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A Nonlinear Black-Box Modelling Methodology for
Neural Networks

Guy-Michel Cloarec, John Ringwood Senior IEEE Member

Abstract—The aim of this paper is to present a nonlinear
black-box modelling methodology that, in a general context,
introduces the use of various statistical techniques to improve
the modelling performance. The improvements are obtained by
addressing the main problem that any black-box technique is
confronted with: the optimal choice of a model topology and the
related parameters with respect to the complexity of the problem.
The main idea is to efficiently combine statistical resampling
and analysis with preprocessing, optimal topology determination,
supervised parameter optimization and ensemble techniques.

Nonlinear black-box modelling, statistical theory, prepro-
cessing, curse of dimensionality, parameter optimization, en-
semble techniques

I. INTRODUCTION

HIS paper will present a nonlinear black-box modelling

methodology that aims to efficiently combine methods
from different fields to improve the overall performance both
in terms of time and accuracy of the model. The paper is
organized as follows: In a Section II, we will introduce the
main problems of nonlinear black-box modelling in a general
context [1]. In Section III we will see how that black-box
modelling is dependent on empirical data sets as its unique
source of information, requiring an optimal analysis and use.
Sections IV and V will address the most problematic issues
in the modelling, i.e. the complexity issue and the model per-
formance evaluation problems. Some preprocessing methods
such as orthogonalization and clustering will be introduced
and justified in Section VI. Section VII will examine the
issued involved in the parameter optimization while Section
VIII will present the benefits of ensemble methods. Finally,
the modelling methodology will be put under test in Section
IX with an application example.

II. NONLINEAR BLACK-BOX MODELS

The field of system identification can be classified into
three main approaches : white-box, grey-box and black-box
modelling. The colour refers to the growing uncertainty, either
in term of physical insights or parameter accuracy, in the
prior knowledge of the system. In practice, when the physical
insights are not sufficient to define the model structure and
identify the parameters from measured data, we have to resort
to black-box modelling where no prior knowledge concerning
either the structure or the causal inputs is available.
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In such an approach, the model is obtained from the
relationship between the past observation and the future states
of the system by a functional operation called mapping. In
that framework, a set of past observations, the regressors, are
selected and transformed to provide the input space while the
set of outputs is defined as the output space.

We will not detail the issues of the selection of the regres-
sors as this topic has benefited from numerous contributions
[2], [3]. However, in accordance with the statistical approach
we have chosen, the selection of the optimal regressor is
performed using statistical tests on the performance of linear
models. This process can be implemented iteratively in the
modelling process.

Both NARX and NOE regressor forms will be considered
but the modelling methods described are in no way dependent
on the regressor structure. For NARX models, we define the
regression vector ¢(t) to be:

o(t) = [u(t =1),...,ult =p),y(t = 1),...,yt —g)] (1)

where © € R™ and y € R™ are the system input and output
respectively, while for NOE models, the regression vector ¢(t)
is:

G(t) = fu(t—1),...,u(t—p),§(t=1/0),...,9(t—q/0)] 2)

where §(t — k/0) is the predicted output given the identified
parameter vector 6.
The nonlinear model is then expressed by the equation:

y(t) = go(p(t)) + v(t) 3)

where v(t) accounts for the fact that the next output will not
be an exact function of the past and will be expected to be
Gaussian noise with variance \. go is the hypothetical true
function. In practice, gg is approximated by g, a nonlinear
function defined by its finite-dimension parameter vector 6.

99(t) = 9((1),9)) )

g is searched within a family of functions characterized
by 6. Since in black-box modelling no analytical methods to
calculate 6 are available, we will always deal with parameter
estimates 6. As we will see later, that estimate will be
conditioned to the data sets and the optimization method used.

Therefore, the main issues in nonlinear black-box modelling
are to determine the optimal regressor vector ¢ , nonlinear
mapping ¢ and optimal parameter vector 6.

The nonlinear mapping function we will examine here are
function expansions defined by:

9() = ongelp) )



TO BE SUBMITTED TO THE IEEE TRANSACTIONS ON NEURAL NETWORKS

where g, is the basis function. In most methods, the basis
function is parameterized by a motherbasis function k(x) :

9 () = k(p, Brs k) (6)

Where [y is the scale and ~y;, the position of the basis function.
The arbitrary choice of the motherbasis function leads to a
taxonomy of methods. For example, trigonometric functions
will lead to the Fourier expansion, Gaussian functions to
Radial Basis Networks, functions obtained from a recursive
equation to the Wavelet Expansion and the sigmoid functions
to Neural Network Systems. It is also possible to extend that
taxonomy to Fuzzy Systems although they are not usually
perceived as functional expansions.

The functional expansion can be cascaded to obtain con-
nectionist models. In such models, the expansion obtained
from a first layer system is introduced to a second layer. Let
<p§€2) (t) = gx(e(t), Br, k) be the output of the first layer,
where

0@ = [2), ..., @) )

Instead of taking the linear combination of ¢, we insert
it into a second layer of basis function forming a second
expansion. The second nonlinear expansion is defined by:

9(p) = z algz(z ey, Brm) ®)
1 K

In neural network terminology, such a model is a two-hidden
layer neural network. The same process can be reiterated to
obtain a multi-layered neural network. The parameter vector
0 is then defined by :

0 = {1, Brs Vi o, B, i} 9

The availability of various basis function leads to a great
flexibility or capacity to approximate nonlinear mappings. On
the other hand, that degree of freedom means that topological
decisions must be made. The determination of the topology
is related to the complexity of the problem as we will see
in Section IV. Before considering that issue, we first have to
examine the problems related to the use of empirical data.

