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ABSTRACT 

The three-taxon statement is the fundamental unit of rooted trees in Cladistics, stating that 

for three terminal taxa, two are more related to each other than to a third. Because of their 

fundamental role in phylogenetics, three-taxon statements are present in methodological 

research of various disciplines in evolutionary biology, as in consensus methods, supertree 

methods, species-tree methods, distance metrics, and even phylogenetic reconstruction. 

However, three-taxon statements methods are subject to important flaws related to 

information redundancy. We aim to study the behavior of three-taxon statements and the 

interactions among them in order to enhance their performance in evolutionary studies. We 

show here how specific interactions between three-taxon statements are responsible of the 

emergence of redundancy and dependency within trees, and how they can be used for the 

improvement of weighting procedures. Our proposal is subsequently empirically tested in the 

supertree framework using simulations. We show that three-taxon statements using fractional 

weights perform drastically better than classical methods such as MRP or methods using 

unweighted statements. Our study shows that appropriate fractional weighting of three taxon 

statements is of critical importance for removing redundancy in any method using three-taxon 

statements, as in consensus, supertrees, distance metrics, and phylogenetic or biogeographic 

analyses. 

Keywords: fractional weighting, information content, three-taxon statements, cladistic 

analysis, phylogenetic systematics, supertree methods, consensus trees.  
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Phylogenetic trees are at the heart of most evolutionary biology studies, and their 

reliability is of critical importance. It has long been recognised in the phylogenetic setting the 

need to understand and manipulate the information contained in phylogenies. Any tree (e.g. 

taxon tree, gene tree, biogeographic tree) can be fruitfully decomposed into subunits of 

several kinds (Adams, 1986; Vach, 1994), as components (rooted subtrees with all taxa and a 

single informative node; Nelson & Platnick, 1981, Wilkinson et al., 2004), three-taxon 

statements (3ts thereafter; rooted subtrees with three taxa and a single informative node; 

Adams, 1986; Rineau and Prin, 2021), splits (bipartitions of a set of taxa; Farris, 1970), or 

quartets (bipartitions of 4 taxa; Strimmer and von Haeseler, 1996). These subunits are 

considered in the phylogenetic framework by several authors as information bricks (e.g. 

Mickevich & Platnick, 1989; Nelson, 1979; Nelson & Ladiges, 1992; Wilkinson, 1994a), and 

can be used to measure the information content of a phylogenetic tree. 

Here we focus on rooted trees. Within the framework of cladistic analysis, the aim of 

phylogenetic reconstruction is to obtain a classification in the form of an (inclusive) hierarchy 

of clades (Nelson, 1972, 1973; Prin, 2016 : 444-446) displaying phylogenetic relationships 

(Hennig, 1965; Nelson, 1994: 104, 120). In this framework, the source of phylogenetic 

knowledge comes from the characters. The congruence between the characters (Hennig, 

1965) allows an optimal cladogram to be obtained, i.e., the cladogram that is most in 

agreement with the initial characters. In the theoretical framework proposed by Nelson and 

Platnick (1991) in which lies the three-taxon analysis (Nelson et Ladiges 1991a, 1991b; 

Nelson et Platnick 1991), the character state being a clade hypothesis. If the phylogeny is 

represented in the form of an inclusive hierarchy and the characters are phylogeny 

hypotheses, then it seems natural to represent the characters in the same way as phylogenies. 

The application of congruence to rooted trees then goes through a step of decomposition into 
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assertions of elementary degree of kinship relationships (the 3ts). Thus, congruence consists 

in finding the tree that maximises the number of hypothesized relationships in the form of 3ts. 

In Cladistics, the 3ts (see Nelson & Ladiges, 1991a, 1991b; Nelson & Platnick, 1991; 

Rineau and Prin, 2021) take a special place as they represent the minimal (rooted) 

phylogenetic information. A 3ts is a statement in which given three distinct taxa, two are 

related compared to a third one. For example, given three taxa a, b and c, a and b are more 

closely related to each other than either is to c: c(ab) . These particular mathematical 

structures can also be found under other names in the phylogenetic literature, such as “triad” 

(Adams, 1986: 302), “triplet” (Wilkinson, 1994a), or still “rooted triple” (Bryant, 2003) in the 

consensus and supertree literature (note that we avoid here these denominations that may 

potentially confuse two distinct mathematical objects that are ternary relations of degree of 

equivalence one the one hand and sets of three elements on the other hand).  

