 2πs√

m+ 1
2

Table 1: Nonorthogonal Wavelet Basis Functions

Table 1 represents three families of nonorthogonal wavelet functions defined analytically. The Morlet
and Paul wavelet functions are complex while the DOG (derivative of Gaussian) is real. In the third
column representing the Fourier transform of the functions, H(w) represents the Heaviside step function.

In each family, a particular wavelet function is obtained by choosing one parameter, the frequency
w0 for the Morlet wavelet, the order m for the Paul family and the derivative order m for the DOG. it is
important to notice that in the case where m = 2 in the DOG family, the resulting wavelet function is
called the Marr or Mexican Hat wavelet.

The width of the wavelet is defined by the e-folding time of the wavelet amplitude. As seen already,
the resolution is a tradeoff between the width in Fourier and Time space.

Figure 7 represents two wavelet basis examples, the Morlet and the Paul wavelets. On the left column,
the complex wavelet function are represented. The solid line represents the real part while the dash line
represents the complex part of the function. The right column represents the Fourier transform of these
function.

A similar representation of the DOG wavelet can be found on Figure 30.

3.2.3 Orthogonal and Fractal Wavelet Functions

Another historically important wavelet function is the so-called Meyer wavelet [16]. The Meyer wavelet
is the function Ψ ∈ L2(<) defined by :

Ψ̂(s) = ejs/2ω(‖s‖) (42)

ω(‖s‖) =

 0 if s ≤ 1
3 or s ≥ 3

4
sin π

2 v(3s− 1) if 1
3 ≤ s ≤

2
3

cos π2 v( 3
2s− 1) if 2

3 ≤ s ≤
3
4

(43)

Where the function v is defined by :

v =

 0 if s ≤ 0
1 if s ≥ 1
v(s) + v(1− s) = 1 if s ∈ [0, 1]

(44)

With some computation, it can be verified that ‖Ψ‖ = 1 and
∑
‖Ψ̂(2ns)‖2 ≡ 1. Such equalities finally

implies that the wavelet is an orthonormal basis.
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Figure 7: Two Wavelet Bases Examples.

The recursive definition of v in Equation 44 enable to construct families of orthonormal basis function.
These families of recursively defined functions, also called Fractal wavelets are all issued from a basic

definition called the dilation, refinement or two-scale difference equation of a scaling function φ (also
called father wavelet).

φ(x) =

M−1∑
k=0

ckφ(2x− k) (45)

Where M is the number of nonzero coefficient and is referred as the order of the wavelet.
The values of the coefficients ck are not arbitrary but determined by the constrains of orthogonality

and normalization. ∑
k

ck = 2 (46)

Equation 46 ensures the uniqueness of φ, the scaling function.
The wavelet function is defined from the scaling function by :

Ψ(x) =
∑
k

(−1)kc1−kφ(2x− k) (47)

This class of wavelet, called Fractal Wavelet is constrained by definition to be equal to zero outside a
small interval [8, 9, 11]. This property called compact support enable to deal with finite samples. Because
of the recursion, the wavelet is nondifferentiable everywhere.

Practically, the functions are defined for specific set of parameters ck
The Haar wavelet is obtained from the box function with a second order regression, using φ(x),

φ(2x− 1).
Similarly, the Hat wavelet is obtained with a third order regression.
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Wavelet c0 c1 c2 c3 c4 c5
Haar 1 1

Dubechies-4 1
4 (1 +

√
3) 1

4 (3 +
√

3) 1
4 (3−

√
3) 1

4 (1−
√

3)
Daubechies-6 0.332671 0.806891 0.459877 -0.135011 -0.085441 0.035226

Table 2: Coefficient of Three Fractal Wavelets

The fractal wavelet defined by the hat function is :

Ψ(x) =
1

2
φ(2x) + φ(2x− 1) +

1

2
φ(2x− 2) (48)

3.2.4 Reconstruction

With orthogonal wavelet, there is a unique decomposition on the basis while with nonorthogonal wavelets
such as those expressed in Table 1, the degrees of freedom allow to use arbitrary sets of scales. This can
be a very important property we one want to extract or emphasize certain scales within the time series
[14, 15].

Using a dyadic grid, it can be convenient to write the scales as a fractional powers of two.

sj = s02jδj (49)

Where s0 is the smallest scale wavelet (should not be smaller period than 2δt according to Shannon
theorem).
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Figure 9: Haar and Daubechies-4 Wavelets
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Figure 10: Construction of the Haar Wavelet.

The index j defines the scale index and varies between two values, 0 and J (Jδj determines the largest
possible scale given the limited time series).

J =
Log2(Nδts0 )

δj
(50)

Broadly speaking, J represents the decomposition in power of two of the sample size, or the number
of time the time series can be folded on itself.

The choice of the increment δj defines the resolution of the wavelet. For Morlet wavelets, δj = 0.5 is
the largest value that still will gives good scaling.

As the transformation with arbitrary scales and nonorthogonal wavelets gives more degrees of freedom,
the inverse transformation is not unique. The redundancies generated by the nonorthogonality makes
also possible to reconstruct the time series with another wavelet function, the easiest being the Dirac
impulse or Delta function.

The reconstruction of the time series is then obtained with a formula similar to the inverse Fourier
transform.

xn =
δjδt1/2

CδΨ0(0)

J∑
j=0

<{Wn(sj)}
sj1/2

(51)

The parameter cδ comes from the reconstruction of the Dirac impulse δ.

Cδ =
δjδt1/2

Ψ0(0)

J∑
j=0

<(Wδ(sj))

sj1/2
(52)

Where Wδ is given by :

Wδ(s) =
1

N

N−1∑
k=0

ψ̂(sωk) (53)

For standard, it is possible to use a table of Cδ. Table 3 represents this parameter for the Wavelet
function shown in Table 1.

Where
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Figure 11: Construction of the Hat Wavelet.

Name Cδ γ δj0 Ψ0(0)

Morlet (w0 = 6) 0.776 2.32 0.60 π−1/4

Paul (m=4) 1.132 1.17 1.5 1.079
Marr (m=2) 3.541 1.43 1.4 0.867
DOG (m=6) 1.966 1.37 0.97 0.884

Table 3: Empirically Derived Factors.

Cδ is the reconstruction factor.

γ is the decorrelation factor for time averaging.

δj0 is the factor for scale averaging.