III. DATA SETS AS SOURCES OF INFORMATION
A. Definitions

As we mentioned in Section II, in black-box modelling, the
only information available is within the data set of measured
variables. That raw information must be processed to extract
the behaviour of the system. That source of information can
be corrupted by noise, may be non-causal or not correlated to
causal input and/or may not be representative of the system
behavior. Moreover, since that data will be the used throughout
the modelling process, it is important to carefully analyze the
data set.

Let D be the hypothetical complete data set of the mapping
problem:

D ={(e(t),y(t)),t € R}

In practice, we deal with limited data sets, restrictions of
D, defined by the distribution F, which is usually unknown.

(10)

The empirical data set available for the modelling is defined
by:

Dr = {(¢(k),y(k)), k € [L, M]\(p(k), y(k)) = F} (1)

where M is the number of samples in D . Since M is finite,
the real distribution of Dz is F. Knowledge to how much D £
is representative of D or how M relates to the complexity of
the problem are generally unknown. Moreover, since the data
set is the only source of information, the representativeness of
Dz will condition each step of the modelling process, i.e. the
model performance estimates, the topological determination
and the parameter optimization.

The conditioning induced by the limited data sets is usually
addressed by splitting the data set into three independent sets,
the training, test and validation set respectively. The training
set is used to performed the parameter optimization while the
test set is used to evaluate the performance of the model.
Finally, the validation set is used to evaluate the overall model.
The main problem with that is because the complexity of
the problem is unknown, we cannot define how independent
and representative these sets are. Moreover, such restrictions
reduce the information available for training which can be a
real problem when the available information is scarce.

An important approach is issues from the statistical theory
field and falls under the heading of resampling techniques.
By resampling, we mean obtaining new data sets by drawing
samples from the original data set. Let Q define the number
of subsets drawn from D . The resampled sets can be defined
by:

Dy o = {ek),y(k)), k € [1, N\(p(k), y(k)) — F} (12)
where

e q is the set index (¢ € [1,Q)).

¢ N is the number of samples in the set (N < M).

Note that F* will be used to denote the real distribution of
Dz .
B. Cross-Validation

Cross-validation is a method using ideas from the sta-
tistical theory field to obtain better estimates of the model
performance which are used in the topological and parameter
optimization processes.

In Q-folded cross-validation, ) subsets containing M — 1
samples each are created. () estimates are then computed and
the cross-validation estimates is obtained by averaging the
subsets estimates. Let J be an estimate of the statistic ¢ on
the distribution F. J is defined by:

Q
J(F) = % > HDs,) (13)
qg=1
The distribution of the ¢(D 7, q) estimates can provide valuable
information such as confidence limits on the estimates them-
selves. The main sources of error come from the fact that D »
may not be drawn uniformly from F (not representative) and
the fact that the convergence of the estimates is obtained only
for Q — oc.
It is important to notice that when the statistic ¢ is quadratic,
the distribution F* should be as Gaussian as possible.
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C. Statistical Bootstrap

The averaging of statistics computed on subsets tends to
unbias these estimates and make a better use of the data set.
However, cross-validation requires subsets to contain M — 1
samples which can generate heavy computation as the number
of subsets () increases (to ensure better confidence limits).
Moreover, such resampling is not optimal in term of redun-
dancy in the data set. That problem is also referred as the Split
Ratio (v = %) problem [8].

Statistical bootstrap is another resampling technique that
uses uncorrelated subsets of size N. The subsets are obtained
by drawing with replacement samples at random. Provided
that (Q and N are adequately chosen, the statistical bootstrap
estimates will provide better estimates than cross-validation
for a much smaller computation cost.

Throughout our method, we will use statistical bootstraps
to estimate the model performance, i.e. the generalization, but
also to create a small uncorrelated input subspaces on which
parameter optimization is performed. However, as mentioned,
the main problem with that method is the determination of
the optimal ) and N. This issue is directly related to the
complexity issue as we will see now and a solution to address
the problem will be proposed in Section VI-C.

IV. CURSE OF DIMENSIONALITY

After the data sets are available for modelling, the nonlinear
model g must be chosen. In connectionist models, this means
determining the motherbasis functions and the dimension of
the model. By dimension, we mean the dimension of the
parameter space. The dimension of the model is related to its
complexity, which, in the classification field, can be defined
as the number of distinguishable patterns in the mapping.

For binary problems, the issue is adequately expressed by
the VC-dimension [9]:

Theorem 1 (VC-dimension): Suppose A is a family of

measurable functions mapping X into {0,1}. A set S =
{z1,-+-,x,} is said to be shattered by A if each of the 2"
functions mapping S into {0, 1} is the restriction of .S of some
function in A. Equivalently, S is shattered by A if for every
subset A C S, there exists a corresponding function a4(.) € S
such that :
Zf x; € A
The Vapnik-Chervonenkis dimension of .4, denoted VC-
dim(.A) is the largest integer n such that there exists a set
of cardinality n that is shattered by .A.

The VC-dimension is defined for families of binary valued
functions. The corresponding notion families of [0, 1]-valued
function is referred as the Pollard-dimension.

Theorem 2 (Pollard Dimension): Suppose A is a family
of measurable function mapping X into [0,1]. A set S =
{x1, -+ ,x,} is said to be P-shattered by A if there exists
a vector C' € [0,1]™ such that, for every binary vector
e € [0,1]", there exists a corresponding function a, € A
such that:

aaslz;)) = 1

as(z;) = 0 (14)

ifei:1
Zf€1:0

ac(ri) > ¢
(15)
ae(z;) < ¢

The P-dimension, or pseudo-dimension of A denoted by P-
dim(A) is the largest integer n such that there exists a set of
cardinality n that is P-shattered by .A.

The P-dimension corresponds to the complexity of the
problem and should also correspond to the complexity of the
model used. It can be shown that the performance of the model
is directly related to the match between the complexity of the
output space and the complexity of the model, given an input

data set:
c

ey(d) = (E)a ¥ emin (16)

where

e cis a measure of the target complexity,

e d is a measure of the complexity of the model structure,

o £4(d) is the best generalization error achievable in model
class Hq4,

e Emin 1S the degree of unrealizability of the target with
respect to the input and model structure, and

e « is a real number between 1 and 2.

