
HAL Id: hal-03235739
https://hal.science/hal-03235739

Submitted on 25 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Are There Differences in Learning Gains When
Programming a Tangible Object or a Simulation?

Grégoire Fessard, Patrick Wang, Ilaria Renna

To cite this version:
Grégoire Fessard, Patrick Wang, Ilaria Renna. Are There Differences in Learning Gains When Pro-
gramming a Tangible Object or a Simulation?. Proceedings of the 2019 ACM Conference on Innovation
and Technology in Computer Science Education, 2019, �10.1145/3304221.3319747�. �hal-03235739�

https://hal.science/hal-03235739
https://hal.archives-ouvertes.fr

Are There Differences in Learning Gains When Programming a
Tangible Object or a Simulation?

Grégoire Fessard
Institut Supérieur d’Électronique de

Paris
Paris, France

gregoire.fessard@isep.fr

Patrick Wang
Institut Supérieur d’Électronique de

Paris
Paris, France

patrick.wang@isep.fr

Ilaria Renna
Institut Supérieur d’Électronique de

Paris
Paris, France

ilaria.renna@isep.fr

ABSTRACT
Physical computing is about programming and interacting with a
tangible object to learn fundamental concepts of Computer Science
(CS). This approach presents several benefits regarding motivation,
creativity, and learning gains. Yet, these learning gains hardly are
compared with those resulting from the programming of a simula-
tion of a tangible object. In this article we present the results of a
comparative study that has been conducted to explore this issue.
With this study, we aimed to determine whether the programming
of a tangible object or its digital simulation yields significantly dif-
ferent learning gains. In the experiment we conducted, participants
(aged 14-17 with little or no prior programming knowledge) were
divided into two groups: one programmed a tangible electronic
board (the BBC micro:bit) while the other programmed a simula-
tion of it. The results of this experiment suggest that, while each
group significantly improved their understandings of fundamental
CS concepts (i.e., variables, conditions, and loops), no significant
difference was found when comparing the learning gains between
the two groups.

CCS CONCEPTS
• Human-centered computing → User studies; • Social and
professional topics→ Computing education.

KEYWORDS
computer science education; comparative study; physical comput-
ing; digital computing; block-based programming

ACM Reference Format:
Grégoire Fessard, Patrick Wang, and Ilaria Renna. 2019. Are There Dif-
ferences in Learning Gains When Programming a Tangible Object or a
Simulation?. In Innovation and Technology in Computer Science Education
(ITiCSE ’19), July 15–17, 2019, Aberdeen, Scotland UK. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3304221.3319747

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE ’19, July 15–17, 2019, Aberdeen, Scotland UK
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6301-3/19/07. . . $15.00
https://doi.org/10.1145/3304221.3319747

1 INTRODUCTION
Physical computing refers to the “design of tangible and interactive
object using programmable hardware” [19]. Physical computing dif-
ferentiates itself from amore traditional teaching approach that uses
the command line as sole interface to the program execution. With
the development of programmable robots and electronic boards,
researchers took an interest in physical computing as a means to
introduce computer science and programming to teenagers [9, 24].
However, and while focused on identifying the benefits of physical
computing, these studies do not compare their results with what
could be achieved with digital computing (i.e., the programming of
a simulation of a tangible object).

In this article, we present a study designed to determine whether
physical computing is more beneficial than digital computing (or
vice-versa) to the learning and understanding of basic programming
concepts (namely variables, conditional structures, and iterative
structures). For this study, we have conducted an experiment which
uses the BBC micro:bit. This electronic board can be programmed
using a block-based programming language and was provided to
our participants under either its tangible or simulated form.

In the following section, we provide a literature review of the
use of physical computing to introduce programming to teenagers.
In particular, we also look at block-based programming languages
as they are often implemented in physical computing systems. In
Sections 3 and 4, we describe the programming environment and
the experimental protocol used in this study. Section 5 presents the
results obtained in our experiment. Finally, the last two sections are
dedicated to a discussion of our results and a description of future
works that we plan on conducting.

