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Isomorphic Boolean networks and dense interaction graphs

A Boolean network (BN) with n components is a discrete dynamical system described by the successive iterations of a function f : {0, 1} n → {0, 1} n . In most applications, the main parameter is the interaction graph of f : the digraph with vertex set {1, . . . , n} that contains an arc from j to i if f i depends on input j. What can be said on the set G(f ) of the interaction graphs of the BNs h isomorphic to f , that is, such that h • π = π • f for some permutation π of {0, 1} n ? It seems that this simple question has never been studied. Here, we report some basic facts. First, if n ≥ 5 and f is neither the identity or constant, then G(f ) is of size at least two and contains the complete digraph on n vertices, with n 2 arcs. Second, for any n ≥ 1, there are n-component BNs f such that every digraph in G(f ) has at least n 2 /9 arcs.

Introduction

A Boolean network (network for short) with n components is a finite dynamical system defined by the successive iterations of a function f : {0, 1} n → {0, 1} n , x = (x 1 , . . . , x n ) → f (x) = (f 1 (x), . . . , f n (x)).

Boolean networks have many applications; in particular, they are omnipresent in the modeling of neural and gene networks (see [START_REF] Le | Quantitative and logic modelling of molecular and gene networks[END_REF] for a review).

The "network" terminology comes from the fact that the interaction graph G(f ) of f is often considered as the main parameter of f : the vertex set is [n] = {1, . . . , n} and there is an arc from j to i if f i depends on input j, that is, if there are x, y ∈ {0, 1} n which only differ in x j = y j such that f i (x) = f i (y). For instance, in the context of gene networks, the interaction graph is often well approximated while the actual dynamics is not. One is thus faced with the following question: what can be said on the dynamics described by f from G(f ) only. There are many results in this direction (see [START_REF] Gadouleau | On the influence of the interaction graph on a finite dynamical system[END_REF] for a review). In most cases, the studied dynamical properties are invariant by isomorphism: number of fixed or periodic points, number and size of limit cycles, transient length and so on. However, the interaction graph is not invariant by isomorphism: even if f and h are isomorphic, their interaction graphs can be very different (by Theorem 1 below, G(f ) can have n 2 arcs while G(h) has a single arc). Surprisingly, this variation seems to have never been studied, and we report here some basic facts.

Given a network f , let G(f ) be the set of interaction graphs G(h) such that h is a network isomorphic to f , that is, such that h • π = π • f for some permutation π of {0, 1} n . Hence, we propose to study G(f ). For instance, if f is constant, we write this f = cst, then G(f ) contains a single digraph, the digraph on [n] without arcs, and if f is the identity, we write this f = id, then G(f ) also contains a single digraph, the digraph on [n] with n loops (cycles of length one) and no other arcs.

Our first result shows that, excepted few exceptions (including the two above examples), G(f ) always contains the complete digraph on [n], with n 2 arcs, denoted K n .

Theorem 1. K n ∈ G(f ) for all networks f = cst, id with n ≥ 5 components.

Our second result shows that, for n ≥ 5, there are no networks f such that G(f ) only contains the complete digraph.

Theorem 2. G(f ) = {K n } for all networks f with n ≥ 5 components.

From these theorems we deduce the following property, which might seem innocente but that doesn't seem to have a one-line proof: If f is a network with n ≥ 5 components, then |G(f )| = 1 if and only if f = id or f = cst.

Even if, for n ≥ 5, G(f ) cannot only contain the complete digraph, using a well-known isoperimetric inequality in hypercubes, we show that, at least, G(f ) can only contain digraphs with many arcs. Theorem 3. For every n ≥ 1, there is a network f with n components such that every digraph in G(f ) has at least n 2 /9 arcs.