It is possible to approximate the complexity of the target c by
the first absolute moment of the Fourier magnitude distribution
of the target function [12].

In equation (16), the performance of the model is quantified
by a generalization error. In practice, neither ¢ or d are
available so that the model performance must be defined using
numerical estimates. Under the assumption of stationarity,
those estimates will quantify the performance of the model on
data sets not used for the parameter optimization process. In
Section V-B, we will examine generalization estimates based
on statistical bootstraps.

It is important to match ¢ and d to avoid the main problem
of nonlinear black-box modelling: the curse of dimensionality.
When the model offers too much degrees of freedom (too
much parameters), idiosyncrasies in the training patterns are
learned which downgrades the model generalization perfor-
mance. When iterative parameter optimization methods are
used, these problems are referred as overtraining. In the
opposite case, the model does not have enough capacity to
express the behaviour of the system.

We will see in Section VI and VII that preprocessing and
statistical analysis techniques will be used to determine the
optimal topology and avoid overtraining.

V. MODEL PERFORMANCE EVALUATION
A. Objective Function

Since the black-box modelling is based on the transfor-
mation of empirical data, the performance of the model
must be evaluated at each step. The sources of performance
downgrading can be identified as:

o Uncertainty due to the limited and eventually not repre-

sentative data sets.

o Systematic error due to model defect.

¢ Model selection uncertainty.

o Parameter determination errors.

All these sources contribute to the observed prediction error.
However, since modelling is an iterative process, the effects
of some of these sources can be isolated and addressed
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independently. The main techniques are based on the analysis
of the statistical characteristics of the prediction error (analysis
of residual, while others are based on the objective functions,
such as MSE, evaluated on the prediction error. As the first
approach has benefited from extensive study [2], we will
examine in more detail the latter.

The model performance is quantified by a criterion J(g) :

9) ://l(@,y,g)p(w,y)dwdy

e l(p,y,g) is the risk that measures how close the model
is to the data.

e p(p,y) is an unknown but fixed (stationary system) joint
probability.

a7

where

B. Generalization

In a probabilistic approach [1], [5], [11], the estimates are
conditioned to the data set and equation (17) can be expressed
by:

Where Er is the expectation on the distribution F.

The generalization criterion can be defined as the perfor-
mance of g independently of Dr. In our framework, it will
be defined as the expectation of the prediction risk over all
possible data sets D drawn from F of length M.

In the widely used case of quadratic objective functions,
equation (18) is expressed by:

(9, DF) = A+ Ellgo() = g0+ (2, 0)>  (19)
C. Bias-Variance Tradeoff

If we define the generalization estimate to be J.(g) =
E(J(g,Dx)). We define two parameter vectors to be respec-
tively the ideal parameter vector on D and on D, :

0, =
Op, =

arg(minJ.(g))

arg(minJ(g, Dr)) 0)

Then, according to [1], [5], the generalization estimate can be
approximated by :

J(9) = A+E||go(¢)—g(¢p, b4 12

)I*+Elg(¢,0p)—g(¢,00,)
(2D
Hence, equation (21) representing the MSE criterion can be
decomposed into three parts : the noise, the bias error and the
variance error respectively. The main reason for performing
that decomposition is that each component is characteristic of
a different source of uncertainty [5].

The bias error is related to the default of complexity in g
and the limited number of samples. As N — oo, 6, — 6 and
the criterion express the difference between the frue model gg
and the best possible approximation g given the structure and
the topology.

The variance error is the result of the uncertainty on the
vector parameter due to the limited number of samples and the
optimization method. It is shown in [1] that the increase in the
number of parameters induces an increase in the uncertainty
on Op,, which subsequently increases the variance error.

It appears then that the two components of the criterion
have opposite behaviours with respect to the complexity of the
model. As a consequence, a tradeoff will have to be found so
that the final model will have an optimal topology and an opti-
mal parameter vector, as we will see in Section VII. However,
we can already say that this tradeoff will be performed during
the parameter optimization using generalization estimates, as
shown in Figure 1.

MSE on Training (). Bootstrap (——) and Validation (o) Data Sets

FRYeY
Bootstrap

60
Epochs

Fig. 1. Evaluation of the MSE during Training on Training, Bootstrap and
Validation Data Sets.

D. Statistical Bootstrap Estimates of Generalization

In Section V-C, we had generalization estimates that used
the hypothetical data set D. In practice, we deal with restricted
and eventually non-uniformly distributed samples so that the
predictions obtained are biased by what is defined in Section
VII as the conditioning of the estimates.

The solution proposed to reduce the counter-effect of that
conditioning will be the use of statistical bootstrap estimates
[13]. The basic idea is to obtain estimates obtained on
statistical bootstraps for different topology and optimization
parameters. In most cases, the distribution of these estimates
will be approximated by a Gaussian distribution, the center of
which will give a better estimate (the bootstrap estimate).

Before giving an expression of the generalization estimate,
we have to define the notation. Let 0D Fa be the parameter
vector estimated from the optimization on the bootstrap D »

To express the properties of the samples, we use the mdlcator

5k,q:
1
61%1 = { 0

We define now Jp, (9 D, ,) to be the performance of the
model determined on bootstrap g/ and evaluated on bootstrap

q.

if k¢ Dy

ifkeDy, @2)

Jp

_7:',(1( ]-‘q/

N
Z (1=6k.4) (w(K)=gp ., (9(), 0. )
k:
(23)
If we define I, the generalization estimates to be the average of
Jp. . (0 D]:-_q/) on all possible bootstraps of size IV, according

to [13],it can be approximated by r given by the following
equations.
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We define [ to be the average number of examples in the
test set, i.e. the probability that a specific input-output pattern
is not in a resample of size V.