2 LITERATURE REVIEW
The literature review on Computer Science Education has thor-
oughly investigated the learners’ misconceptions and difficulties
related to programming. For example, du Boulay [5] identifies three
main difficulties. The first one concerns notationwhich refers to the
difficulty of mastering the syntax and semantics of a programming
language. The second difficulty relates to structures i.e., designing al-
gorithms with the smallest units of programming instructions. The
third difficulty is understanding the concept of notional machine
which means realizing that the behavior of a machine is dictated
by the programs being executed and the interactions the user has
with this machine. Some more practical difficulties are also men-
tioned in the state of the art, and in particular regarding students’
misconceptions of programming concepts [20, 26].

https://doi.org/10.1145/3304221.3319747
https://doi.org/10.1145/3304221.3319747

Visual programming languages, and especially block-based ones,
are often used to alleviate the first two aforementioned difficulties.
These programming languages are designed to allow learners to
focus on the structure of an algorithm rather than on the syntax re-
quired to implement such algorithm. A comparative study between
block-based and text-based programming languages showed that
the use of a block-based programming language led to a better un-
derstanding of key programming notions [28]. This result explains
the many studies benefiting from the use of block-based program-
ming languages in introductory programming courses [17, 29].

Constructionism [18] is a theory often cited in Computer Sci-
ence Education research which stipulates that “building knowledge
structures [. . .] happen especially felicitously in a context where the
learner is consciously engaged in constructing a public entity” [18,
p. 1]. This theory is sometimes used to tackle the third difficulty
we previously mentioned: there is a strong relation between de-
signing a programmable object and seeing its behavior responds to
changes in its program. As a result, constructionism paved the way
to numerous studies using programmable objects in introductory
programming courses. In the literature, such programmable objects
could take two different shapes: they could either be tangible (e.g.,
LEGO Mindstorms [3], .NET Gadgeteer [9], or Thymio II [14]) or
digital (e.g., Scratch [21] or Alice [4]).

Since physical computing concerns the design of tangible and
programmable object, it is in a way inspired by constructionism.
The literature review on physical computing highlights several
advantages: increased learners’ motivation and creativity [24], the
inclusion of underrepresented minorities in Computer Science [23],
and learning gains [3]. However, similar results can be also found
when digital programmable objects are used to introduce Computer
Science and programming [4, 15, 17].

Both situations (physical and digital computing) lead to learning
gains, yet there is (to the best of our knowledge) no study trying to
assess whether a situation is more beneficial than the other. The
literature on Computer Science Education presents few studies
using both a tangible programmable object and an equivalent sim-
ulation [2, 6, 8]. However, these articles do not compare learning
gains but rather describe a system in which tangible and digital
objects are complementary.

In this study, we wish to fill this gap in the literature by com-
paring the learning gains obtained from programming a tangible
object or an identical simulation. Therefore, we ask the following
research question: “are there differences in learning gains when
programming a tangible object or an equivalent simulation of it?”
In particular, we focused on the learning of three essential program-
ming notions namely variables, conditional structures, and iterative
structures. We thus re-formulate the previous question to focus on
the learning of these three concepts.

To answer these three questions, we have developed a program-
ming environment (described in the following section) with the
objective of providing an identical user experience whether the
user programs a tangible object or its simulation.

3 PROGRAMMING ENVIRONMENT
The programming environment used in our experiment consists of
two components: the BBCmicro:bit as the programmable object and

the programming Web interface which implements a block-based
programming language. Because we wish to compare the effects
of physical and digital computing on students’ learning gains, this
programming environment comes in two versions: one for program-
ming the tangible BBC micro:bit and the other for programming
its simulation. These two versions provide an almost identical pro-
gramming user experience as described in the following sections.

3.1 Programmable Object
The BBC micro:bit1 is a programmable electronic board first re-
leased in 2016 in the United Kingdom. The objective of such an
initiative was to make programming more accessible to teenagers
by distributing these devices to middle school pupils aged 12-13
for free [1]. Since then, the BBC micro:bit has been used in several
research projects related to introductory Computer Science courses,
with positive results regarding the students’ motivation, creativity,
and basic knowledge of programming [22, 24, 25].

The micro:bit is a 4 × 5 cm pocket device that is equipped with
a 256 kB flash memory and an ARM processor that controls all
the components on the board. Some of these components are used
to manage inputs and outputs. In particular, the micro:bit has an
accelerometer, two push buttons, and a 5 × 5 grid of LEDs (see Fig-
ure 1). Because we target elementary programming notions, com-
ponents that require at least a basic understanding of event-driven
computing were not used in our experiment. As a consequence,
we mainly took advantage of the LEDs to display information to
the users. These LEDs can display alphanumeric characters or pre-
defined shapes (see, for example, the heart in Figure 2, Zone 3).
Longer texts can also be displayed on this grid thanks to a scrolling
mechanism.