Because of their atomic nature, 3ts, as cladistic relationships (Williams and Ebach, 2020), 

are at the heart of many methods. For example, the method of phylogenetic reconstruction 

commonly referred to as three-taxon analysis (Nelson and Ladiges, 1991b; Nelson and 

Platnick, 1991) decomposes hierarchical characters into 3ts matrices and then selects the 

cladograms that are congruent with the maximal amount of those 3ts (Zaragüeta et al., 2012). 

They are thus strongly linked to the problem of character coding in phylogenetics (Brazeau, 

2011; Faure-Brac et al., 2020). The same principle is applied in cladistic biogeography and 

the construction of areagrams (i.e., cladograms of biogeographic areas; Nelson and Ladiges, 

1991a). The use of 3ts in the supertree framework was first proposed by Williams (2004). 

Currently, several supertree methods (Ranwez et al., 2010; Sevillya et al., 2016; Dannenberg 

et al., 2019) explicitly handle 3ts. Another use of 3ts is also for consensus tree representations 
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(Aho et al., 1981; Adams, 1986; Nelson & Ladiges, 1994; Wilkinson, 1994a; Bryant, 2003; 

Cao et al., 2009). The 3ts permit to precisely quantify the information content of a 

phylogenetic structure (Mickevich and Platnick, 1989; Nelson and Ladiges, 1992; Williams 

and Humphries, 2003). The retention index based on 3ts (Kitching et al., 1998) allows 

measuring the proportion of hierarchical relationships that are found in the optimal 

cladograms. 3ts-based distance metrics have been used to compare topologies among sets of 

phylogenetic trees (Grand et al., 2013; Kuhner and Yamato, 2015). Finally, 3ts are also 

explicitly used for coalescent-based species tree estimation from gene tree (Liu et al., 2010; 

Islam et al., 2020), and for phylogenetic network reconstruction (Poormohammadi et al., 

2020). 

Computing information content of 3ts of a tree is problematic if they are not independent 

(i.e. absolute independence sensu Wilkinson et al., 2004). Nelson and Ladiges (1992) showed 

that, within a tree, the independence among a 3ts set could be achieved by using a fractional 

weighting to remove redundancy. Wilkinson et al. (2004) criticised this procedure by 

showing that specific relationships among 3ts generating dependency were not taken into 

account in the computation of fractional weighting. However, these relationships were neither 

clearly defined nor exhaustively stated in their work. A thorough work on relationships 

among 3ts in order to propose new operational solutions to compensate for the dependency 

becomes essential today. The goal of this paper is to develop our understanding about the 

relationship between dependency and 3ts inference rules that allows to deduce additional 3ts 

from a set of 3ts within a tree and to propose a weighting method to improve the accuracy of 

evolutionary analyses using 3ts. 
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In the first part of this paper, we summarise a historical review of the procedures 

proposed in the literature to compensate for the dependency in 3ts sets deduced from a tree. 

We highlight main challenges and discuss the solutions that have been proposed in the past. 

In the second section, we demonstrate the link between tree-shape and dependency within 

phylogenetic trees. We recognise different types of relationships between internal nodes that 

lead to dependency. In the third part, we exhaustively describe the different inference rules on 

3ts and show their relationship to dependency. Our work on tree-shape and on 3ts is then 

used in a fourth part to propose a development of Nelson and Ladiges’ (1991b) procedure 

(herein called corrected fractional weighting) that removes all types of dependency between 

3ts. This procedure is needed to fulfil the requirement of independence on which are based 

most of the analyses using phylogenetic information. Finally, we used simulated datasets to 

compare different supertree methods that use different representation of phylogenetic 

information and show that methods using fractional weighting performs significantly better. 