1
=(1— )N
It is important to note that 5 — e~ when N — oo. To

simplify the notation, we define 4(J) to be a local estimate
of the criterion in the bootstrap world.

Ipy(0,) — (1= B)Jp, (b,
A7) = D7 (0q) (66) D, (04)

The generalization statistical bootstrap estimate f(J ) and
its variance S2,  are defined as:

(24)

1

(25)

£
) = E()
82, = B =2l 20

The generalization statistical bootstrap estimate are used
for different purposes at different stages of modelling. First,
a bootstrap generalization estimate of linear models will be
used for the regressor vector selection. It will be used to
supervise an early stop training method (Section VII) and to
provide training subsets for the network committee (Section
VIII). Bootstraps estimates will be used in the evaluation
of the model parameter distribution using an evolutionary
optimization technique (Section VII-C).

The main drawback of the method is the choice of () and
N and is related to the complexity issue. Several statistical
techniques such as the analysis of the statistics of performance
criterion on linear models or complexity evaluation such as
Fourier analysis can be used to give broad estimates.

In Section VI-C, we will see that () and NV can be reduced
by supervising the draw of the bootstraps. Such reduction will
decrease the computational load and will enable the use of
more intensive optimization techniques.

VI. CLUSTERING AND OTHER PREPROCESSING
A. Preprocessing Techniques

The term preprocessing covers a large set of techniques
aiming at reducing the uncertainties in the input data set.
In the black-box modelling approach, it involves determining
the optimal inputs given the available information, i.e. the
selection of the inputs, the regressors and eventually the
transformations to operate on the regressor space. These
transformations can be filtering (subsampling), oversampling
or for multiscale problems, Wavelet based transformations. Of
course, the preprocessing is very much dependent on the nature
of the problem. The lack of quantitative criteria upon which
the selection of the preprocessing can be based will involve
trial and errors approaches as well as experience or basic
understanding of the process.

In this paper, we will address two techniques which are
supposed to address several problems encountered in black-
box modelling but also general enough to be used in a variety
of problems. The first technique called Principal Component
Analysis is a method based on orthogonalization and reduction

of the data space. The second set of techniques are defined
as clustering techniques where clustering of the output space
is used to infer partitions of the input space with a causal
correlation. That clustering will be used as a basis for local
modelling but also for the construction of more efficient
statistical bootstraps.

B. Principal Component Analysis

1) Introduction: Principal Component Analysis (PCA) [7]
is a statistical technique used to perform the analysis or the
preprocessing of the input space. It is particularly useful for
correlated input spaces obtained with regression models. The
basic idea is to perform orthogonalization of the input space,
where the axes of the rotation defines the principal directions
on which the variance is maximal. For that reason, the rotated
samples are called principal components. The analyzis of their
characteristics can be used to perform subspace reduction, i.e.
eliminating dimensions related to small variance or non-causal
sources (such as noise or spurious regressors).

In the modelling process, the PCA method will be used
in two different ways. The first one concerns itself with
transformation of the input space. By extracting linear features
and producing uncorrelated inputs, parameter optimization will
be facilitated. Moreover, since we deal with a NARX structure,
the inputs will be correlated giving PCA the potential to
greatly reduce the dimension of the input space. This will
reduce the complexity of the input space, will require less
complex models, decrease the computation load and facilitate
input space distribution analysis (see Section VI-C).

PCA will also be used in the regularization process where
the analysis of the spaces defined by the output of the layers
will be used to determine the optimal number of elements, a
topological characteristic of the model. This will be examined
in Section VIIL.

2) Definitions: Practically, the method consists of calculat-
ing the eigenvalues of the covariance matrix of the input space
¢ defined in equation (4) (the number of regressors is p). Let
S be the covariance matrix of the input space defined by ¢,
also called the data matrix. To ensure that the transformation
is isotropic, the input space is first normalized. If the input
space is formed by p regressors, the orthogonalization can be

described as follow:
S = E(pp") 27)

We define S to be the diagonal representation of S in the

orthonormal base defined by the base vector A = (a1, ..., ap)
so that we have :
S = ASAT (28)
g% 0O --- 0
g=| © (29)
: o0
0O --- 0 512)

From the decomposition, two results will be used : the
orthogonalized vectors and the corresponding eigenvalues. We
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define o* = (p*(1),...,9*(p)) to be the orthogonalized input
space, the matrix of the principal components.

"= Ap (30)

The components being mutually orthogonal, the correspond-
ing signals are uncorrelated. The eigenvalues of S are the
variance of the principal components, which is proportional
to the information contained within the component. Because
of uncertainties in modelling, it is likely that redundant or
spurious information was introduced in the input space. As it
is uncorrelated with the causal information, it can be isolated
and extracted by eliminating the corresponding components.
This is referred as the subspace reduction.

The main problem is then to find a criterion to distinguish
the spurious components from the causal ones. One method
used consists of evaluating the generalization performance of
a linear model using exhaustive combination of component in
the input space. Another, more often used, consists assumes
that the dimensionality reduction prevails on the causality
determination and performs the selection on the basis of a
statistical criterion called proportion of variance explained,

P,. i

=114

€29

A variance explained threshold, P,,, is arbitrarily defined
(for example 95%) as the component selection criterion. Let
I be the number of retained components:

l= mgX(PU(k;) <P,) (32)
The resulting input space will be ¢}, = (¢*(1),...,¢* ().
The transformed space will have a higher sample density and
a smaller dimensionality. Such improvement will have effects
on the clustering analysis expressed in Section VI-C and in
turn on the topology and parameter determination, as we will
see in Section VII.