Figure 1: On the left, the tangiblemicro:bit card. On the right,
a digital simulation.

To simulate the micro:bit, open source programs can be found
on the Internet. For our experiment, we have exploited a program
written in Javascript2 which allowed us to easily implement the
micro:bit simulation in our programming Web interface. This simu-
lation was mainly used to display messages with the LEDs but it
could also have replicated the effects of pressing the push buttons or
activating the accelerometer if we wanted to use these components.
1https://microbit.org/
2https://github.com/Microsoft/pxt-microbit

https://microbit.org/
https://github.com/Microsoft/pxt-microbit

Figure 2: The block-based Web interface for programming the simulation of the micro:bit.

The execution of a program on the tangible micro:bit requires
that it is connected to a computer via a USB cable. Its firmware can
be updated by transferring a binary file to the flash memory of the
micro:bit; this file actually contains the new program to be executed.
The process of executing a program on the simulation is a little
different: Javascript functions we have implemented are called to
update the behavior of the simulation displayed on the screen. The
internal process of executing a program on the tangible or simulated
micro:bits might be different but, as explained in Section 3.2, it is
invisible to the user: the simple action of pressing a button on the
programming Web interface will let the user execute a program in
both situations (with a tangible or a simulated micro:bit).

The two versions of the micro:bit can generate identical results
for a same program. This was done to ensure an identical program-
ming experience for the user regardless of the programmable object
used. The only difference between the tangible and digital micro:bit
lies in the space in which they can be manipulated. The interac-
tions with the physical micro:bit can happen in a three-dimensional
space: the board can be moved or flipped over. However, the dig-
ital micro:bit is statically represented in two dimensions on the
computer screen: it cannot be moved nor rotated around any axis.

3.2 Programming Interface
We have developed a programming Web interface to program the
micro:bit (see Figure 2). This interface implements Blockly3, a li-
brary that allows users to write code using a block-based visual
programming language. Two versions of this interface were also
developed: one for programming the tangible micro:bit and one for
programming its simulation. However these two interfaces differ

3https://developers.google.com/blockly/

in only a small part as described later in this section. Figure 2 illus-
trates the interface designed to program the micro:bit simulation.
It can be divided in 3 main zones of interest.

Zone 1 displays some identification information related to the
current user and a drop down menu which can be used to select a
programming exercise out of all the proposed ones. The wording
of the currently selected exercise is displayed beneath this drop
down menu. These exercises are the same whether the user is
programming the tangible or simulated micro:bit. The design of
these exercises will be detailed in Section 4.2.

Zone 2 corresponds to the code edition area. The left-hand part
in grey displays all the categories of blocks that can be used with
this programming interface. For this experiment, we proposed five
different categories: Display, Math, Variables, Logic, and Loops.
Each category contains blocks that are specific to their theme. As an
example, we will explain in details the “Display” category showed
in Figure 2. This category contains three different blocks:

• the first one must be completed with another block in order
to display a number on the micro:bit;

• the second block of this category allows the user to design a
shape and to display it on the board;

• the last block can be used to display a pre-configured picto-
graph.

A user can build a program by dragging and dropping blocks
from whichever category into the workspace (with the white back-
ground). A user can also create more complex programs by com-
bining several different blocks like shown in Figure 3.

Zone 3 is the only zone of the programming interface that is
different between the tangible and the simulation case. If the user
programs the simulated micro:bit, Zone 3 displays the simulation

https://developers.google.com/blockly/

which is updated each time the program is executed. If the user
programs the tangible micro:bit, the simulation is replaced with
instructions on how to execute a program on the tangible device.

Figure 3: An example of a complex program written with
multiple blocks.

We have made the process of executing the program on the mi-
cro:bit identical whether the user is programming the tangible or
simulated device. Indeed, the user simply needs to click on the but-
ton located at the bottom of Zone 2. If programming the simulation,
the program is directly executed on the display. If programming
the tangible micro:bit, this leads to the block-based program being
converted into a binary file and automatically transferred to the
device. This results in an identical user experience whether the
programmable object used is the tangible or simulated one.