3.2.5 Properties and Choices

We have seen that wavelets can be built from various scaling functions (father wavelets) and that the
discretization of the scaling can be arbitrary defined. Therefore, just like the general issues involving
system identification, the problem is to choose the right wavelet for the right time series [14, 16].

Based on the experience of [14], it is possible to give some general guidelines on the properties of the
wavelets. The first choice involves the determination of the characteristics of the wavelet functions.

The main characteristics concerns the orthogonality or the nonorthogonality of the basis defined in the
wavelet space. Orthogonal wavelet will define the most compact representation of the signal which also
mean less freedom for the representation. For time series, it is more recommended to use nonorthogonal
wavelets functions (see Table 1) when the series are smooth with continuous variations in the wavelet
amplitude. The main drawback is the arbitrary freedom lead to redundancies that will have to be
extracted using other methods (PCA).

The nature of the wavelet, real or complex, is also important. A complex wavelet function provide
information by the means of the amplitude but also the phase of the wavelet and is therefore particularly
adapted for oscillatory time series. On the other hand, real valued wavelets will be seen as more robust
when dealing with peaks or discontinuities in the time series.
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The shape of the wavelet will be correlated to the type of features that can potentially be extracted or
highlighted. For crisps time series with jumps or steps, box or Haar like wavelet will perform better. For
more continuous time series, smooth functions such as damped cosine (Meyer wavelet) will be appropriate.

When the wavelet function is determined (even through a trial and errors search process), and if
nonorthogonal wavelets have been chosen, the issues of the choice of scales must be addressed. For
orthogonal wavelets, the scales are imposed while with nonorthogonal, the possibility to arbitrarily chose
them is given.

As already expressed in section 3.2.4, the minimal scale should be determined so that the Shannon
theorem on sampling is respected. Basically, if the sampling period is δt, the minimum scale s0 should
correspond at least to the equivalent Fourier wavelength 2δt. Although the Fourier wavelength and the
wavelet scales have the same order of magnitude, it is still possible to have an exact expression (see Table
1.

In Equation 49, we chosen to express the scale as a power of two, given the Dyadic space. The choice
of δj define the scale increment and therefore the frequency resolution. Here again, the choice of δj will
have to be a trade-off between resolution (small δj) and better significance (large δj. Here again, choices
will have to be made, involving trial and errors but also understanding of time series behaviour. For
example, δj = 0.5 for Morlet wavelets gives satisfactory results.
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4 Wavelets and Time Series Analysis

4.1 Introduction

The wavelets can be used principally for a the analysis of the time series analysis by providing more
accurate time-frequency insights [15, 17]. In turn, the analysis of the time frequency features can be
used in the modelling itself by using harmonic model, by helping in the choice of regression orders or
bootstraps characteristics.

In a second phase, the analysis of the time series will help to define an optimal transformation of the
time series. The results of the transformation can be used to extract frequency related information and
reduce the complexity of the input space (compression) but can also be used to perform a multiresolution
modelling. We will detail the issues of the multiresolution modelling as it has several meaning in the
wavelet field.

First, we will examine the application of the wavelet transform to the time series analysis illustrated
by the competition time series example.

4.2 Time-Frequency Analysis with Wavelets

4.2.1 Wavelet Power Spectrum

In section 2.4.2, we have performed the Time-Frequency analysis of the competition time series using
short-time Fourier transform. Figure 4 represents the square modules of the Fourier transform. It appears
that the main frequency components occurs for frequencies around 0.026 although the representation of
the time series on Figure 1 would indicate more oscillatory behaviour throughout the time series.

In order to have a better resolution, we turn to wavelet transform. In order to make a broad compar-
ison, we perform the wavelet transform with a Morlet wavelet function. For better resolution, we choose
the initial scale s0 to be 2 on a dyadic grid. The scale arbitrary discretization are defined by Equation
49. The scale increment δj, in a first trial, is chosen to be 0.5.

Given the time series number of samples and the initial scale, Equation 50 defines J, the maximum
number of scales. Here, with N = 2000, we obtain J = 20. Therefore, the time series will be expanded
into 20 scales.

Figure 12 represents the number of scale (resolution) and their distribution on the dyadic grid for
different values of δj, 0.25, 0.5 and 0.75.
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Figure 12: Distribution of the Scales.

The initial scale as well as the highest scale are defined by the time series, i.e. the sampling period and
the number of samples. It is obvious that the maximal scale has an upper bound due to the limitation of
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the time series. The equivalent Fourier wavelength corresponds to the size of the time series, here 2000
samples.

When the scale and the wavelet have been chosen, we must determine the criterion for the analysis.
In order to continue the comparisons with Fourier analysis, we now introduce the concept of Wavelet
spectrum.

The Morlet wavelet function is complex and so is the wavelet transform of the time series Wn(s). The
Wavelet Power Spectrum is then defined to be :

‖Wn(s)‖2 (54)

In order to make significance analysis and interpretation, it is required to normalize the power spec-
trum. If σ2 is the variance of the time series and N is the number of samples, the normalized wavelet
power spectrum (NWPS) is defined by :

NWPSn(s) = N
‖Wn(s)‖2

σ2
(55)

Equation 55 is the normalized power spectrum relative to white noise. Figure 13 represents the
contour plot of the normalized wavelet power spectrum for the competition time series.

200 400 600 800 1000 1200 1400 1600 1800 2000
−3

−2

−1

0

1

2

3

Time 

A
m

pl
itu

de

Chaotic Time Series

200 400 600 800 1000 1200 1400 1600 1800 2000

1

2

4

8

16

32

64

128

256

Time 

P
er

io
d 

Chaotic Time Series Wavelet Power Spectrum

Figure 13: Chaotic Time Series and Local Wavelet Power Spectrum .

The maxima of the power spectrum are indicated in red while the minima are in blue. It appears that
there are no oscillatory features associated with wavelength inferior to four. This is more that the two
required by the Shannon theorem so that with have a good significance level for that assertion. On the
other extreme of the scale, the maximum period that can be identified with at least a 95 % confidence
limits is inferior to 128. The dark curve across the graph is called the Cone of Influence and expresses
the uncertainty due to the limited data set (edge effects). only the maxima inside the cone of influence
can be considered as reliable. For details on the calculation of the cone of influence, see [14].

A closer examination indicate that there are two significant scale (periods) bands. The first one is n
the 8-16 area while the second one includes scales superior to 64. Unfortunately the limited data set does
not allow accurate estimation of that oscillatory behaviour. We will see how the local power spectrum
can be transformed in global power spectrum to obtain that missing information.
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On the other hand, we have plenty of data to analyze the 8-16 band feature. We can start by examining
a close-up in the time-period space.
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Figure 14: Close-up on Local Power Spectrum.