Concerning short term perspectives, we checked by computer that the first theorem holds for n = 3 (for n = 2 it fails; see the appendix) and that the second holds for n = 2, 3. For n = 4 this is much time-consuming and we didn't do it, hoping to find instead dedicated arguments, since those given for n ≥ 5 do not work. A more involved perspective, related to the third theorem, is to prove that, for any > 0 and n large enough, any digraph in G(f ) has at least (1 -)n 2 arcs for some f . We also want to study networks f such that G(f ) is very large and ask: do we have, for any > 0 and n large enough, |G(f )|/2 n 2 > 1 -for some f ?

The three theorems above are proved the in following three sections. Before going on, we give some basic definitions. An element x of {0, 1} n is a configuration, and elements in [n] are components. We set 1

(x) = {i ∈ [n] | x i = 1} and 0(x) = [n] \ 1(x). The weight of x is w(x) = |1(x)|.
We denote by e i the configuration such that 1(e i ) = {i}. For x, y ∈ {0, 1} n , the sum x + y is applied component-wise modulo two. Hence x and x + e i only differ in component i. We denote by 1 (resp. 0) the configuration of weight n (resp. 0). Thus x and x + 1 differ in every component. Given A ⊆ {0, 1} n , we set A + x = {a + x | a ∈ A}. Let f be a n-component network. A fixed point is a configuration x such that f (x) = x. Let Γ(f ) be the digraph with vertex set {0, 1} n and an arc from x to f (x) for every x ∈ {0, 1} n . A limit cycle of f is a cycle of Γ(f ). Hence fixed points correspond to limit cycles of length one. An independent set of f is an independent set of Γ(f ), equivalently, it is a set A ⊆ {0, 1} n such that f (A) ∩ A = ∅.

Proof of Theorem 1

We proceed by showing that, for n ≥ 5 and f = cst, id, we have K n ∈ G(f ) if at least one of the following three conditions holds: f has at least 2n fixed points; or f has at least n limit cycles of length ≥ 3; or f has an independent set of size ≥ 2n. We then prove that, because n ≥ 5, at least one of the three conditions holds, and Theorem 1 follows.

Lemma 1. Let f be a network with n components, which is not the identity. If f has at least 2n fixed points then K n ∈ G(f ).

Proof. Since f = id we have f (c) = c for some c, and since f has at least 2n fixed points, it has 2n -1 fixed points distinct from f (c), say a 0 , a 1 , . . . , a n , b 3 , . . . , b n . Let π be any permutation of {0,

1} n such that π(a 0 ) = 0, π(a i ) = e i for 1 ≤ i ≤ n, π(b i ) = e 1 + e 2 + e i for 3 ≤ i ≤ n, π(c) = e 1 + e 2 and π(f (c)) = e 1 + e 2 + 1. Let h = π • f • π -1 . We will prove that G(h) = K n . For i ∈ [n], we have h(0) = π(f (a 0 )) = π(a 0 ) = 0 and h(e i ) = π(f (a i )) = π(a i ) = e i ,
hence h(0) and h(e i ) differ in component i, and we deduce that G(h) has an arc from i to itself. It remains to prove that G(h) has an arc from i to j for distinct i, j ∈ [n]. We have h(e 1 + e 2 ) = π(f (c)) = e 1 + e 2 + 1. Hence h(e 2 ) = e 2 and h(e 1 + e 2 ) differ in every component j = 1, and thus G(h) has an arc from 1 to every j = 1. We prove similarly that G(h) has an arc from 2 to every j = 2. For 3

≤ i ≤ n, we have h(e 1 + e 2 + e i ) = π(f (b i )) = π(b i ) = e 1 + e 2 + e i , so h(e 1 + e 2 + e i )
and h(e 1 + e 2 ) differ in every component j = i, and we deduce that G(h) has an arc from i to every j = i. Lemma 2. Let f be a network with n components. If f has at least n limit cycles of length ≥ 3, then K n ∈ G(f ).