DEPENDENCY AND WEIGHTING 3TS: AN HISTORICAL REVIEW 

The use of 3ts as a unit of measurement for the information content of a phylogenetic tree 

requires that they be independent of each other. Performing an analysis based on non-

independent data leads to biases that can have important consequences on the quality of the 

result. Within a tree, the independence between two relationships implies that the truth of one 

does not involve the truth or falsity of the other. The 3ts a(bc) and a(bd) are independent 

because the truth of one tells nothing about the truth of the other. On the other hand, the 3ts 

a(bc), a(bd), and a(cd) are not independent relative to each other, because the truth of two of 

these 3ts necessarily implies the truth of the third (Nelson and Ladiges, 1992): 

a(bc) + a(bd) + a(cd) → a(bcd) 
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a(bc) + a(bd) → a(bcd) 

a(bc) + a(cd) → a(bcd) 

a(bd) + a(cd) → a(bcd) 

Relationships among 3ts may lead to dependency and therefore to redundancy. In the given 

example, the information content of these three 3ts cannot be 3; since the information given 

by the three 3ts is identical to that given by two of them, there is a repetition of information 

that leads to the overvaluation of 3ts. 

Fractional weighting (FW; Nelson and Ladiges, 1992) was the first attempt to correct the 

overweighting of 3ts. Since any two 3ts are needed among the three, the amount of 

information carried by each 3ts is not one but 2/3. The corrected value of the set is 2. A 

component containing t taxa of which n are included in the informative node contains n(t-

n)(n-1)/2 3ts, but only requires (n-1)(t-n) 3ts to be reconstructed. This quantity (n-1)(t-n) 

corresponds to the phylogenetic value of a component sensu Nelson and Ladiges (1992). In 

this case, the value of a 3ts is 2/n, i.e., the number of independent 3ts divided by the total 

number of 3ts. 

The presence of several nested internal nodes in the tree implies another type of 

dependency. The first attempt of fractional weighting by Nelson and Ladiges (1992) was 

applied component by component, herein fractional weighting per component (FWcomp.) did 

not take into account the dependence. Indeed, in FWcomp., the weight of a 3ts present in 

several components equals the sum of its weights for each component in which it appears. 

The tree a(b(cd)) can be decomposed into two components and then into 3ts: 

a(b(cd) → a(bcd) + ab(cd) 
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a(bcd) → a(bc) + a(bd) + a(cd) (weight for each 3ts: 2/3) 

ab(cd) → a(cd) + b(cd) (weight for each 3ts: 1) 

The information content of the tree is 4. 3ts weights are subject to redundancy: 3ts a(cd) is 

overweighted (5/3) because it is present in both components a(bcd) and ab(cd) while it is 

present only once in (a(b(cd))). For this reason, Nelson and Ladiges (1992: 491) describe 

FWcomp. and Uniform Weighting (sum of 3ts per component, see table I) as "both misleading". 

A 3ts cannot be present more than once in a tree, and therefore must not have a weight 

greater than 1. The table I shows another problematic example with the tree (a(bc(de))). To 

overcome this difficulty, Nelson and Ladiges (1992) propose a different way to calculate the 

absolute value of a 3ts called herein total fractional weighting (FWtotal). It is a reappraisal of 

the idea that the weight of a 3ts is the number of independent 3ts divided by the total number 

of 3ts, but at the scale of the whole tree, by summing the weights of 3ts for each component: 

"For each of their cladograms, we list the number of independent three-taxon statements and 

the absolute value of each of all possible statements, stated as the ratio of independent 

statements to all possible statements" (Nelson and Ladiges, 1992: 491). The FWtotal becomes 

for a 3ts the sum of all independent 3ts for each component / the sum of all 3ts for each 

component. For C components deducible from a phylogenetic tree: 

              
             

 
   

 
              

 
 
    

  
 

   
 
    

 