Figure 14 represents a close-up of the local wavelet power spectrum. The horizontal line indicates the
dyadic grid in the frequency domain on which the power spectrum is interpolated.

4.2.2 Other Wavelet Functions

We have already mentioned that the choice of the wavelet function and its parameters can be critical for
obtaining satisfactory results. In section 4.2.1, we have used the Morlet’s wavelet with w0 = 6 (see Table
1) [14]. The Morlet wavelet function characteristics (width and shape) can be tuned precisely. As the
time series exhibited chaotic behaviour, it was decided to use a function that does not provide with the
best time resolution (relatively large in time domain) but with a better frequency resolution (the Fourier
transform of the wavelet give a narrow band-pass filter).

Other nonorthogonal wavelet functions such as Paul’s wavelet and the Derivative of Gaussian (DOG)
wavelets can be tried. Figure 15 represents the power spectrum of the competition time series using
Paul’s wavelet.

Comparisons between Figure 15 and 14 indicate that Paul’s wavelet lead to better time resolution
but worse frequency distribution. The peaks are spread vertically in the frequency domain. With such
a deformation (lack of resolution), it is difficult to characterize the variation of the frequency in the
oscillatory features. On the other hand, that transform gives clear indication on when the switches
occurs.

Another important wavelet is the Derivative of Gaussian. Here, we examine the Marr wavelet (Mexican
hat) corresponding to a DOG with the derivative parameter m set to 2 (see Table 1. That wavelet has a
much wider time base so that the time resolution is not expected to give very accurate results. On the
over hand, it is a narrower band-pass filter than the Morlet’s wavelet so that better frequency resolution
is expected. Figure 16 represents the power spectrum of the competition time series obtained with the
Marr wavelet.

Figure 16 shows clearly the frequency characteristics of some oscillation modes. For the modes in the
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Figure 15: Power Spectrum with Paul Wavelet.

sample interval [900, 1100] and [1500, 1700] especially, things cannot be discerned efficiently. A close-up
on the more stable areas shows valuable information on the frequency variations.

Figure 17 represents the close-up on the power spectrum on the time interval [1100, 1500]. During
that time, the period of the oscillation are increasing almost linearly from a period of 15 to 25. Similar
variations, although with different period interval, appears on the over stable oscillatory intervals. Such
information could be used to create a modulated harmonic model of the time series. As already mentioned,
such accurate estimation would not be possible with Short-Time Fourier transform.

From the two examples studied, it is clear that the choice of the relevant wavelet is important to
emphasize some characteristics in the time series. However, it will be again a trade-off between time
and frequency resolution. For analysis purposes only, it is recommended to use various wavelet function
to find out different feature. However, intermediate wavelets such as Morlet’s should be used for a first
examination or even a non-destructive preprocessing of the data.

4.2.3 MultiResolution Analysis

It appears that the main oscillatory features occurs throughout the time series with a vertical elongation
(frequency resolution) [15]. It also seems that the period of the oscillations are increasing between switches
to modes. If the time resolution is satisfactory, the analysis can be improved by emphasizing the scales
in the neighborhood of the oscillatory feature. The degree of freedom allowed by nonorthogonal wavelets
enable to target features more precisely. It will be referred as multiresolution analysis.

The optimization is carried out by decreasing the scale increment δj. δj is set to 0.05 instead of 0.5.
The dyadic grid becomes much thinner with an overall 200 scales (instead of 20).

Figure 18 represents the resolution optimization perform to emphasize the features in the 20-25
(period) area. It appears that the division in the peaks are not artifacts due to estimates but relates to
real discontinuities in the time series. Moreover, the peak areas can be all considered oblique, indicating
an increase in the period of the pseudo-oscillation. The angle seems to be the same throughout the time
series although the spectrum does not indicate any cause for the switches.

The overlaid horizontal lines represents the scales at which the time series is expanded. It is clear that
the narrow gap between two scales will lead to overlapping and redundancies. Using numerous scales
increases the computation load and does not allow to use the wavelet expansion directly. As we will see
in section 5, there will be two ways for using the expansions.

We have used the degrees of freedom allowed by nonorthogonal wavelets to refine the frequency
resolution. There is another way to perform multiresolution analysis, this time in the time domain.
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Figure 16: Power Spectrum with DOG Wavelet.

The Fourier transform can perform a spectral analysis on the full time series. The accuracy is obtained
by the numerous periods available and provides a global spectrum. We have seen that for large period
feature, the cone of influence lead to dismiss some patterns. It is possible to now consider the wavelet
transform on a large resolution, in the time domain. Practically, this lead to obtain the Time Averaged
Wavelet transform. By interfering the amplitude of the different scale components for each sample, it is
possible to obtain statistics on the spectrum and then better accuracy for the global spectrum.

The Global Wavelet Transform, is defined by :

‖W (s)‖2 =
1

N

N−1∑
n=0

‖Wn(s)‖2 (56)

The Normalized Global Wavelet Transform (N is then defined by :

NGWT (s) =
‖W (s)‖2

σ2
(57)

It is interesting to compare the global spectrum obtained by the wavelet transform and the Fourier
transform. On Figure 19, the two spectrum are compared.

With the global wavelet transform, it is possible to obtain a spectrum significance function. The
significance limit is obtain by comparing the power spectrum to the power spectrum of a red noise, i.e.
the spectrum obtained from the residuals of a Markovian process. It is possible to obtain similar curve
for the Fourier analysis but it accuracy does not make it practical.

The two global spectrum indicate more or less the same thing with a main component having a period
of about 35 while another, much longer, is just above the significance threshold and correspond to a period
of about 350. The power spectrum issued from the wavelets is smoother because of the limited scales
available around the peak.

4.3 Scale Averaging

The wavelet transform enable to get Time-Frequency representation of the time series not only more accu-
rate than the Short-time Fourier transform but also provide with degrees of freedom to optimization the
local resolution [14]. We have seen that the price of that freedom is redundancy in the wavelet expansion.
It is possible to obtain better quantitative results for the spectrum by examining a monocomponent (one
frequency at a time). however, unlike in Fourier transform, it is possible to obtain the monocomponent
on a limited frequency band so that the redundancies operate in a constructive way.
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Figure 17: Close-up on Power Spectrum with DOG Wavelet.