Proof. Suppose that f has n limit cycles of length ≥ 3; this implies n ≥ 4. Let a 1 , . . . , a n be configurations inside distinct limit cycles of f of length

≥ 3. For i ∈ [n] let b i = f (a i ) and c i = f (b i ). Then a 1 , . . . , a n , b 1 , . . . , b n , c 1 , . . . , c n are all distinct. For i ∈ [n], let x i = e i-1 + e i , y i = e i-1 and z i = e i-1 +1
, where e 0 means e n . Since n ≥ 4, the configurations x 1 , . . . , x n , y 1 , . . . , y n , z 1 , . . . , z n are all distinct. Hence there is a permutation π of {0, 1} n such that, for i ∈

[n], π(a i ) = x i , π(b i ) = y i and π(c i ) = z i . Let h = π • f • π -1 . For i ∈ [n] we have h(e i-1 + e i ) = h(x i ) = π(f (a i )) = π(b i ) = y i = e i-1 and h(e i-1 ) = h(y i ) = π(f (b i )) = π(c i ) = z i = e i-1 + 1.
Hence h(e i-1 + e i ) and h(e i-1 ) differ in every component, and since e i-1 + e i and e i-1 only differ in component i, we deduce that G(h) has an arc from i to every j ∈

[n]. Thus G(h) = K n . Lemma 3. Let f be a non-constant network with n ≥ 5 components. If f has an independent set of size ≥ 2n, then K n ∈ G(f ).
Proof. Let A be an independent set of f . We first prove:

(1)

If |A| ≥ n + k and |f (A)| = 2k for some 1 ≤ k ≤ n, then K n ∈ G(f ).
Suppose these condition holds. One easily check that there is an independent set

A with |A| = n + k and |f (A)| = 2k for some 1 ≤ k ≤ n. Let us write f (A) = {a 1 , . . . , a 2k }, and let A p = f -1 (a p )∩A for p ∈ [2k]. Let X 1 , . . . , X 2k be disjoint subsets of {0, 1} n of size |A 1 |, . . . , |A 2k | such that, for all i ∈ [n],
there is p ∈ [k] and x ∈ X 2p-1 with x + e i ∈ X 2p ; that these sets exist is the "technical" part of the proof, given by Lemma 8 in appendix.

Let X = X 1 ∪ • • • ∪ X 2k , let Y be the set of y ∈ {0, 1} n with y 1 = 0, and let Y be the set of y ∈ Y such that y, y + 1 ∈ X. Since n ≥ 5 and n ≥ k:

|Y | ≥ |Y | -|X| = 2 n-1 -(n + k) ≥ 2 n-1 -2n ≥ n ≥ k.
Thus there are k distinct configurations in y 1 , . . . , y k ∈ Y and by construction, Y = {y 1 , . . . , y k } and Y + 1 are disjoint and disjoint from X.

Hence there is a permutation π of {0, 1} n such that, for all p

∈ [k], π(a 2p-1 ) = y p , π(a 2p ) = y p + 1, π(A 2p-1 ) = X 2p-1 and π(A 2p ) = X 2p . Let h = π • f • π -1 . By construction, for every i ∈ [n] there is p ∈ [k] and x ∈ X 2p-1 with x+e i ∈ X 2p . Since π -1 (x) ∈ A 2p-1 and π -1 (x+e i ) ∈ A 2p , we have h(x) ∈ π(f (A 2p-1 )) = {π(a 2p-1 )} = {y p } and h(x + e i ) ∈ π(f (A 2p )) = {π(a 2p
)} = {y p + 1}. Thus h(x) and h(x + e i ) differ in every component, and we deduce that G(h) = K n . This proves (1).

We next prove another condition on A to obtain the complete digraph.

(2)

If |A| > n and |f (A)| = 1, then K n ∈ G(f ). Let a ∈ {0, 1} n such that f (A) = {a}. Since f = cst, there is b ∈ {0, 1} n with f (b) = a,
and thus b ∈ A. We consider three cases.