As a result, all the 3ts of a tree have the same weight. The four 3ts of the tree a(b(cd)) have a 

weight of 1. Nelson and Ladiges conclude by considering this calculation of the absolute 

value of a 3ts as the most relevant (Nelson and Ladiges, 1992: 494).  
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Wilkinson et al. (2004) gave a new attempt to describe the dependencies between 3ts using 

Dekker's (1986) dyadic inference rules. According to Dekker, only two inferences are 

possible from pairs of quartets to deduce additional quartets. By transposing these inference 

rules to 3ts, Wilkinson et al. (2004: 994) propose three rules for inferring 3ts exemplified as 

follows: 

b(cd) + b(ce) → b(de) 

b(cd) + c(de) → b(ce) 

d(ab) + a(de) → e(ab) 

The original Dekker rules imply that any tree containing two quartets involved by the dyadic 

inference rules also contains an additional quartet. Wilkinson et al. (2004) point out that for 

3ts, several rules can intervene from a single couple. For example : 

b(cd) + c(de) → b(ce)* 

b(cd) + b(ce)* → b(de) 

Which results in : 

b(cd) + c(de) → b(c(de)) → b(cd) + c(de) + b(ce) + b(de) (fig. 4b in Wilkinson et al. 

2004) 

This implies that the presence of some couples of 3ts can imply the truth of two secondary 

3ts. For Wilkinson et al. (2004), this type of dependence is not taken into account by Nelson 

and Ladiges’ fractional weighting. Since the tree (b(c(de))) needs only two 3ts to be rebuilt, 

its weight should be 2. Consequently, the FWtotal can only take into account one type of 

dependence corresponding to the first rule presented above.  
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However, Wilkinson et al. do not give all the possible combinations that lead to additional 

3ts. This is justified for them by the fact that any fully resolved tree with t taxa can be fully 

entailed by specific sets of t-2 3ts (Steel, 1992). Consequently, Wilkinson et al. believed that 

because any dichotomous tree includes only t-2 independent 3ts, each triplet of a tree can be 

weighted using the formula 6 / (t ² - t). Wilkinson et al. named this procedure Minimal 

Weighting (MW), which aimed to take into account all possible inference rules without 

having to define them. The arguments put forward in favor of the MW are: (i) an identical 

weight for all 3ts because there is no argument to weight differentially the 3ts from a tree, (ii) 

a linear evolution of the total weight of a tree with the number of taxa (polynomial with 

FWcomp. and FWtotal), and (iii) an evolution of the total weight of a tree that is not influenced 

by tree shape.  

DEPENDENCY AND TREE SHAPE 

Our aim being to find a way of deleting dependency issues in phylogenetic trees, we must 

define in a first place where the dependency can arise. Here we show for the first time how 

the tree shape can modify the dependency between nodes, and by corollary altering the 

information content of phylogenies. To fulfil this aim, we need to precisely define the various 

types of nodes of phylogenetic trees. There are three types of internal nodes: apical nodes, 

orthologous nodes, and paralogous nodes.  

Definition 1. Apical nodes are nodes that only include leaves. The tree (b(c(de))) contains 

only one apical node, (de).  

Definition 2. Orthologous nodes (sensu Zaragüeta et al., 2004, also called asymmetric or 

unbalanced nodes) include only one internal node as direct descendant. In the tree (b(c(de))), 
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the node (cde) is orthologous because it leads only to the apical node (de), and the root node 

(bcde) because it immediately leads only to (cde).  

Definition 3. Paralogous nodes (sensu Zaragüeta et al., 2004, also called symmetric or 

balanced nodes) are nodes that include two or more internal nodes as direct descendants. The 

tree ((ab)(cd)) contains one paralogous node, the root (abcd), which contains two internal 

nodes (ab) and (cd).  