4 EXPERIMENTAL PROTOCOL
To provide answers to our research questions, we have conducted an
experimentation with teenagers aged 14-17 (n = 36, µ = 15.6 year
old, with 9 girls and 27 boys). We asked the participants to assess
their prior knowledge of programming before the experiment took
place. Of the 36 participants, 23 declared having “no prior knoledge”
and 13 affirmed having a “basic understanding” of programming.
These participants were divided into two groups: one programming
the tangible micro:bit and the other programming its simulation.
The group composition has been defined prior to the experiment
so as to balance both groups in terms of age, gender, and prior
knowledge. This distribution was validated by a post-experiment
analysis, which is presented in Section 5.1. The experimental pro-
tocol designed for this study is composed of a pre- and post-test
questionnaire and a set of programming exercises (as seen in Fig-
ure 2, Zone 1). The questionnaire and exercises targeted the notions
of variables, conditional structures, and iterative structures. Since
we did not make any assumption, the hypothesis we wanted to test
was that programming a tangible object or its simulation causes
different learning gains for each of these concepts.

The experiment went through four phases. The first phase con-
sisted in a presentation to our participants of the programming
Web interface and its block-based programming language. During
this phase, we did not introduce any concept of programming ex-
cept for the display of information on the grid of LEDs. Indeed,
this was necessary for the participants to understand the pre-test
questionnaire, which was administered during the second phase
of the experiment. The third phase consisted in working on the
programming exercises. Finally, the fourth phase concerned the an-
swering of the post-test questionnaire. During the whole duration
of the experiment, participants were asked to work individually
and we would intervene only to provide a technical support.

4.1 Pre-Test and Post-Test Questionnaire
The pre- and post-test questionnaire was composed of 14 multiple
choice questions: five on the concept of variables, five on conditional
structures, and four on iterative structures. For each notion, the
questions were ordered in an increasing difficulty. We based this
ordering and the design of the questionnaire on the revised Bloom’s
taxonomy [11].

Each question asked for the result of a small program written
with blocks. The blocks used in this questionnaire actually were
identical to the ones implemented in the programming Web in-
terface. This design decision was made to suppress the risk of
misunderstanding the programs written in each question.

These questions were also designed to require knowledge of a sin-
gle and unique programming notion at a time. For example, we did
not introduce questions using the notion of loop variable because
it would necessitate to use knowledge related to both variables and
iterative structures. This detail is important in the design of our
study because it would have been much more difficult to identify
separately the learning gains for each concept otherwise. Figure 4
illustrates three questions that we used, one for each concept (ie.,
variables, conditionals, and loops).

Each question only has a single correct answer. We based the
design of the other wrong answers on the literature review on
students’ misconceptions [20, 26]. This makes for plausible answers
that participants might be inclined to select.

Figure 4: Three examples of questions used in the pre- and
post-test questionnaire: left for variables, center for condi-
tionals, right for loops.

4.2 Programming Exercises
During the third phase of the experiment, participants had 15 pro-
gramming exercises to solve. Of these 15 exercises, four were on
variables, three on conditional structures, and four on iterative
structures. We also designed an exercise which was to be solved
before all the others to familiarize our participants to the program-
ming environment. We proposed another three exercises mixing
concepts which were to be solved after all the others.

The design of the programming exercises used the same ap-
proach we have described in Section 4.1 for the pre- and post-test
questionnaire. We used Qian and Lehman’s literature review [20]
to design exercises that could lead our participants into making
mistakes and learning from them. The exercises were also proposed
in an increasing level of difficulty; for each concept, the level of
details provided in the wordings decreased while the number of
blocks to manipulate increased from an exercise to the following

one. Figure 5 illustrates this last point with two exercises of differ-
ent levels of difficulties: Exercise 5 corresponds to the last exercise
on variables and Exercise 6 is the first one on conditional structures.
Exercise 6 explicitly tells the learner which blocks should be used
to solve the exercise while the wording of Exercise 5 is less detailed.

Participants were asked to do the exercises in the order they were
proposed. However, our interface did not implement any automated
assessment tool and the participants were free to go to the next
exercise as they pleased. They were also authorized to go back to
any previous exercise to see or modify their solutions as they were
displayed back in the editor in Zone 2 of the programming interface.

This last point implies that the states of the exercises are saved
from an exercise to the other. We also have implemented functions
to save all the participants’ interactions with the programming
interface. These logs are not detailed in this article as they will be
used in a later stage of this research project.

Figure 5: Two examples of questions with different levels of
details in their wordings.

5 RESULTS

5.1 Validation of the Experimental Protocol
As mentioned in Section 4, the experiment gathered 36 participants
aged 14-17. These participants were separated into two groups:

• The first group programmed the tangible micro:bit (n = 18,
µ = 15.6 year old). This group was composed of five girls
and 13 boys. Eleven participants declared having no prior
knowledge of programming and seven having an elementary
understanding of programming.