Suppose first that f (a) = a. Since |A| > n, there are n configurations a 1 , . . . , a n in A distinct from f (a). Then a 1 , . . . , a n , a, f (a) are all distinct, so there is a permutation π with π(a) = 0, π(f (a)) = 1 and π(a 

i ) = e i for 1 ≤ i ≤ n. Let h = π • f • π -1 . For i ∈ [n], we have h(e i ) = π(f (a i )) = π(a) = 0 and h(0) = π(f (a)) = 1, so h(e i )
a i ) = e i for i ∈ [n]. Let h = π • f • π -1 . For all i ∈ [n], we have h(e i ) = π(f (a i )) = π(a) = 1 and h(0) = π(f (b)) = π(b) = 0,
so h(e i ) and h(0) differ in every component, and thus 1). This proves [START_REF] Hueston | Optimal assignments of numbers to vertices[END_REF].

G(h) = K n . Suppose finally that f (a) = a and f (b) = b. Since |A| > n, there is A ⊆ A \ {f (b)} of size n. Then A ∪ {b} is an independent set of size n + 1 and |f (A ∪ {b})| = |{a, f (b)}| = 2 so K n ∈ G(f ) by (
We can now conclude the proof. Suppose that |A| ≥ 2n. Then we can choose A so that |A| = 2n. Suppose, for a contradiction, that

K n ∈ G(f ). If |f (A)| is even then K n ∈ G(f ) by (1) and if |f (A)| = 1 then K n ∈ G(f ) by (2). Thus |f (A)| = 2k + 1 for some 1 ≤ k < n. Let us write f (A) = {a 1 , . . . , a 2k+1 }, and let A p = f -1 (a p ) ∩ A for 1 ≤ p ≤ 2k + 1. Suppose, without loss, that |A 1 | ≤ |A 2 | ≤ • • • ≤ |A 2k+1 |. Then A = A \ A 1 is an independent set with |f (A )| = 2k. Setting m = n + k -1, if |A | > m, then K n ∈ G(f ) by (2). So 2k|A 2 | ≤ |A | ≤ m, thus |A 1 | ≤ |A 2 | ≤ m/2k. We deduce that 2n = |A| = |A 1 | + |A | ≤ m/2k + m. However, one easily checks that 2n > m/2k + m when 1 ≤ k < n, a contradiction. Thus K n ∈ G(f )
We are ready to prove Theorem 1. Let f = cst, id with n ≥ 5 components. Suppose, for a contradiction, that K n ∈ G(f ). Let F be the set of fixed points of f , and let L be a smallest subset of {0, 1} n intersecting every limit cycle of f of length ≥ 3. Let Γ be obtained from Γ(f ) by deleting the vertices in F ∪ L; then Γ has only cycles of length two, thus it is bipartite. Since K n ∈ G(f ), by Lemmas 1 and 2, we have |F | < 2n and |L| < n, thus Γ has at least N = 2 n -3n + 2 vertices. Since Γ is bipartite, it has an independent set A of size ≥ N/2. Then A is an independent set of f and since K n ∈ G(f ), we deduce from Lemma 3 that |A| < 2n. Thus 2n > N/2, that is, 7n > 2 n + 3, which is false since n ≥ 5. Thus K n ∈ G(f ).

Proof of Theorem 2

We first give a necessary and sufficient condition for the presence of a digraph in G(f ) that misses some arc with distinct ends. It has been obtained with Kévin Perrot, whom we thank, and its proof is in appendix. Given an n-component network f , and 1 ≤ k ≤ 2 n-1 , a k-nice set of f is a set A ⊆ {0, 1} n of size 2k with |f -1 (A)| and |f -1 (A) ∩ A| even. Lemma 4. Let f be an n-component network and distinct i, j ∈ [n]. Some digraph in G(f ) has no arc from j to i if and only if f has a (2 n-2 )-nice set.