The relationships between internal nodes in the tree can be linked to the notion of 

dependence. Orthology implies dependency between nodes (a node is differentiated in 

another node), while paralogy implies independence between nodes, where a node is divided 

into several independent and separate lineages. We equate here dependency to inclusion; 

thus, dependency is a kind of information that may be taken into account, in contrast to 

independency (i.e., disjunction). Therefore, a pectinate tree contains more information that a 

symmetric tree containing disjointed independent nodes. As we believe as Williams and 

Ebach (2008: 213) that in a phylogenetic analysis, a multi-state character is more informative 

than the pair of corresponding binary characters (because the relationships between states are 

explicitly showed only in the multi-state character), we can say more broadly that a tree 

carries qualitatively a different information than the sum of all its components taken 

independently. The dependence or independence between nodes should have an impact on 

the information content, and thus on 3ts weights. Consequences for 3ts are explained in the 

next section.  

THREE-TAXON STATEMENT  RELATIONSHIPS AND INFERENCE RULES 

Bryant and Steel (1995) have shown first that there are an infinite number of irreducible 

inference rules for 3ts (rules which are not deductible from each other). Subsequently, Rineau 
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and Prin (2021) have proposed a new formalism of 3ts (Colonius and Shulze, 1981; 

McMorris and Powers, 2003) that resolves previous issues raised by Bryant and Steel: there 

is a finite list of 3ts inference rules that is enough to infer any other rule by repeated 

application. This finite list of inference rules is an essential tool to characterize how 

redundancy emerge within a set of 3ts coming from a tree, and thus to compensate for them. 

Moreover, because our aim here is to account for dependency rules in a 3is set coming from a 

single tree, the dyadic inference rules (i.e., when the combination of two 3is allow to deduce 

new 3is) stated below are necessary and sufficient to account for all cases of dependency, 

because specific cases shown in Rineau and Prin (2021:15-18) only arise from 3is coming 

from several trees.  

We restate here the definitions of 3ts relationships responsible for dependency in order to 

show the link between 3ts inference rules, phylogenetic tree shape, and dependency. The 

specifics of relationships among 3ts depends on their common leaves and positions 

(Wilkinson et al., 2004; Rineau and Prin, 2021). Thus, two 3ts can be identical or not, 

compatible or not, combinable or not. The combinability relationship can itself be declined 

into four possible relationships from which are three inference rules allowing to generate 

additional 3ts (Rineau and Prin, 2021), and thus, redundancy. 

Definition 1. Two distinct 3ts are compatible if they can be true at the same time, i.e., if 

there exists at least one tree containing both.  

Consequently, two 3ts are incompatible if they cannot be true at the same time, i.e., the 

truth of one necessarily implies the falsity of the other. Two 3ts are incompatible if they have 

exactly the same taxa but state different relationships (e.g., a(bc) and b(ac)).  
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Definition 2. Two compatible 3ts are combinable if they can be unambiguously gathered 

in a single tree. In other words, two 3ts are combinable if and only if they are present in the 

strict consensus of all possible trees containing them. Two 3ts with their respective taxa sets 

D = {u, v, w} and E = {x, y, z} are combinable if there exists an informative strict consensus 

which taxa set F satisfies |F| = |D  E| = 4. We note that 3ts are combinable if and only if 

they have two taxa in common. 

If two 3ts are not combinable, the above-mentioned strict consensus is a bush (a tree 

without any informative node). Combinability logically implies compatibility, but the reverse 

is not true: compatible couples of 3ts sharing less than two taxa are non-combinable. The 

couple a(bc) and a(de) is non-combinable because a is the only common taxon, and entails 

several possibilities, as ((de)(a(bc))) or (a(b(d(ce)))) and which strict consensus of all 

possible trees containing both 3ts is a bush (no unambiguous common statement between all 

possible trees).  

Four relationships among combinable 3ts exist, with specific properties, depending on the 

location of their common taxa (Figure 1).  

Definition 3. Two combinable 3ts are in in-in nts relationship if both common taxa are 

located inside the apical node of both 3ts, and the combination of the 3ts results in a single n-

taxon statement (i.e., a tree with a single informative node; nts thereafter; Wilkinson, 1994).  