The technique involving to combine the results of a user defined frequency band is called scale aver-
aging. The resulting power spectrum can be defined by :

‖W j1,j2
n ‖2 =

δjδt

Cδ

j=j2∑
j=j1

‖Wn(sj)‖2

sj
(58)

Where

j1 is the index of the first scale to be averaged.

j2 is the index of the last scale to be averaged.

‖W j1,j2
n ‖2 is the averaged in scale wavelet.

The scale averaging technique was applied to the competition time series. The wavelet function used
was the Morlet function with ω0 = 6. In accordance with the spectrum analysis, the scales corresponding
to periods between 11 and 60 were averaged. The results can be seen on Figure 20.

On Figure 20, the peaks in the monocomponent spectrum corresponds to the switches in the time
series from one oscillation mode to another. Although these events occurs abruptly, the time resolution
of the wavelet transform tend to spread their effect. Moreover, since the scaling average was made on the
10-60 period interval, it can be considered that the spectrum is significant only in that band and that
the features occurring elsewhere are artifacts.

Figure 21 represents the monocomponent spectrum analysis using a better time resolution wavelet
function, Paul’s wavelet. The switching is better localized than with Morlet’s wavelet and the modulation
can be quantitatively estimated. The switch correspond to the rising front while the modulation is the
decreasing one.

We will see in section 5 that the same technique of scale averaging can be used to further extract
information.

Finally, when comparisons are made with the time-frequency analysis performed on the competition
time series in section 2.4, it is clear that the wavelet provide with a better resolution both in time and
frequency domain. Furthermore, the flexibility gained by the arbitrary defined scales enable to perform
target analysis in the frequency domain. The drawbacks generated by the redundancies can be easily
addressed as we will see now in the section concerning the signal preprocessing with wavelets.
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Figure 18: Optimization of the Resolution
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5 Wavelets and Preprocessing

5.1 Introduction

In section 4, we have seen how the wavelet transform, and particularly the wavelet power spectrum,
can be used to perform a Time-Frequency analysis of a time series. Although wavelets improve greatly
the analysis, wavelets are mostly used for other characteristics. As a matter of fact, their are particu-
larly adapted to signal processing or preprocessing. As a consequence, wavelets are mostly studied and
developed in the communication field.

They are used to expand the signals (uni or bidimensional) into distinct features ordered by scales.
These features are then sorted by their relevance to the signals. Some features are associated with noise
and are therefore removed while the others defines resolutions of the signal. A set of waves expansions
is defined to be a compressed equivalent of the original signal. The level of compression is inverse
proportional to the number of scales transmitted through the channels. The wavelet compression, also
called fractal compression because of the use of recurrent wavelet function, is one of the most promising
compression technique available.

The purpose of that study is not to examine the issues proper to the communication field but rather to
examine how these techniques can be applied to time series modelling. The main foreseable features are
the possibility to perform feature extraction (source extraction ), noise cancelling and more importantly
multi-scale modelling. Before examining the methods for selecting the components, we first examine the
issues involved in time series expansion with wavelets.

5.2 Wavelet Expansion

The basis of wavelet signal processing is the expansion of the signal on a set of waves associated to scales
or frequency band. In that respect, wavelet signal processing is often considered as operating a filter
bank, each wave being the results of a band pass filter. The corresponding bandwidth and the central
frequency depends on the wavelet function and its parameters.

We have already mentionned that for time series analysis, nonorthogonal wavelets were the most
suitable. The main draw back in the redundancies occurring and materialized by larger number of waves
associated with overlapping filters.

By breaking down or expanding the time series, it is possible to extract frequency related feature. For
example, oscillatory modes and the different type of noise have different signatures that can be isolated.
Similarly, several feature can be overlap in the time series and if they have different signatures, it may be
possible to separate them. Another factor due to the use of nonorthogonal wavelets is that the wavelet
basis is not orthogonal so that it will not generated an evenly distributed input space for implementing
gradient based parameter optimization for a model of the time series.

In order to illustrate the wavelet expansion, we can examine the expansion of the competition time
series. As for the analysis, it is important to determine the optimal wavelet and scale functions. We
start with the Morlet wavelet function with a scale increment δj = 0.5. Figure 22 represents the wavelet
expansion into 20 components.

The expansion was performed using a dyadic grid. Therefore, each wavelet or component correspond
to a central frequency (period). Here, from top to bottom, the scales and periods are given by Table 4.

Name Index

Scales 2 2.82 4 5.64 8 11.3 16 22.6 32 45 64 90.5 128 181 256 362 512 724 1024 1448

Period 1.97 2.79 3.95 5.58 7.9 11.1 15.8 22.34 31.6 44.6 63.2 89.39 126.4 178.8 252.8 357.5 505 715 1013 1430

Table 4: Scales and Periods of the Expansion

On Figure 22, the wavelet expansions are called W1, W2, ... W20. The first four wavelets associated
with small scales (high frequency) do not have an amplitude significant compared to other components.
Moreover, they do not exhibit particular feature. As a consequence, they will be considered as noise and
will be removed from the input space. Form W5, the wavelet expansion becomes more significant, as
already shown by the wavelet time series analysis. Most interesting of all is the fact that the different
features are not in phase, a consequence of the modulation pointed out during the analysis. From W12 to
W20, the wavelet expansion becomes more regular in time and probably associated with a longer period
feature.

Once the expansion is available, it is possible to carry out the processing itself. This will involve the
noise cancellation by removing some scales, the multiresolution construction by scale averaging technique
and finally the local orthogonalization using principal component analysis.
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Figure 22: Wavelet Expansion.

5.3 Noise Filtering

The measurement noise characteristic is usually high frequency. To a more general definition of the noise,
we will see it as a non-significant or even better non-causal feature of the input space. The wavelet
expansion enable the frequency clustering and removal. Therefore, it is possible to remove some high
frequency noise by removing a set of small scales.

To determine which scale can be removed without affecting the overall coherence of the time series,
we can examine the variance of each wavelet decomposition on Figure 23.

Figure 23 indicates that the main scales have their index between 6 and 14, i.e. periods between 11
and 178.

To illustrate that simple filtering technique, we can examine the reconstruction of the wavelet expan-
sion without the first 4 wavelets on Figure 24.

The cumulative variance explained by the first 4 wavelets is only 0.2 % of the overall variance.
Therefore, these scales can be removed without loss for the time series. This seem to indicate that the
competition time series had already undergone a noise cancellation process since higher noise level as
normally expected.
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Figure 24: Filtered Time Series.