Hence, to prove Theorem 2, it is sufficient to prove that, for n ≥ 5, f has always a (2 n-2 )-nice set. To use induction, it is more convenient to prove something stronger: if n ≥ 4 and 8 ≤ k ≤ 2 n-1 then f has always a k-nice set. In particular, if n ≥ 5 then 2 n-2 ≥ 8 thus f has a (2 n-2 )-nice set and we are done. So it remains to prove: Lemma 5. Let f be a network with n ≥ 4 components and 8 ≤ k ≤ 2 n-1 . Then f has a k-nice set.

Proof. We proceed by induction on k, decreasing from 2 n-1 to 8. For the base case, observe that {0, 1} n is a (2 n-1 )-nice set of f . Suppose that 8 < k ≤ 2 n-1 , and suppose that f has a k-nice set A. We will prove that f has a (k -1)-nice set included in A, thus completing the induction step. For that, we will define an equivalence relation on A, with at most 8 equivalence classes, and show that, since A ≥ 18, there always are two equivalent elements x, y ∈ A such that A \ {x, y} is a (k -1)-nice set of f . This relation is defined through 3 binary properties on the elements of A, defined below.

Let α, β, γ : A → {0, 1} be defined by: for all x ∈ A,

1. α(x) = 1 if and only if f (x) ∈ A, 2. β(x) = 1 if and only if |f -1 (x)| is even, 3. γ(x) = 1 if and only if |(f -1 (x) ∩ A) \ {x}| is even.
We say that x, y ∈ A are equivalent if α(x) = α(y) and β(x) = β(y) and γ(x) = γ(y). We say that x, y ∈ A are independent if f (x) = y and f (y) = x.

It is straightforward (and annoying) to check that if x, y ∈ A are equivalent and independent, then A \ {x, y} is a (k -1)-nice of f . Suppose now that f has no (k -1)-nice set. By the above property, there is no equivalence class containing two independent elements. Let A 0 = α -1 (0) and A 1 = α -1 (1). Each of A 0 , A 1 contains at most 4 equivalence classes. If x, y ∈ A 0 , then f (x), f (y) ∈ A, and thus x and y are independent. We deduce that each of the classes contained in A 0 is of size < 2, and thus |A 0 | ≤ 4. Also, one easily checks that any class of size ≥ 4 contains two independent elements. Hence each of the classes contained in A 1 is of size < 4, and thus

|A 1 | ≤ 12. But then |A| = |A 1 | + |A 2 | ≤ 16, a contradiction. Thus f has a (k -1)-nice set.

Proof of Theorem 3

If 1 ≤ n ≤ 9 and f is the identity on {0, 1} n , then G(f ) contains a unique digraph, which has n = n 2 /n ≥ n 2 /9 vertices. This proves the theorem for n ≤ 9. We treat the other cases with an explicit construction.

Given A ⊆ {0, 1} n with 0 ∈ A, we denote by f A the n-component network such that f A (A) = {0} and f A (b) = b for all b ∈ A. We will prove, in the next lemma, that if the size of A is carefully chosen, then, independently on the structure of A, G(f A ) has at least n 2 /9 arcs. It is then easy to prove that this lower bound holds for every digraph in G(f A ). Lemma 6. Let n ≥ 9 and A ⊆ {0, 1} n of size 2 n/4 with 0 ∈ A. Then G(f A ) has at least n 2 /9 arcs.

The key tool is the following lemma, which can be easily deduced from the well-known Harper's isoperimetric inequality in the hypercube (see the appendix). Let Q n be the hypercube graph, with vertex set {0, 1} n and an edge between x and y if and only if x and y differ in exactly one component. Let i ∈ I and j ∈ I. Let a ∈ A such that a i = 1. Since j ∈ I, a + e j ∈ A, thus f (a) = 0 and f (a + e j ) = a + e i , and f i (a + e j ) = a i = 1 since j = i. Hence G(f ) has an arc from j to i. We deduce that |I|•(n-|I|) ≤ m < n 2 /9, so n/4 • (n -|I|) < n 2 /9. Thus |I| > 5n/9 > n/2. This proves [START_REF] Gadouleau | On the influence of the interaction graph on a finite dynamical system[END_REF].