• The second group programmed the simulation of the mi-
cro:bit (n = 18, µ = 14.8 year old). This group was composed
of four girls and 14 boys. In this group, 12 participants de-
clared having no prior knowledge of programming and six
having an elementary understanding of programming.

Because the participants were divided into groups before the start
of the experiment, we wanted to verify that this distribution did not
introduce a preliminary bias regarding the average initial program-
ming knowledge of each group. Thus, we performed a two-tailed
unpaired t-test to verify that the two groups were homogeneous in
terms of initial programming knowledge. The results of this test
(t = 1.499, p = 0.145 > 0.05) indicate that the mean scores obtained
by each group for the pre-test were not significantly different. This
first result confirms that the a priori group compositions did not
introduce any initial bias in our experiment.

5.2 Learning Gains
Table 1 summarizes the scores obtained at the pre- and post-test.

5.2.1 Overall learning gains. We wanted to verify that partici-
pants to our experiment had significantly higher post-test scores,
which would validate the design of our programming exercises. For
this analysis, we performed two one-tailed paired t-tests: once for
the group programming the tangible micro:bit and once for the
group programming the simulated micro:bit. The results of the test
(t = 8.574, p = 7.014e-8 ≪ 0.05) suggest that the scores obtained at
the post-test were significantly higher than those obtained at the
pre-test for the participants programming the tangible micro:bit. A
similar conclusion can be drawn for the participants programming
the simulation of the micro:bit (t = 5.242, p = 3.311e-5 ≪ 0.05).
This aspect validates the design of our exercises to introduce ele-
mentary concepts to participants with little or no prior knowledge
of programming.

We also wanted to compare the learning gains between each
group by performing a two-tailed unpaired t-test. For each partici-
pant, the learning gain was calculated by subtracting the pre-test
score to the post-test score. The results of this test (t = 0.687,
p = 0.497 > 0.05) suggest that there was no significant difference
between the average learning gains of each group.

5.2.2 Variables. We first evaluated the learning gains related to the
concept of variables. We have used, for both groups, a one-tailed
paired t-test to determine whether the results of the post-test were
better than those of the pre-test. Regarding the group programming
the tangible object, no significant increase could be found (t = 0.325,
p = 0.375 > 0.05). The results concerning the group programming
the simulation are similar (t = 1.046, p = 0.155 > 0.05).

Since both groups did not significantly improve their scores from
pre-test to post-test, we did not pursue our analysis any further
with a comparison of the learning gains between each group.

5.2.3 Conditional Structures. We have performed a similar analysis
regarding the concept of conditional structures. For the group pro-
gramming the tangible object, the results of the one-tailed paired
t-test (t = 6.556,p = 2.449e-6 ≪ 0.05) show that the scores have sig-
nificantly improved from pre-test to post-test. A similar conclusion
can be drawn for the group programming the simulation (t = 6.761,
p = 1.664e-6 ≪ 0.05). These results suggest that both groups have
improved their understandings of conditional structures.

We have continued our analysis to highlight whether one group
had higher learning gains than the other. Since we do not make any
assumption as to which programming environment yields better
results, we have performed a two-tailed unpaired t-test. The results
(t = 1.425, p = 0.163 > 0.05) suggest that there is no significant dif-
ference in learning gains on conditional structures when a student
programs a tangible object or a simulation.

5.2.4 Iterative Structures. Finally, we have run the same tests for
the concept of iterative structures. The results of the one-tailed
paired t-tests (t = 6.174 and p = 5.099e-6 ≪ 0.05 for the group
programming the tangible micro:bit, and t = 3.915 and p = 5.579e-
4 ≪ 0.05 for the group programming the simulated micro:bit) show
that both groups significantly improved their scores from pre-test to
post-test, indicating a better understanding of iterative structures.

However, and once again, the results of the two-tailed unpaired
t-test (t = 0.586, p = 0.562 > 0.05) show that the two programming

Table 1: Results of the pre- and post-test for each group of participants.