5.4 Frequency Clustering

When the filtering is completed, it is possible to examine the most interesting feature enabled by the
wavelet expansion, the multi-scale modelling based on Frequency Clustering. We will define overlapping
frequency clusters composed of wavelet expansions and perform a scale averaging.

This can be useful for non-oscillatory feature or ultra-large features that are extensively decomposed
on a set of scales. To illustrate the gain of such clustering, we will examine the large scale cluster,
including scales W12 to W20.

Figure 25 represents the averaged wavelet obtained on the last 8 scales and corresponding to the
largest scales. This very interesting component enable to extract a critical information : The steady
values from which the oscillation are modulated. The four steady state values from which the time series
switches are -2, -1, 0.5 and +1.75. Using that information, it could be possible to synthesize a hybrid
model made of the four steady state values and a modulated oscillator. However, if the values of the
steady state can be well estimates, their occurrence and eventually the cause remains elusive.

To determine coherent cluster on other scales, it is required to have a quantitative criterion. In the
case of the competition time series, the modulation of the oscillation tend to spread the oscillations on
different scales, making them appearing as distinct features (or sources).

For the determination of the intermediate scales, we will use the cross-correlation factor between the
wavelets.

Figures 26 represents the cross-correlation function between the wavelets. On the right graph, the
inner area, the 95 % correlation area, indicates a division in the wavelets. Wavelets W1 to W10 seem
to be correlated to two adjoint wavelets. Wavelet W11 is not highly correlated to either W10 or W12,
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Figure 26: Cross-Correlation Analysis on the Wavelet Expansions

indicating a pivot role.
In the lower area, the maximum cross-correlation occurs around W6. The correlation was expected

as we used nonorthogonal wavelet functions. Therefore, if we want to extract distinct feature in the
low frequency area, we need to built orthogonal features. This will be achieved using an optimal linear
combination based on Singular Value Decomposition. More precisely, we will use the Principal Component
Analysis [21].

5.5 Orthogonalization

The classical statistical analysis methods aims at determining correlation relationships between the dif-
ferent input candidates and the outputs. The results are indications on the most suitable inputs to be
incorporated in a model. If these passive, or observation variable directed methods can be useful to
understand the system behaviour, they have limited effects on the system identification performance. It
is therefore possible to use active methods that will transform the input spaces to make it more suitable
for the numerical system modelling.

One of these methods is the so-called Principal Component Analysis (PCA). It is a multivariate
analysis technique that was first introduced by Pearson in 1901 in a biological context to recast linear
regression analysis in a new form. Later, the method have been improved by Karhunen and Loève in the
probability theory field.
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It is a statistics based methods that aims to find new variables which are linear combination of the
observed variables so they have maximum variations and are orthogonal. This method can be used either
to re-arranged the input data without lost of information leading to orthogonal rotation, or can also be
used to perform a dimensionality reduction. Because this methods and its derivatives are used in various
fields, the denominations and the interpretations of the transformations vary a lot. For example, the
orthogonal rotation can be interpreted as a feature extraction in the field of multivariable data analysis
and the dimensionality reduction can be called compression in the communication field.

The goal of this study is system identification. An any identification approach, many similar problems
have to be overcame. Among these, the structure and the size of the information used to perform the
identification is crucial. Because most of the methods are numerically based, the computation problem
can be tackled only if the number and the structure of the information to process is optimal.

In linear identification, this problem is corollary to the choice of the number of inputs and then of the
parameters. With neural networks identification the problem is to determine the optimal set of inputs
that will enable the network to converge quickly as possible to a global minima of a multi dimensional
error surface. The higher the dimensional, the higher the probability to end in a local minima. Whatever
the modelling approach chosen, the first concern must be the determination of the optimal set of inputs.
This can be the choice of the inputs, the size and the number of the sets, or even the choice of the
transformation of the input sets. In this section, we will examine the choice of this transformation.

In any identification approach, it is always important to provide all and only the relevant information.
Any redundant information such as correlated but not causal information or noise will overload the
numerical methods and will downgrade the identification performance. The elements of the principal
component analysis can effectively used to understand the behavior of the system by extracting and
exhibiting its main features but it can also improve the identification procedures using the principal
component loadings.

The principal components loadings can be interpreted as the transformed inputs in which the main
features have been extracted. If all the loadings are used, the information within the data sets is preserved.
This means that features such as outlier data or noise are also fed into the identification process. The
only gain is that by dividing these features in distinct variables, the identification process can treat them
more appropriately. This procedure is designated as orthogonal rotation or data expansion.

A more dramatic transformation would be to reduce the input dimensional by truncation. In that
case, only a subset of principal components loadings is preserved. The rational is that this enable to
perform a negative feature filtering, freeing the input signals from noise and outliers. Moreover, because
of the orthogonal based used, the reduction of the number of loadings to be used lead to reduce the
number of input variables and then lighten the task of the identification process. The approach has
different denomination according to the field of application. It can be designated as subspace reduction,
subspace decomposition, feature extraction or signal compression. However prospectful this method seems,
some important issues still have to be addressed. For example, it is crucial to distinguish the positive
features, i.e. the one that do represent a feature of general behavior of the system, from the negative
features that corresponds to particularities of the data set, noise and outliers. Unfortunately, there are
no definitive answer to that problem so that trade off have to be made. Moreover, the use of subspace
reduction methods may also have effects on the generalization properties of the models identified.

To the critical question of the number of principal components loadings to be used, the associated
eigenvalues can be used and interpreted as an index for the proportion of information carried by the
principal components. Some general rules can be used to determine a god trade off in the selection of
the number of principal components :

- Use the subset of principal components which are responsible of at least 80 % of the input
data variance.

- Exclude principal components whose eigenvalues are less than the average of the eigenvalues.

- Use the scree graph to find a bend or an inflexion point.

- Test the significance of the retained subset of principal components.

The different rules can be used as stand alone or can be interfered but none has any theoretical better
ground. However, we can attempt to explain the rational behind these rules.

The eigenvalues are calculated on the variance covariance data matrix. For that reason, their mean
is 1. It is possible to consider the mean as a decision threshold for dimensionality reduction. The small
eigenvalues can be associated to either noise, outliers or small variance information. To reconstruct the
data without the small eigenvalued components is similar to noise filtering.
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The proportion of variance explained is an index of the conservation of the integrity of the data. It
measure how the overall information, expressed by the variance, is divided into the different principal
components loadings. The cumulative proportion can be used to determine the best compromise between
lost of information, a quantitative lost rather than qualitative lost, and the reduction of the input space
dimension. However, we have to remember that quantitative information does not mean qualitative in-
formation and it is possible that the principal component loadings associated with the smaller eigenvalues
carries valuable qualitative information. The cumulative proportion of variance will then be an index of
the degradation of the data.