We deduce that some a ∈ A has a large weight.

(2) There is a ∈ A with w(a) > 3n/4. Suppose that w(a) ≤ 3n/4 for all a ∈ A. Let i ∈ I. Let a ∈ A with a i = 1, and w(a) maximal for that property. Then, for all j ∈ 0(a), we have a + e j ∈ A. Hence f (a) = 0 and f (a + e j ) = a + e j so f i (a + e j ) = a i = 1 since i = j. Thus G(f ) has an arc from j to i. We deduce that the in-degree of i in G(f ) is at least |0(a)| = n -w(a) ≥ n/4. Hence m ≥ |I| • n/4 and since |I| > n/2 by (1) we obtain m > n 2 /8 > n 2 /9, a contradiction. This proves (2).

Let A be the set of a ∈ A with w(a) ≥ n/3 -1, which is not empty by [START_REF] Hueston | Optimal assignments of numbers to vertices[END_REF]. For a ∈ A, let J(a) be the set of j ∈ [n] such that a + e j ∈ A, and let J (a) be the set of j ∈ [n] such that a + e j ∈ A . Let H be the subgraphs of Q n induced by A . If a ∈ A , then d(a) = |J (a)| is the degree of a in H. We will prove in (3) and ( 4) below that each vertex in H has large degree. Let K = 0(a) \ J (a) and i ∈ K. We have w(a + e i ) = w(a) + 1 ≥ n/3, thus if a + e i ∈ A then a + e i ∈ A ; but then i ∈ J (a), a contradiction. Thus a+e i ∈ A, so f (a) = 0 and f (a+e i ) = a+e i . We deduce that the out-degree of i in G(f ) is at least w(a We are now in position to finish the proof. Let d be the average degree of H. By (3) and ( 4), we have d > n/3. Using Lemma 7 we obtain 2 n/3 < 2 d ≤ |A | ≤ |A| = 2 n/4 , which is false because n ≥ 9.

+ e i ) ≥ n/3. Thus |K| • n/3 ≤ m < n 2 /9 so |K| < n/3.
We are now in position to conclude. Let n ≥ 9 and A ⊆ {0, 1} n of size 2 n/4 with 0 ∈ A, and let f = f A . Let π be any permutation of {0, 1} n and h = π • f • π -1 . We will prove that G(h) has at least n 2 /9 arcs. Let h be the n-component network defined by h (x) = h(x + π(0)) + π(0) for all x ∈ {0, 1} n . We have G(h) = G(h ). Let A = π(A) + π(0). We have 0 ∈ A and one easily check that h = f A . Since |A | = |A| = 2 n/4 , by Lemma 6, G(h ) = G(h) has at least n 2 /9 arcs.

A Examples

Consider the 6 following networks with two components, denoted from f 1 to f 6 (each is given under three forms: a table, a graph, and formulas). One can check that, given a network f = cst, id with 2 components: K 2 ∈ G(f ) if and only if f is isomorphic to one of the networks given above. Thus these 6 networks are the counter examples of Theorem 1 for n = 2. For instance, there are 6 networks isomorphic to f 1 , denoted from h 1 to h 6 (with h 1 = f 1 , given below with their interactions graphs. We deduce that G(f 1 ) contains three digraphs, each distinct from K 2 .

(x) = x 2 + 1 f 1 2 (x) = x 1 x f 2 (x) 00 
x h A corollary of Theorems 1 and 2, stated in the introduction, is that,

  and h(0) differ in every component, and thus G(h) = K n . Suppose now that f (a) = a and f (b) = b. Let a 1 , . . . , a n ∈ A, all distinct. Then a 1 , . . . , a n , a, b are all distinct since b = f (b) = a. So there is a permutation π with π(a) = 1, π(b) = 0 and π(

Lemma 7 .