C. Causal Information and Clustering Techniques

1) Introduction: In Section IV, the complexity of the
problem, when expressed by the Pollard dimension, lead to
the interpretation that the mapping problem lends itself to
the concept of partition of the input and output spaces. The
problem can be subdivided in two different ways.

The first one consists of reducing the complexity of the
problem by using local models. A black-box model is then
obtained by the combination of the local models. Local models
are approximations of the system behaviour in certain regions
of the output space. In our technique, these regions are
expressed by partitions of the output space that we will define
as clusters. As we will see in Section VI-C3, the parameter
optimization of these local models requires that the sample
space used is related to that partition. The partitions will be
assumed to correspond to causality properties, a bijection in
the mapping.

Another approach is to consider that the function approx-
imation problem is related to a classification problem. The
complexity is then only a matter of relating input patterns to

decision patterns. As we deal with high dimensional contin-
uous spaces, the input and decision patterns are clusters that
must be identified. In Sections VI-C3 and VI-C4, we will see
how clustering can be used to improve the performance of our
modelling techniques.

2) Clustering Techniques: In the field of system identifica-
tion, clustering techniques are mainly used by fuzzy modelling
methods [17]. The clusters that partitions the input and output
spaces are defined as fuzzy sets and the correlation between
input and output clusters are used to construct the fuzzy rules.

Clustering techniques can be divided into two main groups,
depending on the type of selection of the cluster. In the first
group of techniques, clustering is performed by imposing the
number of clusters. The describing parameters of which are
tuned to minimize the criterion .J,,. Let X be the variable
associated with a set of clusters (classes).

win{J(U.V,X) = 303 (i)™ o - VilA} 33)

k=1 i=1
where

e c is the number of clusters,

o V=(V1,...,V,) is the vector of clusters centers,

e U = (u;y) is the matrix of degrees of membership of

the sample X}, with respect to cluster Cj,

e m € [1,00] is a weighting exponent, and

e || ]la is any inner product norm,
Given n and m, a numerical method is used to obtain the
optimal (U*,V*) that locally minimizes .J,,,. The matrix U is
constrained to comply with a probabilistic interpretation by:

Vk, iui’k =1
=1

Equation (34) relates the fact that the u; , can be interpreted
as the probability of sample X belonging to class C;.

The Fuzzy Clustering Method (FCM) [14] is a widely used
method to find the local minimum using an iterative method.
In order for the clustering to be optimal, the parameters ¢ and
m should be varied and the process performed a few times in
order to reduce the dependencies, i.e. the non-deterministic
nature of the parameter determination leading to various
solution for different initial conditions, or the constrains on
the number and the shape of the clusters.

The FCM can be related to other techniques such as the
Gustafson-Kessel or Fuzzy C Variety (FCV) techniques [15].
They also search for a solution within a fixed framework (the
number of clusters is also arbitrarily defined) and they mainly
differ in the shape of the clusters employed. While FCM will
search spherical or ellipsoidal clusters, the Gustafson-Kessel
method will look for hyperellipsoidal clusters and the FCV
for linear variety clusters.

In the second group of techniques, the data space is not
arbitrarily divided into a fixed number of clusters, but new
clusters are added iteratively. A set of methods derived from
the Mountain Clustering method [16], considers the density
of the samples in variable space. The highest density locus
defines the center of a cluster and membership functions are

(34)
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defined by the distance of the samples from that cluster center.
The density of each sample X}, is given by:
IX k= Xill?

Ze (= 2

where 7, is the radius of the neighborhood outside which the
data do not contribute significantly to the density measure. The
center of the cluster Xy, is defined by maxy D(X}). The next
cluster is defined similarly but on a sample space from which
the samples with high membership have been removed. The
new density is obtained by:

——oz ) (35)

HXk—XMH%
(r5/2)?
(36)

where 7, is another radius constant taken smaller than r, to
ensure that the first density center has a reduced new density
and will not be retained. The process is reiterated until no
significant density center is found. The membership matrix U,
is then defined by:

Dnew(Xk) — Dold(Xk) o DOld(le)eXp(—

[ Xk — Xv,|”

(ra/2)?

Of course, the number of the clusters will partially depend
on the threshold distance that decreases with the number
of clusters. The main advantage of that method over FCM
is that the clusters are relatively independent of the sample
distribution. In such an approach, the samples on the border
are not underestimated because of the more numerous samples
in the central region. The clusters are then more representative
of the functional distribution rather than the empirical distri-
bution. The drawback compared to FCM is that it is more
computationally intense.

3) Causality and Cluster Projections: As already men-
tioned, the clustering techniques are used to build fuzzy rules
by performing the projection of output clusters on the input
space. Using the probabilistic approach where P(y,y) defines
the joint probability of having ¢ when y is observed, we extend
the concept to clusters. Locally, the joint probability refers
to the causality of a given ¢ to a given yi (@ being past
observations).

Given that the task of the model is to express that joint
probability, it is possible to subdivide the task using local
models. The local models will represent the behavior of the
system in different regions.

The main problem with local models is to extract the
relevant corresponding subsamples in the output and input
spaces. This will be performed by projection. Let Ci(y) be
a cluster on the output space and ugyk) the element of the
matrix U defining membership function of the samples y; to
the cluster C’i(y). The projection of that cluster on the input
space is defined as the cluster Ci(w. The membership of the
input samples on the projected cluster ugi) is defined by:

U; = exp(— ) (37)

o =)

(38)

The problem is then to identify and approximate the projected
cluster. The various uncertainties in the model will, in general,

lead to complex projections. For inputs which are not causal
nor correlated to causal input, the projection will not be
coherent and appear as noise. Such a phenomenon can be used
to further reduce the dimension of the input space. For others,
the different levels of causality will produce clusters more or
less difficult to identify. The complexity may lead to numerous
clusters that will eventually have to be merged.