The example of a(cd) + b(cd) allows us to build the tree ab(cd). The tree can be 

decomposed into the two 3ts that allowed its construction: 

a(cd) + b(cd) → ab(cd) → a(cd) + b(cd) 
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Information conveyed by each 3ts allows an additional taxon to be added as a sister group to 

the apical node (cd). The fact that no additional 3ts is generated implies that no dependency is 

generated: that is the reason two-leaf apical nodes never cause fractional weight, as Nelson 

and Ladiges (1992) noticed. 

Definition 4. Two combinable 3ts are in in-out nts relationship when one of the common 

taxa is connected directly to the root and the other is connected to the apical node in both 3ts.  

The combination of two 3ts in an in-out nts relationship leads to build a nts with a single 

informative node of three leaves.  

The couple a(bc) and a(cd) illustrates the in-out nts relationship, whose analysis highlights 

the implication of a third 3ts (which makes it the first inference rule): 

a(bc) + a(cd) → a(bcd) → a(bc) + a(cd) + a(bd) 

The in-out nts relationship between two 3ts generates a third 3ts with two taxa in common 

with the other two 3ts, at the same positions. The truth of these two 3ts implies the truth of a 

third. Among the three 3ts a(bc), a(cd), and a(bd), it can be seen that whatever the two 3ts 

chosen, they will be in the in-out nts relationship and will involve the third one. It is precisely 

this kind of relationship which is taken into account by Nelson and Ladiges’ FW to correct 

the redundancy. This type of dependency is the only one present within the components. If a 

new 3ts is added and forms additional in-out nts relationships, then all 3ts can be combined, 

as in-out relationship is transitive: 

a(bc) + a(cd) + a(de) → a(bcde) → a(bc) + a(cd) + a(de) + a(bd) + a(be) + a(ce) 

Three 3ts are linked by two in-out relationships. Each in-out relationship generates an 

additional 3ts: 



INFORMATION CONTENT OF TREES 

15 

 

a(bc) + a(cd) → a(bd) 

a(cd) + a(de) → a(ce) 

The generation of the secondary 3ts leads to the appearance of two new in-out dependency 

relationships, leading to the same 3ts: 

a(bd) + a(de) → a(be) 

a(bc) + a(ce) → a(be) 

We call the initial 3ts as primary 3ts, a(bc), a(cd), and a(de) in the example. The 3ts 

generated from the combination of primary 3ts are called secondary 3ts, here a(bd) and a(ce). 

The 3ts generated by the combination of secondary 3ts are called tertiary 3ts, here a(be) and 

so on (to n-ary 3ts for the nth level of combination). For the combination of the set of three 

primary 3ts, a total of six n-ary 3ts are entailed. This is why coding a set of six 3ts a(bc), 

a(cd), a(de), a(bd), a(be), a(ce), requires a weight of ½ for each 3ts since only three 3ts 

among the six are needed to build the node (given that all terminals are represented among 

the set). From the three primary 3ts we can deduce all the secondary and tertiary 3ts. The 

corollary is that 3ts may not satisfy the pairwise compatibility theorem (Estabrook et al., 

1976; Wilkinson, 1994b). Indeed, the fact that all primary 3ts are pairwise compatible does 

not imply that all n-ary 3ts are compatible. 

Definition 5. Two combinable 3ts are in asymmetric relationship when both have a 

common taxon connected to the apical node, and when the other common taxon is connected 

to the apical node in one of the 3ts and to the root in the other.  

Unlike with the in-in and in-out nts relationships, the trees constructed from two 3is linked 

by an asymmetric relationship have two informative nodes and an asymmetric shape (see fig. 
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4b in Wilkinson et al., 2004). If the tree (a(b(cd))) is decomposed into its two components 

ab(cd) and a(bcd), the first generates only one in-in nts relationship and the other three in-out 

nts relationships (Appendix 1A). The combination of these two components implies the 

existence of two new couples of 3ts that were not present in the independent components 

(second inference rule):  

b(cd) (from ab(cd)) + a(bd) (from a(bcd)) → a(b(cd)) → b(cd) + a(bd) + a(cd) + 

a(bc) 

b(cd) (from ab(cd)) + a(bc) (from a(bcd)) → a(b(cd)) → b(cd) + a(bd) + a(cd) + 

a(bc) 