Group Variables (5 pts) Conditional Structures (5 pts) Iterative Structures (4 pts)
Pre-test Post-test Pre-test Post-test Pre-test Post-test

Tangible micro:bit µ = 4.167 µ = 4.222 µ = 1.667 µ = 4.167 µ = 2.389 µ = 3.444
σ 2 = 0.735 σ 2 = 0.889 σ 2 = 1.059 σ 2 = 1.441 σ 2 = 0.840 σ 2 = 0.497

Simulated micro:bit µ = 3.611 µ = 4.000 µ = 1.389 µ = 3.222 µ = 2.222 µ = 3.111
σ 2 = 2.605 σ 2 = 0.941 σ 2 = 0.605 σ 2 = 1.595 σ 2 = 0.771 σ 2 = 0.928

environments seem to lead to equivalent learning gains regarding
iterative structures.

6 DISCUSSION
The results of our study suggest that, while both groups signifi-
cantly improved their scores at the post-test, there is no significant
difference in learning gains when a student programs a tangible
object or an exact equivalent simulation of it. A possible explana-
tion for these results could be the fact that the experiment did not
heavily rely on the manipulation of the tangible micro:bit. Indeed,
the design of our exercises did not encourage participants to in-
teract physically with the tangible device and the handling of the
micro:bit had no impact on the program being executed. Still, these
results question the benefits of using physical computing to learn
elementary programming concepts as mentioned in the literature.

Our study involves participants that are older than the students
usually initiated to programming with physical computing. The
rationale behind this design decision is that we wanted to have par-
ticipants that could progress in the activities without our assistance.
Indeed, we did not teach any preliminary knowledge nor helped
the participants during the experiment. Moreover, this let us have
a really controlled set-up for this initial study about comparing
learning gains using a tangible object or its simulation.

Regarding the concept of variable, results did not show any
significant learning gain between the pre-test and the post-test.
Indeed, both groups obtained good pre-test scores as shown in
Table 1, which left little space for improvement in the post-test. We
identified two possible reasons: the questions were too simple or
the notion of variable is much easier to understand than the others.
This last point can actually also be found in other studies [29].

Our experiment presents several possible points of improvement.
Firstly, participants could interact with the programming environ-
ment only for half a day. Although our results show a significant
learning gain for each group, it would be interesting to analyze data
from a longer experiment conducted for example in an institutional
context. Such an experiment would make it possible to comment on
the interest of using programmable tangible objects in introductory
programming courses.

Secondly, while our experiment involved a non-negligible sam-
ple size, it could be interesting to run a study with more participants.
This would allow us to have a more representative sample from a
statistical point of view. The results of such an experiment would
complement those presented in this article and would also pro-
vide a stronger conclusion regarding the interest of using physical
computing for the introduction and learning of programming.

7 CONCLUSION AND FUTUREWORK
In this article, we presented a study which compared the learning
gains when a learner programs a tangible object or its simulation.
The results indicate that, although a significant learning is observed
in both cases, these situations appear to be broadly equivalent in
terms of overall programming learning gains. More specifically, we
could not observe a significant difference between these two situa-
tions regarding the learning of conditional and iterative structures.
This conclusion questions us about the intrinsic benefits of physical
programming sometimes mentioned in the literature. To further
explore the potential benefits of physical and digital programming
we plan to, in the future, improve our experimental set-up as follow.

The first area for future work concerns the study of learners’
behaviors when they face a programming environment involving
a tangible object or a simulation. During our experiment, learners
had to answer a meta-cognitive [7, 13] questionnaire designed to
evaluate how they situate themselves in the learning process [30]. In
particular, we wish to evaluate if they experienced a flow [10] while
learning programming and if this kind of exercise could improve
their empowerment [12]. In this way, we hope to be able to provide
additional answers about the extent of motivation and creativity
when learners use physical and/or digital programming.

During the experiment, we also recorded the users interactions
with the programming interfaces: all the participants’ actions and
mouse positions were logged. We are going to analyze this data
to search for patterns or strategies used by learners to solve the
programming exercises. Moreover, by looking at the participants’
actions from one exercise to the other, we also aim to highlight
the evolution of their understandings of a specific programming
concept. Finally, this analysis will be coupled with the results of the
pre- and post-tests to find possible correlations between learning
strategies and learning gains.

Finally, we wish to conduct two new experiments. The first one
will improve the study presented in this article by addressing the
lack of physical interactions previously discussed. With a similar
set-up (i.e., homogeneity of initial knowledge, same age group, bal-
anced distribution between girls and boys), this new experiment
will benefit from the push buttons and accelerometer present on
the micro:bit and mentioned in Section 3.1 to engage participants
in physically interacting with the tangible board. The second ex-
periment will be designed to identify learning gains differences
when physical computing is used in STEM (Science, Technology,
Engineering, Mathematics). Some articles already present this type
of practice [16, 27] and the idea is to conduct a similar compara-
tive study with younger participants to highlight the benefits of
physical computing in learning STEM notions.