It is important to note that the use of preprocessing tech-
niques such as PCA will enhance the performance of the
clustering when performed on the input space. If the inputs are
ordered according to their variance, the first inputs will have
the highest correlations with output and the highest densities.
As the component order increases, that correlation decreases
and the identification is more difficult. The reduced dimen-
sionality also contributes to a reduction in the computational
load.

Once the clustering has been performed, the results can be
used in different ways to improve the model performance.

4) Local Models and Bootstrap Construction: Local mod-
els are used to reduce the complexity of the modelling by
performing local approximations. The simplest local models
are sets of linear approximations. Depending on the mapping
problem, such an approach can provide better performance and
almost always a reduced model complexity (smaller number
of parameters) overall. We will see in Section VIII that local
models can also be nonlinear.

Whatever the model structure chosen for local models, it
is important to perform the parameter identification with data
sets which are relevant to the local approximation. With the
projection approach, it is possible to resample the data set on
the basis of the correlation with an output locus. If Ci(y) is
the output cluster related to the output set point then we can
define and D¢, to be the data corresponding to the cluster
C;. The selection of the input-output samples is defined by a
threshold on the probability:

P((¢k.yx) € De,) = Pl € C9)P(yp € CY)  (39)
The identification of the local model is then performed using
D¢, .

The clustering of the input and output spaces can also be
used in another resample method, the statistical bootstrap, ex-
amined in Section III-C. The main difficulty there is to obtain
small but representative sets. We have already mentioned the
methods based on statistical analysis and model performance
criteria. All these methods are based on bootstraps obtained
by drawing samples at random. Because of the empirical dis-
tribution available, this lead to uncertainty on the distribution
of the bootstraps.

An improved method uses the clusters to improve the
representativeness of the distribution. Rather than selection
by random draw, the bootstrap can be obtained by drawing
at random within each cluster, each cluster being evenly
represented in the bootstrap. Such a construction leads to
smaller bootstraps and requires less of them which, in turn,
reduces the computation load required. This is particularly
important in the parameter optimization processes.
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VII. PARAMETER OPTIMIZATION
A. Topology Determination

Topology determination is probably the most difficult and
yet the most important issue of modelling. We have already
mentioned in Section IV that it is important to match the
complexity of the model to the complexity of the data. Having
selected the optimal regressor and performed preprocessing,
the complexity of the input space is greatly reduced, giving
a reduction in the complexity of the mapping. This enables
a less complex parameter vector to be identified but also
reduces the uncertainties associated with the identification of
high dimension parameter vectors.

The concepts of optimal topology as well as the optimal
parameter vector can be related to a probabilistic problem
under certain conditioning. In fact, the topology is evaluated
using estimates of the generalization properties of the identi-
fied model. The estimation of the topology will therefore be
biased by the parameter optimization. The main approaches
in system identification are trial and errors or regularization
methods. The approach to our methodology relates to the latter.

Another important point is that the conditioning of the
topological issue may lead to not one but a set of answers, all
relevant in certain contexts. This will lead to the concept of
most likely topology from which a distribution of models with
different topologies will be derived. Practically, the topology
determination is performed in two distinct stages.

Our method consists of using models with known over-
capacity and then analyzing the redundancies within it. The
over-sized model is obtained by verifying that it can be trained
to convergence. If not, the complexity must be increased until
convergence is obtained.

When an initial over-sized model is defined, we train to con-
vergence a set of models using different statistical bootstraps.
The optimal topology is obtained by pruning elements on the
basis of the redundancies detected by the PCA method. We
examine here the general case of multi-layered models.

In Section II, the output of the first layer is defined by (%),
Let S; be the covariance matrix of (2 )(t) in the orthonormal
base defined by A;.

Sp = A E(pP ) AL (40)

The optimal number of elements in the first layer K; will be
defined by the number of elements necessary to transmit 99%
of the variance contained in ().

K, = II}CaX(Pvﬁl(kl) < 99%) 41)
1

Once K, is determined, the model with an optimal first layer

is trained to convergence. We define ¢(®) to be the output of

the second layer.

Ky
=a(>_ ey’ Brm)

= n}cax(ijz‘(kg) < 99%)
2

(42)
K, (43)

Where S, is the covariance matrix of ©®) in the orthonormal
base defined by As. The process is reiterated on all the

layers. When the process is performed on a set of statistical
bootstraps, the optimal topology is not constant but follows
a distribution. The characteristics of that distribution (in the
case of a Gaussian distribution, the mean and the standard
deviation) are used to find an upper bound on the topology.

B. Local and Global Optimization

There are numerous numerical methods to perform the
global minimization of a model performance criterion. Among
these, we can emphasize methods such as Simulated Annealing
(SA), Evolutionary Algorithm (EA),Cascade Correlation with
Multi-Starts (CASCOR-MS), Gradient Descent with Multi-
Starts (GRAD-MS) or Truncated Newton’s Method with Multi-
Starts (TN-MS) [18].

The parameter optimization is a part of the topological
determination. In general, the parameter identification cannot
be performed analytically so that numerical search procedures
from the field of nonlinear optimization must be used to
minimize a performance criterion V., usually a model fit
measure. Using our notation, V can be defined by:

V(0) = Ellgo(e(t) — g((1). O)]I? (44)
For stationary, or supposed so, processes we have:
N
7 _ 2
0) = Jim 3 lanolt) = sl 49

Let Dz, be the statistical bootstrap used for the parameter
optimization, then the optimization estimates is obtained with

Z ly(2) = g(e(?),

0 is related to the mapping function A of complexity class
Hg, so that the parameter vector 0* will be conditioned
by C = {Ha, A, Dﬁb,go}. In the case of non-deterministic
numerical optimization, the solution found will depend on
the optimization method and its parameterization, especially
parameters such as initial conditions in gradient-descent based
method. If we define £ as the optimization method, V its
parameters and 6 the initial conditions, the model estimates
are then expressed by:

(minV(Ha, A, Dy 0, £, Ve, 60))

mean(H Dz,) —mln 0))%) (46)

6 = arg 47)

Equation (47) expresses the conditioning of the solution. As
a consequence, 6 will be a local minimum of V(). To simplify
the notation, we will refer to C = {H4, A, Dz, 0, L, Ve, 00}
as the conditioning of the solutions. The more severe the
conditioning, the less general the model.