These two couples linked by an asymmetric relationship produce the complete tree 

a(b(cd)). If combined, 3is linked by asymmetric relationships, therefore, lead to inter-node 

dependency. This shows that the quantification of the information contained in a tree is not 

equal to the sum of the information of each component. Methods that decompose trees in 

their components without taking into account the relationships between these components, 

such as the supertree method MRP (Baum, 1992; Ragan, 1992) or the biogeographical 

method BPA (Wiley, 1986; Brooks, 1990), are thus flawed. The information conveyed by the 

inclusion (dependency) of one node in another must be taken into account. 

Definition 6. Two combinable 3ts are in symmetric relationship when among the two taxa 

they have in common, one is connected to the root in the first 3ts and the apical node in the 

second 3ts, and the other is connected to the apical node in the first 3ts and to the root in the 

second. The symmetric relationship appears when at least two informative nodes are disjoint 

(i.e., if there is a paralogous node in the tree where the 3ts come from).  
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The following example illustrates a symmetric relationship between two 3ts that generates 

a symmetric tree (Appendix 1B): 

c(ab) + a(cd) → (ab)(cd) → c(ab) + a(cd) + d(ab) + b(cd)  

This combination allows two 3ts, d(ab) and b(cd), to be deduced. The symmetric 

relationship thus implies a third inference rule allowing to generate additional 3ts. 

Some general corollaries may be listed from the set of above-described relationships:  

 Any hierarchical tree with at least one informative node can be analysed into a set 

of 3ts without incompatible relationships.  

 The definitions stated here are necessary and sufficient to cover all cases of 

dependency among a set of 3ts coming from a phylogenetic tree, as shown by 

Rineau and Prin (2021). 

 Any tree containing an informative node and more than one leaf outside this 

informative node contains in-in relationships (Fig. 1A).  

 Any tree containing an internal informative node and more than two leaves 

connected to that node contains in-out relationships (Fig. 1B).  

 Compatible but not combinable 3ts (zero to one taxon in common) are present in a 

tree as long as there is an informative node comprising more than three leaves. As 

soon as there are at least two informative nodes in a tree, asymmetric (fig. 1C) 

and/or symmetric relationships (fig. 1D) appear. It is, therefore, possible to find all 

these types of relationships within the same tree (Appendix 1C). 
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WEIGHTING PROCEDURES 

Formalised 3ts inference rules that lead to dependency are the only way to remove 

redundancy in 3ts decomposition. Firstly, we will show that MW fails to compensate for all 

instances of dependency. Secondly, we will propose an improvement of Nelson and Ladiges 

(1991b) procedure of fractional weighting based on the previously stated definitions that 

succeeds at removing every dependency arising from 3ts primary inference rules from any 3ts 

set.  

Minimal weighting 

Wilkinson et al. (2004) designed the MW in order to remove the redundancy issues using 

a simple formula (t-2). However, there are two arguments for rejecting the MW.  

The first concerns the identical weight given to each triplet, as in Nelson and Ladiges’ 

FWtotal computation. This weight implies that among the four 3ts of (b(c(de))), only two are 

necessary to reconstruct the tree. The total weight of the tree (its information content) is 2, 

and each 3ts has an information content of ½. Wilkinson et al. (2004) rationale implies that 

each of the 3ts has the same information content. If this was true, any set of two 3ts among 

b(cd), c(de), b(ce), and b(de), would allow to reconstitute the tree, which is not correct. Here 

is the result of the different combinations of 3ts: 

(1) b(cd) + c(de) → b(c(de)) 

(2) c(de) + b(ce) → b(c(de)) 

(3) b(cd) + b(ce) → b(cde) 

(4) b(cd) + b(de) → b(cde) 

(5) b(ce) + b(de) → b(cde) 

(6) c(de) + b(de) → bc(de) 
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(1) and (2) are the only couples that allow the tree to be fully reconstituted. The other couples 

allow only one of the two components to be rebuilt: the couples (3) to (5) allow rebuilding 

b(cde), and the couple (6) allows rebuilding bc(de). In order to keep only the minimum 

number of 3ts, the statement "any 2 among 4" is incorrect. Therefore, MW is inconsistent 

with Wilkinson et al.’s (2004) rationale. 