 7 Let A ⊆ {0, 1} n be non-empty, and let d be the average degree of the subgraph of Q n induced by A. Then |A| ≥ 2 d . Proof of Lemma 6. Let f = f A and let m be the number of arcs in G(f ). Suppose, for a contradiction that m < n 2 /9. Let I be the set of i ∈ [n] with a i = 1 for some a ∈ A. Note that |I| ≥ n/4. Indeed, let B be the set of b ∈ {0, 1} n such that b i = 0 for all i ∈ I. Then A ⊆ B, and |B| = 2 |I| , thus |I| = log 2 |B| ≥ log 2 |A| ≥ n/4. From that observation, we can say something stronger: (1) |I| > n/2.

( 3 )

 3 If a ∈ A and w(a) ≥ n/3 then d(a) > n/3. Indeed, since w(a) ≥ n/3, for j ∈ J(a) we have w(a + e j ) ≥ n/3 -1 thus j ∈ J (a). Hence J(a) = J (a) so d(a) = |J(a)|. For all i ∈ J(a) we have f (a) = 0 and f (a + e i ) = a + e i , thus G(f ) has an arc from i to each component in 1(a + e i ). Thus the out-degree of i in G(f ) has at least w(a + e i ) ≥ n/3 -1. We deduce that (n -|J(a)|) • (n/3 -1) ≤ m < n 2 /9, so d(a) = |J(a)| > 2n/3 -3 and since n ≥ 9 we obtain d(a) > n/3. This proves (3).

( 4 )

 4 If a ∈ A and w(a) < n/3 then d(a) > n/3.

  Since w(a) < n/3 we have |0(a)| > 2n/3. So |K| ≥ 2n/3-|J (a)| and thus d(a) = |J (a)| > n/3. This proves (4).
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for any network f with n ≥ 5 components, we have |G(f )| = 1 if and only if f = id or f = cst. This is also true for n = 3 (checked by computer) and open for n = 4. But for n = 2, f 2 is a counter example, the only one with two components. Indeed, there are 3 networks isomorphic to f 2 , denoted from g 1 to g 3 (with g 1 = f 2 ), given below, and they have the same interaction graph, with a loop on each vertex, as for the identity.

x g 1 

x g 

B Lemma for the proof of Theorem 1

Lemma 8. Let 1 ≤ k ≤ n and let s 1 , . . . , s 2k be positive integers with sum equal to n+k. If n ≥ 5, then there are disjoint subsets X 1 , . . . , X 2k ⊆ {0, 1} n of size s 1 , . . . , s 2k such that, for every i ∈ [n], there is p ∈ [k] and x ∈ X 2p-1 with x + e i ∈ X 2p .

Proof. Let I 1 , . . . , I 2k be a partition of [n] (with some members possibly empty) such that, for 1 ≤ ≤ 2k, the size of I is s -1 if is odd, and s otherwise; it exists since the sum of the s is n + k. For 1 ≤ p ≤ k, select a configuration x 2p-1 ∈ {0, 1} n , a component j 2p ∈ I 2p , and let

Then i ∈ I for some 1 ≤ ≤ 2k. If = 2p -1 then, setting x = x 2p-1 + e j 2p + e i , we have x ∈ X 2p-1 and x + e i = x 2p-1 + e j 2p ∈ X 2p . If = 2p then, setting x = x 2p-1 , we have x ∈ X 2p-1 and x + e i ∈ X 2p . Thus we only have to prove that we can choose the configurations x 2p-1 so that the sets X 1 , . . . , X 2k are pairwise disjoint. This is obvious if k = 1 (and it works for any choice of x 1 ). If k = 2, then, since n ≥ 5, one easily check that X 1 , . . . , X 2k are disjoint by taking x 1 = 0 and x 3 = 1. Suppose now that k ≥ 3 and choose x 2p-1 = e j 2p-2 for all p ∈ [k], where j 0 means j 2k . Then each X 2p-1 contains configurations of weight 1 or 3 and each X 2p contains configurations of weight 2. Hence, given 1

If w(x) = 1 then we deduce that x = e j 2p-2 = e j 2q-2 which is false since p = q.