A set of techniques, combined together, are used in order
to reduce the conditioning. The idea is to use an ensemble
approach. A set of solutions obtained by different conditioning
will be distributed around the global minima. We define 0; to
be the solution obtained with conditioning C;.

Let F¢ be the distribution of the possible condition. The
parameter distribution Fy is directly conditioned by F¢. The
dimension of C is too large to to work with an exhaustive
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condition set. In order to obtain a representative parameter
distribution, we will work on a restriction defined by ]:'c. The
computation limitation requires us to reduce the dimension
of the conditioning. This is obtained using a combination of
techniques already described in previous sections.

The conditioning introduced by the gradient descent param-
eter optimization algorithms will be reduced by multi-start
optimization and early stop methods supervised by statistical
bootstrap generalization estimates (that addresses the bias-
variance trade-off problem). The topological conditioning will
be overcome using elements of a topological distribution
obtained using regularization methods such as PCA, neuron
pruning and statistical weight pruning methods. Finally, the
data set conditioning is reduced by using model ensembles
obtained on statistical bootstraps. The representativeness of
the bootstraps is ensured using clustering methods.

All these techniques contribute to a representative realiza-
tion of the parameter distribution. That realization is defined to
be Fp. If the realization is representative enough, the center of
the distribution will be the optimal parameter 6*, the global
minimum of the model performance surface. When such a
distribution is obtained, two approaches are possible. The first
one builds an averaged model obtained by estimating the
parameter averaged over the distribution. Unfortunately, since
we deal with topological distribution, such an averaging is
not possible. The second approach combines the predictions
of the model distribution, rather that the parameters. If the
model/parameter distribution realization Fy is uniform then
the model error will be uniformly distributed as well. Such
approach is called the ensemble or committee method and is
detailed in Section VIII.

Basically, the method used attempts a hypothetical global
minimum by applying statistical methods to local optimization
techniques. This approach is not as computationally intensive
as global minimum search algorithms already mentioned.
However, as we will see in Section VII-C, the parameter
distributions can be used to implement more efficiently global
optimization methods.
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Fig. 2. Committee of Local Models.

C. Evolutionary Optimization

Evolutionary Algorithms (EA) are mainly used in nonlinear,
multiobjective optimization problems [19]. In our black-box
modelling methodology, EA methods optimized for neural

network architectures are used to tune the sub-committee
models with respect to an increasing horizon of prediction
criteria. This approach is made possible by the hybrid structure
which reduces the complexity of the individual models and
consequently the dimension of the parameter space. Statistical
methods are used to obtain broad estimate of the parameter
distribution which is used to optimize the evolution procedure.
Practically, the general exploratory features of EAs, the
cause of the computationnal load, are reduced by assigning
different cross-over and mutation probabilities to the parame-
ters on the basis of the parameter distribution and architectural
features such as Critical Paths. Such determinism greatly
accelerate the convergence of the algorithm. The probability
of creating relevant outspring is increased by targeting the
relevent parameters but also by quantifying the level of the
modification to each parameter. As a consequence, the size
of the population required to ensure the convergence of the
algorithm is reduced as well as the computation times.

VIII. ENSEMBLE METHODS
A. Introduction

In the previous sections, we have seen that black-box
modelling requires the determination of an optimal model, i.e.
the best possible model given the model conditioning. Because
of the conditioning, the resulting model is a local solution
(in the parameter space). Using some results from Bayesian
modelling [10], it is possible to consider that under certain
conditions these local solutions are members of a solution
population having an unknown but continuous distribution. In
that approach, the optimal model is the most probable.

Figure 2 represents a set of neural network models obtained
with various conditioning. An important result is that when
the dependencies are minimized, i.e. when the effects of the
conditioning are reduced and uniformly distributed so that
the local solution are in the optimal solution neighborhood,
the hypothetical continuous model distribution leads to local
solution uniformly distributed around the optimal solution. In
turn, the model estimates are also uniformly distributed around
the optimal estimate. When the topology and the parameter
role are fixed, it is possible to obtain a better model by
averaging the models [20]. For various reasons, starting with a
topological distribution in the set of solution models, we will
perform the combination of estimates to improve the model
performance.

B. Combination of Estimates

In previous sections, we have described how various tech-
niques can be used to improve the generalization performance
of the model. The outcome is a set of models which are
local solutions to the problem, that must be combined to
produce estimates. [20] shows how linear combinations and
the statistical analysis of the set of estimates can produce better
estimates and gives an upper bound for the confidence limits
on these estimates.

When neural networks are used, the resulting set of models
is called a Network Committee. The estimates are nonlinearly
combined using a neural network combiner. The committee
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structure enables further improvements such as the local
models described in Section VI-C4. With local models, the
complexity of the problem is divided and distributed. This
leads to smaller models, i.e. with a lower dimension parameter
space on which computationally intense optimization methods
such as EA can be applied. Just as individual models can
be local models, they can also be optimized for various
criteria, leading to a simple implementation of multicriteria
optimization. The local model committees are structured into
subcommittees to simplify the interpretation and the meaning
of the overall model.

_~“Combination Network

Subcommittee

Fig. 3. Representation of the Local Model Structure.

Finally, when multi-step ahead prediction is necessary, the
combined estimate error will be reduced and uncorrelated to
the individual estimate error which will improve the perfor-
mance of the multi-step ahead prediction. [3] presents the
main theoretical results and the way in which the ensemble
techniques are implemented using the statistical techniques
mentioned in the previous sections.