REFERENCES
[1] Thomas Ball, Jonathan Protzenko, Judith Bishop, Michal Moskal, Jonathan de

Halleux, Michael Braun, Steve Hodges, and Claire Riley. 2016. Microsoft Touch
Develop and the BBC micro:bit. In 2016 IEEE/ACM 38th International Conference
on Software Engineering Companion (ICSE-C). IEEE, Austin, TX, USA, 637–640.

[2] Philipp Brauner, Thiemo Leonhardt, Martina Ziefle, and Ulrik Schroeder. 2010.
The Effect of Tangible Artifacts, Gender and Subjective Technical Competence on
Teaching Programming to Seventh Graders. In Teaching Fundamentals Concepts
of Informatics. Springer Berlin Heidelberg, Berlin, Heidelberg, 61–71.

[3] Daniel C. Cliburn. 2006. Experiences with the LEGO Mindstorms Throughout
the Undergraduate Computer Science Curriculum. In Proceedings. Frontiers in
Education. 36th Annual Conference. IEEE, San Diego, CA, USA, 1–6.

[4] Stephen Cooper, Wanda Dann, and Randy Pausch. 2000. Alice: a 3-D Tool
for Introductory Programming Concepts. In Proceedings of the Fifth Annual
CCSC Northeastern Conference on The Journal of Computing in Small Colleges
(CCSC ’00). Consortium for Computing Sciences in Colleges, USA, 107–116.
http://dl.acm.org/citation.cfm?id=364132.364161

[5] Benedict du Boulay. 1986. Some Difficulties of Learning to Program. Journal of
Educational Computing Research 2, 1 (1986), 57–73.

[6] Barry Fagin. 2003. Ada/Mindstorms 3.0. IEEE Robotics & Automation Magazine
10, 2 (2003), 19–24.

[7] John H. Flavell. 1979. Metacognition and cognitive monitoring: a new area of
cognitive-developmental inquiry. American Psychologist 34, 10 (1979), 906–911.

[8] Aaron Garrett and David Thornton. 2005. A Web-Based Programming Environ-
ment for LEGO Mindstorms Robots. In Proceedings of the 43rd Annual Southeast
Regional Conference - Volume 2 (ACM-SE 43). ACM, New York, NY, USA, 349–350.
https://doi.org/10.1145/1167253.1167333

[9] Steve Hodges, James Scott, Sue Sentance, Colin Miller, Nicolas Villar, Scarlet
Schwiderski-Grosche, Kerry Hammil, and Steven Johnston. 2013. .NET Gadgeteer:
A New Platform for K-12 Computer Science Education. In Proceeding of the 44th
ACM Technical Symposium on Computer Science Education (SIGCSE ’13). ACM,
New York, NY, USA, 391–396. https://doi.org/10.1145/2445196.2445315

[10] Paolo Inghilleri, Giuseppe Riva, and Eleonora Riva. 2018. Enabling Positive Change.
https://content.sciendo.com/view/title/506140

[11] David R. Krathwohl. 2002. A Revision of Bloom’s Taxonomy: An Overview.
Theory Into Practice 41, 4 (2002), 212–218.

[12] Creative Commons Attribution ShareAlike 4.0 International License. 2015. Intro-
duction to Physical Computing. Technical Report. Maker Education Initiative.

[13] Jennifer Livingston. 2003. Metacognition: An Overview. (01 2003).
[14] Stéphane Magnenat, Fanny Riedo, Michael Bonani, and Francesco Mondada.

2012. A Programming Workshop Using the Robot “Thymio II”: The Effect on the
Understanding by Children. In 2012 IEEE Workshop on Advanced Robotics and its
Social Impacts. IEEE, Munich, Germany, 24–29.

[15] Louis Major, Theocharis Kyriacou, and Pearl Brereton. 2014. The Effectiveness
of Simulated Robots for Supporting the Learning of Introductory Programming:
a Multi-Case Case Study. Computer Science Education 24, 2-3 (2014), 193–228.

[16] Michela Maschietto and Sophie Soury-Lavergne. 2013. Designing a Duo of
Material and Digital Artifacts: the Pascaline and Cabri Elem e-Books in Primary
School Mathematics. ZDM 45, 7 (2013), 959–971.