The two last approaches are not clearly defined since they rely on case by case determination. Although
sensible, they are difficult to express quantitatively. However, in order to compare the efficiency of the
different rules on our case problem, we will evaluate the efficiency of the principal components using a
model based criterion. These rules are not the only possible approach to answer the issue of the number
of principal components, other statistical methods such as the study of the distribution of the eigenvalues
or the so-called factor analysis can be used but they will not give definitive answers either.

The three first rules indicate clearly that the three first principal components are the most suitable
to be preserved for subspace reduction. To get a quantitative criterion, we will use the forecasting
performance of linear models using subsets of the principal components as inputs.

The PCA technique can be applied to reconstructed wavelets especially when nonorthogonal wavelets
functions are used. When used in a scale averaged context for multi-scale modelling, the PCA is applied
only to a subset of waves. Figure 27 represents the first 6 Principal Components (PC) obtained on the 6
selected waves.
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Figure 27: Principal Component Analysis of W5-W10 Input Space

The issue of the selection of the principal component used to implement the modelling is addressed by
a simple variance analysis as the threshold is clearly identified. Figure 28 shows the cumulated variance
explained by the first PC.

According to the variance analysis, the two first principal component contribute for more than 99 %
of the W5-W10 space variance. Therefore, when implementing into a modelling process, these will be the
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two inputs for the scaled model.
Although PCA is considered to be a time domain technique, it does not downgrade the performance

of Time-Frequency techniques such as wavelet transform. On the contrary, by enabling a multicrite-
ria preprocessing, it is possible to optimize the input space by mean of optimal scale and orthogonal
processing.

In order to find out about the performance of the use in conjunction of wavelets and PCA, we can
examine a comparison with the preprocessing using only PCA.

5.6 Feature Extraction Techniques Comparison

We have seen that wavelets expansions could be combine on a set of scales to produce a signal partly freed
from redundancies issued from the nonorthogonal wavelets and the arbitrary discrete scaling. Therefore,
the scale averaging technique can be seen a refinement of the feature extraction process in the frequency
domain. In previous studies [5, 21] we used only PCA to perform the feature extraction.

To evaluate the advantage of the wavelet preprocessing, we first examine the input space issued from
the method presented in sections 5.4 and 5.5.
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Figure 29: Preprocessed Input Space

In [5], where the competition time series modelling was attempted, PCA was used as the only pre-
processing method. The main problem was the multi-scale feature encountered in the time series. As a
matter of fact, a first input space made of regressive input was selected. In order to extract the features
related to the oscillation mode, a relatively large regression order, 150, had to be used. If it provided a
good extraction of that feature, very similar to the first input of the wavelet-PCA extraction technique,
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the variance of the remaning signals was spread out on the remaining 149 principal components. In order
to incorporate a 95 % cumulated variance, a much large number of components had to be used, up to 25.
Of course, the poor extraction did not performed well with the higher frequency features. The modulation
feature was faded so that the input space, although orthogonal was not as regularized as could be.

It was then decided to go for an in-between solution, to use a lower regression order, at the risk of
loosing the long period, the steady state values. A regression order of 40 was used and the PC containing
95 % of the initial input space variance are shown on Figure 30.
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Figure 30: PCA Preprocessing

On Figure 27, we can see that if the 95 % variance is spread out only on 5 components, the extraction
of the different frequencies is not well performed. The first component is obviously related to the long
period feature but is modulated by a higher frequency feature. The comparisons with the Wavelet-PCA
extraction and multi-scaling techniques are striking. The composite technique enable to perform scale
extraction thanks to wavelets while the use of averaged scaling and PCA enable to keep the input space
compact and well regularized.

In that respect, if the wavelet-pca input space was used in a modelling processing, the performance
of that model might be better than the one obtained in [5] although that application might be left to
further works.

We have seen how the Wavelet-PCA preprocessing technique performed well with the competition
time series. We can now examine the results of the same technique on another chaotic time series, the
Sunspot time series.
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6 Application Example : Sunspot Time Series

6.1 Introduction

The sunspot series is composed of the yearly mean of an arbitrarily defined sunspot number RI that
expresses the number of spots or group of spots on the surface of the sun. Although such phenomena
have been observed since 1700, there is still no physical explanation. The resulting time series is thought
to be chaotic with a pseudoperiod of 12 years with some dynamical system behaviour. It has been used
as a benchmark problem for various time series prediction methods [21].

Modelling of the sunspot series must observe several constrains. The first is the very limited number
of data with regard to the 12 years pseudoperiod. Most of the statistical analysis and identification
methods rely on statistical coherence of the data set, i.e. data sets on which it is possible to carry
out generalization assessments. Another problem associated the limited number of data and the lack of
understanding of the physical phenomena is the question of the time invariance of the sun considered as
a dynamical system. The reduced observation time scale, with regard to astronomical time scales and
the important variance of the pseudoperiodic signals both in amplitude and frequency (the cycle varies
between 6 and 14 years), increases the uncertainty on the nature of the system studied.

We will apply the techniques exposed in the previous sections to find out how the wavelet transform
can be used to improve the analysis, the preprocessing and finally the sunspot time series modelling.

6.2 Analysis

The classical analysis was performed in [21] and the Fourier analysis indicated a pseudoperiodic time
series of about 12 years period as already mentioned in section 6.1. Figure 31 represents the sunspot
time series (upper graph), and the wavelet power spectrum.
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Figure 31: Sunspot Time Series and Local Wavelet Power Spectrum .

The wavelet function used to perform the spectrum analysis was the Morlet wavelet, chosen for its
resolution trade-off characteristics. The arbitrary scales were expressed as a power of two, following
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the definition given in Equation 49. The scale increment δj was set to 0.5 so that the time series was
expanded into 20 scales (see Table 4).

There are two main significant features, one situated around period = 12 and another one around
80, the superperiod feature. However, the cone of influence indicates that the limited data set make the
identification of the latter uncertain. We can have a closer look at the 12 year period feature on Figure
32.
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Figure 32: Local Wavelet Power Spectrum .