IX. ILLUSTRATIVE EXAMPLES

In order to illustrate the black-box modelling methodology,
we will examine its application to a chaotic time series. The
chosen time series was used in a prediction competition [21]
so that comparisons with the results from recent techniques are
available. The data are related to a 5-scrolls attractor generated
from a generalized Chua circuit. The time series shown in
Figure 4 consists of a set of 2000 points and the next 200
points have to be predicted. The performance criterion used is
the MSE.

The analysis of the time series [22] shows that it is noise
free and chaotic, with three unstable equilibria at approxi-
mately —0.25, 0 and 0.25 and is also symmetrical (about the
horizontal axis). The symmetry was used to generate another
2000 points. To improve the accuracy of the models, the time
series was upsampled (interpolated) by a factor of two.

The model structures are NOE with a 200 sample regression
order. The order was obtained from correlation and frequency
analysis as linear models did not provided reliable estimators.
The preprocessing of the 200 regressors consisted of applying
PCA to obtain an uncorrelated input space. The analysis
suggests retaining only the first 17 components accounting
for 99.9% variance. The identification of dominant regions in
the output space was carried out on the first component using
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Fig. 4. Competition data (before vertical line) and data to be predicted
(between the vertical lines).

fuzzy clustering methods (FCM) and confirmed the relevance
of the three equilibria mentioned in [22].
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Fig. 5. Resampled Time Series, Ist Principal Component and Membership
Functions.

Figure 5 shows the resampled time series and the 1st prin-
cipal component. The corresponding Gaussian membership
functions p1,p2 and pg are used to draw uniformly distributed
statistical bootstraps containing samples in each particular
equilibrium. Again, the performance of linear models was
insufficient to be used in the determination of the optimal
statistical bootstrap characteristics so that alternate methods
such as statistical and frequency analysis (wavelet analysis)
had to be used instead. The local bootstraps were then used
to train and evaluate the performance of sub-committee local
neural network models. At each step of the modelling, the
maximum reliable horizon of prediction was determined and
used to estimate the performance of the next stage models.

As a result of this modelling procedure, the global structure
is defined by a preprocessing unit followed by three sub-
committees of six neural network models and three committee
combiners providing the prediction for the local models. The
local model predictions are then combined by the global
combiner on the evidence of the first principal component
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membership level. The structure of the global model is shown
on Figure 6.

Local Model

Equlibrium 1

y(k—1) .
A Local Model Local Models

Equilibrium 2 Combiner

y(k — 200)

Local Model

>
\ Equilibrium 3

Fig. 6. Representation of the Model Structure.

The optimal statistical bootstrap characteristics are defined
locally using the multi-step ahead prediction performance of
linear models. For each region, a committee of 50 neural
networks (MLPs) is trained with bootstraps containing 300
samples, the data set being made of the original time series and
an additional symmetrical time series. The bias-variance trade-
off is obtained by implementing an early-stop backpropagation
algorithm supervised by statistical bootstrap generalization es-
timates. The networks are then pruned by statistical neuron and
weight elimination methods. Only the best six local solutions,
i.e. with the best multi-step ahead prediction generalization
properties are retained. In a final refinement, the models are
optimized using EA methods and multi-step ahead prediction
criteria, the horizon of prediction increasing as performance
allows. The final model is then composed of 18 sub-committee
neural networks, three committee combiners and one global
combiner.

When the identification is complete, the 200 step ahead
prediction of the time series is performed. Figure 7 shows the
comparison between the predictions and the actual time series
while Table I shows the MSE on the 200 predicted points
and comparisons with the first three best submissions to the
competition.
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Fig. 7. Predicted Data and Actual Data.

Method MSE (H=200)
Mc Names 0.0018
Bersini 0.0475
Bakker 0.0645
Our Method XXXX
TABLE I

COMPARISON OF THE PREDICTION WITH THE BEST SUBMISSIONS TO THE
COMPETITION

The method has also been successfully applied to other
problems. Here is the comparison for the Sunspot time series:

Model Training Test Validation
1700-1920 1921-1955 1956-1979
Tong and Lim 0.097 0.097 0.28
Weigend et al. 0.082 0.086 0.35
Svarer Linear 0.132 0.13 0.37
Svarer Pruned 0.097-99T | 0.0827-997 0.357°9°
Network Committee 0.0967 %% [ 0.104°73% | 0.16977°1
Hybrid Neural Network 0.09 0.085 0.157
TABLE II
COMPARISONS OF THE NORMALIZED ERROR FOR SINGLE-STEP AHEAD
FORECASTING.

X. CONCLUSIONS

The aim of that paper was to introduce a modelling method-
ology in a general black-box modelling context. The success
of the method will depend on the analysis of the problem
and the choice of the appropriate preprocessing which lean
towards the concept of grey-box modelling. We presented a
hybrid neural network model structure motivated by results
from the field of Bayesian modelling. Such an approach offers
solutions to the major neural network modelling problems
such as topology and parameter determination. Although the
method can potentially be applied to any black-box modelling
problem, the emphasis was set against multi-step ahead pre-
diction requirements. In Figure 8, a brief flow chart describing
the main steps of the method is given.

Signal Analysis Determination of the
- Up/Di Sampli — .
- p/Down Sampling Regression Model
- Symmetry ...
Determination of the Preprocessing
— Optimal Bootstraps le—| PCA (reduction)
Clustering, Membership fct
For Each Ouput Cluster
Train and Regularize NN
on Local Bootstrap
Train Local Combiner
Select NN Committee [ reim ocal Combiner
™ Optimize NN with EA
and increasing prediction horizon
Train Committee Combiner

Fig. 8. Flowchart of the modelling Method.
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