[17] Orni Meerbaum-Salant, Michal Armoni, and Mordechai Ben-Ari. 2013. Learning
Computer Science Concepts with Scratch. Computer Science Education 23, 3
(2013), 239–264.

[18] Seymour Papert and Idit Harel. 1991. Situating Constructionism. Constructionism
36, 2 (1991), 1–11.

[19] Mareen Przybylla and Ralf Romeike. 2014. Key Competences with Physical
Computing. KEYCIT 2014–Key Competencies in Informatics and ICT (Preliminary
Proceedings) (2014), 216.

[20] Yizhou Qian and James Lehman. 2017. Students’ Misconceptions and Other
Difficulties in Introductory Programming: A Literature Review. ACM Trans.
Comput. Educ. 18, 1, Article 1 (Oct. 2017), 24 pages. https://doi.org/10.1145/
3077618

[21] Mitchel Resnick, JohnMaloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, et al. 2009. Scratch: Programming for All. Commun. ACM 52, 11
(2009), 60–67.

[22] Albrecht Schmidt. 2016. Increasing Computer Literacy with the BBC micro:bit.
IEEE Pervasive Computing 15, 2 (2016), 5–7.

[23] Sue Sentance and Scarlet Schwiderski-Grosche. 2012. Challenge and Creativity:
Using .NET Gadgeteer in Schools. In Proceedings of the 7th Workshop in Primary
and Secondary Computing Education (WiPSCE ’12). ACM, New York, NY, USA,
90–100. https://doi.org/10.1145/2481449.2481473

[24] Sue Sentance, JaneWaite, Steve Hodges, EmilyMacLeod, and Lucy Yeomans. 2017.
Creating Cool Stuff: Pupils’ Experience of the BBC micro:bit. In Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE
’17). ACM, New York, NY, USA, 531–536. https://doi.org/10.1145/3017680.3017749

[25] Sue Sentance, Jane Waite, Lucy Yeomans, and Emily MacLeod. 2017. Teaching
with Physical Computing Devices: the BBC micro:bit Initiative. In Proceedings of

the 12th Workshop on Primary and Secondary Computing Education (WiPSCE ’17).
ACM, New York, NY, USA, 87–96. https://doi.org/10.1145/3137065.3137083

[26] Juha Sorva. 2012. Visual program simulation in introductory programming educa-
tion. Aalto University.

[27] Patrick Wang, Ilaria Renna, Frédéric Amiel, and Xun Zhang. 2018. Learning with
Robots in CS and STEM Education: A Case Study with ISEP-R0B0. In Proceedings
of the 4th Workshop on Robots for Learning at ACM/IEEE HRI 2018. 16–21.

[28] David Weintrop and Uri Wilensky. 2015. Using Commutative Assessments to
Compare Conceptual Understanding in Blocks-based and Text-based Programs.
In Proceedings of the Eleventh Annual International Conference on International
Computing Education Research (ICER ’15). ACM, New York, NY, USA, 101–110.
https://doi.org/10.1145/2787622.2787721

[29] David Weintrop and Uri Wilensky. 2017. Comparing Block-Based and Text-Based
Programming in High School Computer Science Classrooms. ACM Trans. Comput.
Educ. 18, 1, Article 3 (Oct. 2017), 25 pages. https://doi.org/10.1145/3089799

[30] Philip H.Winne. 2005. A perspective on state-of-the-art research on self-regulated
learning. Instructional Science 33, 5–6 (2005), 559–565.

http://dl.acm.org/citation.cfm?id=364132.364161
https://doi.org/10.1145/1167253.1167333
https://doi.org/10.1145/2445196.2445315
https://content.sciendo.com/view/title/506140
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3077618
https://doi.org/10.1145/2481449.2481473
https://doi.org/10.1145/3017680.3017749
https://doi.org/10.1145/3137065.3137083
https://doi.org/10.1145/2787622.2787721
https://doi.org/10.1145/3089799

	Abstract
	1 Introduction
	2 Literature review
	3 Programming Environment
	3.1 Programmable Object
	3.2 Programming Interface

	4 Experimental Protocol
	4.1 Pre-Test and Post-Test Questionnaire
	4.2 Programming Exercises

	5 Results
	5.1 Validation of the Experimental Protocol
	5.2 Learning Gains

	6 Discussion
	7 Conclusion and Future Work
	References