If w(x) = 3 then x i = 1 for some i ∈ I 2p-1 while

Then x = e j 2p-2 + e i 2p = e j 2q-2 + e i 2q for some i 2p ∈ I 2p and i 2q ∈ I 2q . Thus i 2p = j 2q-2 and i 2q = j 2p-2 . Hence j 2q-2 ∈ I 2p , and since p < q this implies q = p + 1. Also, j 2p-1 ∈ I 2q and since p < q this implies p = 1 and q = k, but then q = p + 1 since k ≥ 3. Thus indeed X 2p ∩ X 2q = ∅. Hence the sets X 1 , . . . , X 2k are indeed pairwise disjoint.

C Lemma for the proof of Theorem 2

We prove Lemma 4, restated below. We first give some definitions. Given X ⊆ {0, 1} n and i ∈ [n], we say that X is closed by e i if X = X + e i . One easily check that if X, Y ⊆ {0, 1} n are closed by e i , then so is X ∩ Y . Also, if |X| is closed by e i then |X| is even. Indeed, let X 0 be the set of of x ∈ X with x i = 0 and X 1 = X \ X 0 . We have

Let f be a n-component network and distinct i, j ∈ [n]. Some digraph in G(f ) has no arc from j to i if and only if f has a (2 n-2 )-nice set.

Proof. Let h = π • f • π -1 for some permutation π of {0, 1} n , and suppose that G(h) has no arc from j to i. Let X be the set of x ∈ {0, 1} n with x i = 0, of size 2 n-1 , and let X -= h -1 (X). If x ∈ X -, that is, h i (x) = 0, then h i (x + e j ) = 0 since otherwise G(h) has an arc from j to i. Thus

x + e j ∈ X -. Hence X -is closed by e j thus |X -| is even. Since j = i, X is also closed by e j , so X -∩ X is closed by e j and thus |X -∩ X| is even.

∩ A| are even, and thus A is a (2 n-2 )-nice set of f . Conversely, suppose that f has a (2 n-2 )-nice set A, thus of size 2 n-1 . Let A -= f -1 (A). Then |A|, |A -| and |A -∩A| are even, so |A\A -| and |A -\A| are also even. Hence there is a a balanced partition (A 1 , A 2 ) of A ∩ A -, a balanced partition (A 3 , A 4 ) of A \ A -, and a balanced partition

12 For k = 0, 1, let Y k be the set of x ∈ {0, 1} n with x i = k and x j = 0. Since |A| = 2 n-1 we have

One easily check that: X is the set of x ∈ {0, 1} n with x i = 0; X -is closed by e j ; and X -= h -1 (X). We will prove that G(h) has no arc from j to i. Suppose, for a contradiction, that there is x ∈ {0, 1} n with h i (x) = h i (x + e j ). Without loss, we can assume that h i (x) = 0, that is, h(x) ∈ X. So x ∈ X -, hence x + e j ∈ X -, thus h(x + e j ) ∈ X, that is, h i (x + e j ) = 0, a contradiction. Thus G(h) has no arc from j to i.

D Lemma for the proof of Theorem 3

For X ⊆ {0, 1} n , let ∂(X) be the number of edges in Q n with exactly one end in X; equivalently, it is the number of pairs (x, i) with x ∈ X and i ∈ [n] such that x + e i ∈ X. We can regard |X| as the volume of X and δ(X) as its perimeter and ask: what is the minimum perimeter for a given volume?

The answer is Harp's isoperimetric inequality, from 1964 [START_REF] Hueston | Optimal assignments of numbers to vertices[END_REF]. We denote by L k the first k configurations in {0, 1} n according to the lexicographic order (e.g. for n = 4 we have L 5 = {0000, 1000, 0100, 1100, 0010}).

In practice, the following approximation is often used; see [START_REF] Kahn | An isoperimetric inequality for the hamming cube and some consequences[END_REF] for instance. From this inequality, we deduce Lemma 7, that we restate.