The resolution is not ideal since the feature peaks are interpolated from the wavelet expansion at
periods 8.2, 11.7 and 16.5. For better frequency resolution, we set δj = 0.1.

The stability of the period is ensured for measurements posterior to 1830, a time when more rigorous
and targeted experiment were implemented. The combination of the about-to-be-invented photography
as well as the combination of observation from different observatories produced certainly better estimates.
The measurement improvement may explain the variation in frequency before 1830 although the large
variation that occurred between 1790 and 1820 (almost no sunspots) must have some reality.

In order to make a more reliable quantitative estimate of the period of oscillation, we examine the
global wavelet power spectrum as well as the Fourier power spectrum. These graph are on Figure 33.
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Figure 33: Global Power Spectrum in Wavelet and Fourier Spaces

The global power spectrum on Figure 33 both indicate that only the 12 years period feature can be
identified with a satisfactory confidence. Therefore, later in the modelling, we will perform the denoising
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of the time series and that superperiod feature will be considered as noise. These issues will be addressed
in section 6.3 on wavelet preprocessing.

6.3 Preprocessing

6.3.1 Wavelet Expansion

Once the time series analysis is completed, it is possible to carry out targeted preprocessing techniques.
We first implement the wavelet expansion on 29 scales in order to have a good frequency resolution and
being able to extract precisely the useful feature. The 29 scales are obtained with a scale increment
dj = 0.25.

We are mainly interested in the wavelets corresponding to periods between 6 and 17. This lead us to
look at wavelet W7 (period=5.8 years) to wavelet W13 (period = 16.8 years).
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Figure 34: Wavelet Decomposition.

6.3.2 Filtering

We have selected the wavelets W7 to W13 to be the effective components we want to use in the modelling.
This selection can be seen as a band-pass filtering where the period retained are in the interval 6 to 17
years. If we perform a scale averaging on that interval, we obtained the filtered sunspot number expressed
on Figure 35.

Once the time series has been filtered and the undesired feature are extracted, it is possible to examine
at the orthogonalization of the remaining wavelet.

6.3.3 Principal Components

The PCA is performed on the 7 wavelets represented on Figure 34. The resulting 7 components are
expressed on Figure 36.

Figure 37 represents the cumulated variance explained by the successive principal components. The
97% variance explained is obtained for the first three components. Therefore, the input space will be
composed of the first three components.

When we performed the preprocessing using only PCA, we obtained three principal components for
95 % variance explained [21]. These components, as well as the original time series are represented on
Figure 38.
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Figure 35: Filtered Time Series
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Figure 36: Principal Component of the Sunspot Time Series Expansion
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Figure 37: Statistical Analysis of the Principal Components.
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Figure 38: Input Space of Sunspot Time Series Modelling.
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7 Toolboxes for Wavelets

7.1 Wavbox : The Mathworks Wavelet Toolbox

http://www.wavbox.com/

WavBox Software is the original MATLAB Wavelet Toolbox, the first available as free software in
1991, and the first available as commercial software in 1994.

A brief summary of WavBox Software follows below:
WavBox 4.5 - A Software Toolbox for Wavelet Transforms and Adaptive Wavelet Packet Decomposi-

tions with FirWav Filter Library
WavBox Software provides both a function library and a computing environment for wavelet trans-

forms and adaptive wavelet packet decompositions. The software package contains 317 MATLAB m-files
(approximately 1.4 MB uncompressed) implementing an extensive collection of these wavelet transforms,
expansions, decompositions, wavelet filters, wavelets, and related functions. This function library per-
forms multiresolution analyses of 1-D multichannel signals and 2-D images for arbitrary length and size
data. MATLAB is a technical computing environment available from The MathWorks Inc.

WavBox 4.5 Software includes: continuous wavelet transform valid for all wavelets including the
complex Morlet, real Gabor, Meyer, and Mexican hat wavelets; overscaled pyramid transforms, discrete
wavelet transforms, and adaptive wavelet and cosine packet decompositions by best basis and matching
pursuit (Mallat, Coifman, Wickerhauser, and other authors); satisficing search algorithms for the selection
of near-best basis decompositions with either additive or non-additive information costs (Taswell); the
systematized collection of FIR wavelet filters computable by spectral factorization of the Daubechies
polynomial (Taswell); empirical tests for evaluating the parameters of multi-rate filter banks (Taswell);
wavelet shrinkage denoising methods (Donoho and Johnstone); the fast wavelet based numerical methods
(Beylkin et al) for the implementation of fast matrix multiplication and solution of linear systems in
the wavelet domain. These latter methods can be used to implement pseudo-differential and integral
operators.

Various choices of filter classes (orthogonal, biorthogonal, etc), filter families (least-asymmetric, most-
symmetric, etc), and convolution versions (interval, circular, extended, etc) exist for each transform,
expansion, and decomposition. The software has been designed for efficient automated computation,
interactive exploratory data analysis, and pedagogy. Essential features of the design include: perfect
reconstruction for multiresolution decomposition of data of arbitrary size not restricted to powers of 2;
both command line and graphical user interfaces with a comprehensive set of plots and visual displays;
an object property expert system with artificial intelligence for configuring valid property combinations;
heirarchical modules and switch-driven function suites; vector-filter and matrix-operator implementa-
tions of convolutions; extensibility for the inclusion of other wavelet filters, convolution versions, and
transforms; optional arguments with built-in defaults for most m-files; and extensive on-line help and
self-running tutorial demos.

7.2 Rice Wavelet Toolbox

http://www-dsp.rice.edu/software/RWT/

Rice-Wlet-Tools (RWT) is a collection of MATLAB M-files and MEX-files implementing wavelet and
filter bank design and analysis. In addition to the design tools the toolbox provides code for wavelet
applications for both 1D and 2D denoising as well as code for processing of SAR images. The toolbox
(version 1.1) was first officially released on Aug 30, 1993 but have since undergone several significant
changes and enhancements.

7.3 Wavelab

WaveLab .701 is a library of MATLAB routines for wavelet analysis, wavelet-packet analysis, cosine-
packet analysis and matching pursuit. The library is available free of charge over the Internet. Versions
are provided for Macintosh, UNIX and Windows machines.

WaveLab has been used in teaching courses in adapted wavelet analysis at Stanford and at Berkeley.
It is the basis for wavelet research by the authors, and may be used to reproduce the figures in their
published articles, and to redo those figures with variations in the parameters.

WaveLab has over 800 files which are documented, indexed and cross- referenced in various ways.
MATLAB .mex files are used extensively to increase throughput, and fat mex files are provided with the
Macintosh version so Power Macintosh users may take advantage of the increased speed of their machines.
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In addition to routines implementing basic wavelet transforms for finite data sets (both periodic trans-
forms and boundary-corrected transforms), wavelet-packet analysis, cosine-packet analysis and matching
pursuit, the library contains scripts which the authors believe will assist in learning the practical aspects
of wavelet analysis:

Scripts that reproduce the figures in the authors’ published articles, including the de-noising articles
of Donoho and Johnstone.

“Workouts” that give a quick guide to wavelets (1-d and 2-d); wavelet analysis; wavelet synthesis;
wavelet and cosine packets, including the Coifman-Wickerhauser best-basis methodology; matching pur-
suit; and applications such as data expansion, progressive data transmission, image compression, speech
segmentation, de-noising, fast matrix multiplication in wavelet bases, etc.

WaveLab also offers:
A library of datasets that are easily accessible to the user. Besides artificial signals that have scientific

or pedagogical appeal, real data ranging from an image of Ingrid Daubechies to a recording by Enrico
Caruso are included.

A point-and-click browser that allows the user to select data, perform various transforms or de-noising
operations, and then see the results without using the MATLAB command-line interface. Extensive
documentation, including on-line documentation for each function, Contents files for each subdirectory, a
Reference Manual, an Architecture Guide and an overview document, About WaveLab, that introduces
the software to a first-time user.

Wavelab 0.701 can be obtained for free at

http://www-stat.stanford.edu/~wavelab/

It is only compatible with Matlab 4.x as the next version, Wavelat 0.8 developed to be the official
Wavelet toolbox provided by The MathWorks.

7.4 Wavekit

The WAVEKIT-toolbox is a collection of functions for Matlab that implement the following wavelet and
wavelet packet algorithms:

One- and two-dimensional (periodic) fast wavelet and wavelet packet transforms and the best basis
algorithm for wavelet packets. An implementation of the fast matrix multiplication algorithm of Beylkin,
Coifman, and Rokhlin for both wavelets and wavelet packets. Various demonstrations on visualizing
wavelets, signal analysis, and the multiplication algorithm.

The programs in this toolbox are not optimized other than that the inner-most loops are written in
C. They are intended for learning about wavelets, not for serious applications. The toolbox grew out of
my desire to teach myself about wavelets and now I feel it has matured to the point where it might prove
useful to others. I think some of the visualization tools and demos are rather unique.

http://www.math.rutgers.edu/~ojanen/wavekit/

7.5 Wavelet Analysis Software with Significance and Confidence Testing

http://paos.colorado.edu/research/wavelets/software.html

The toolbox is being developed by Christopher Torrence from the Advanced Study Program, National
Center for Atmospheric Research, and Gilbert P. Compo, NOAA/CIRES Climate Diagnostics Center,
Boulder, Colorado

7.6 TIME-FREQUENCY TOOLBOX for Matlab

http://www.physique.ens-lyon.fr/ts/tftb

The Time-Frequency Toolbox is a collection of about 100 M-files , developed for the analysis of
non-stationary signals using time-frequency distributions. It consists in groups of signal generation files,
processing files and post-processing files (including visualization tools).

The toolbox contains numerous algorithms for time-frequency signal analysis, with special empha-
sis on quadratic energy distributions within Cohen’s class and the affine class, including most recent
developments based on reassignment.

As usual under Matlab, each function of the toolbox has a help entry and is documented in a reference
manual. Several demonstration M-files are also available, showing the possibilities of the toolbox, and
following the contents of a user’s guide.
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The toolbox is primary intended for researchers and engineers with some basic knowledge in signal
processing. It requires Matlab v4.2c (or later version) and the Signal Processing Toolbox, v3.0 or later.
In end of May 1998, a the toolbox was updated to be compatible with Matlab 5.x.

The Time-Frequency Toolbox has been developed by Francois Auger, Olivier Lemoine, Paulo Goncalves
and Patrick Flandrin.

The Time-Frequency Toolbox results from a research effort conducted under the auspices of the French
CNRS (Centre National de la Recherche Scientifique) within its successive ”Groupements de Recherche”
Traitement du Signal et Images (O. Macchi) and Information, Signal et Images (J.-M. Chassery). Parts
of the Toolbox have also been developed at Rice University, when one of the authors (PG) was visiting
the Department of Electrical and Computer Engineering, supported by NSF. Supporting institutions are
gratefully acknowledged, as well as M. Guglielmi, M. Najim, R. Settineri, R.G. Baraniuk, M. Chausse, D.
Roche, E. Chassande-Mottin, O. Michel and P. Abry for their help at different phases of the development.
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8 Conclusion

In this report, we have explored the field of the so-called Wavelets with an emphasis on the issues of
time series modelling. It involved examining the various Time-Frequency domain analysis techniques and
compare them with the Wavelet transform. A theoretical basis for wavelets as well as the set of ideas
that lead to them was given. Issues such as wavelet function determination and scale parameter selection
was discussed in the context of time series analysis and preprocessing. Some important issues such as
resolution and statistical inference were approached but further work must be carried out as the study of
the application of wavelet to time series are scarce.

A signal preprocessing technique based on wavelet transform and Principal Component Analysis
(PCA) were also presented. The proposed method enable to improve the feature extraction process,
especially for multi-scale characteristics but also improve further the compression of the input space
regularization.

The theories and techniques were illustrated by two chaotic time series examples, namely the Com-
petition Time Series and the Sunspot Time Series. We showed how the wavelets could be a valuable tool
to analyze and process such time series.

Further works should include a close analysis on the determination of the optimal wavelet function with
respect to Time-Frequency resolution and statistical significance. A more detailed study on how exploiting
the wavelet transform in term of preprocessing and multiscale modelling may lead to improvements in
time series modelling.

Another aspect related to time series analysis and preprocessing would be the generalization and
complexity issues. The wavelet analysis could be used to produce an estimate of the complexity of the
input-output space mapping. The wavelet preprocessing could be used to actually reduce the complexity
of the input space by compressing it and (or) extracting causal inputs. Wavelet would produce a Time-
Frequency complexity estimate so that time, frequency or amplitude clustering could be used in ensemble
models. Individual model could be trained to fit local features in either the frequency or time domain
as well as the amplitude space. As mentioned already in [20], reducing the complexity of the mapping
by dividing the problem and them recombine the individual prediction may very well produce far better
modelling performance.
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