The second argument against MW is a strong limitation in its conception: it can only 

handle fully dichotomous trees. The total weight of a tree of t taxa is t-2 for a totally 

bifurcating tree and, to our knowledge, no analytical solution has so far been proposed to 

include multifurcations. Using the total weight formula of t-2 for polytomous trees implies 

that the information content of a given tree is identical to that of any of its subtrees as long as 

they have the same leaves. The trees ((ab)(cd)), (ab(cd)) and ((ab)cd) all have an information 

content of 2 according to this formula. This conclusion is clearly illogical. 

Corrected fractional weighting 

To successfully eliminate dependency among a 3ts set deducted from a tree, the different 

types of 3ts inference rules (definitions 4 to 6) and the scale at which they operate (intra-node 

or inter-node) must be taken into account. MW fails to recognise in detail the different types 

of relationships. Both FWtotal and FWcomp. takes into account a single inference rule (in-out 

nts), which is insufficient. Our strategy to suppress the dependency is set up in sequential 

steps, each step corresponding to a type of 3ts inference rule (table II). We will explain here a 

corrected version of the FW (FWcor.) that take into account all types of dependency defined 

above.  

The first step corresponds to the procedure set out by Nelson and Ladiges in 1992. It 

consists in removing the dependency linked to in-out relationships within each component 
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itself. The formula for the number of independent 3ts for a component is (t-n)(n-1), t being 

the total number of taxa and n being the number of taxa connected to the informative node 

(Nelson and Ladiges, 1992). The factor (t-n) corresponds to the number of leaves connected 

directly to the root. Increasing their number only generates in-in relationships. The factor (n-

1) is linked to in-out relationships. For a(bcde), the factor (n-1) is 3. Only three 3ts are 

needed to rebuild the tree. The factor (t-n) is 1 and acts as a multiplier according to the 

number of leaves at the root. For example, by adding a leaf f to the root, (n-1) does not 

change. (t-n) on the other hand, equals 2: 

a(bcde) [3] + f(bcde) [3] → af(bcde) [6] 

The numbers in square brackets are the weights of the corresponding trees. The minimum 

number of pairs of leaves pairs (e.g. a,b and c,d) necessary for each leaf to be in a pair and 

each pair to have a leaf in common with at least one another pair is (n-1). (n-1) is then 

multiplied by the number of leaves connected to the root (t-n) to give the formula (t-n)(n-1). 

(t-n) does not change between the formula of the number of independent 3ts and the formula 

of the total number of 3ts. On the other hand, the value (n-1) changes: to have the total 

number of 3ts, we need to search for all the combinations of two leaves among n, i.e.: 

 
 

 
   

  

       
  

      

 
 

By replacing (n-1) by   
 
  in (t-n)(n-1), we obtain the total number of 3ts: 

                               
           

 
 

Nelson and Ladiges’ FWcomp. is, therefore, FWcor.’s first step in eliminating redundancy. 

This step of removing intra-node redundancy requires the analysis of each component 
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independently. For each component, all its 3ts are generated, and the weight of 2/n (number 

of independent 3ts / total number of 3ts) is assigned to each 3ts. This weight eliminates 

overweight due to in-out relationships.  

For example, component a(bcd) can be decomposed into three 3ts: a(bc), a(cd), a(bd). 

Each of the three pairs of 3ts forms an in-out nts relationship which logically implies the third 

3ts. Each 3ts is therefore overweighed because it exists both as a primary and secondary 3ts. 

More generally, a 3ts present in a component is overweighed if it can be generated from other 

3ts. This first step makes it possible to define the phylogenetic weight of each node. 

FWcor. is obtained by removing the dependency linked to in-out nts relationships, as in 

FWcomp, and then to asymmetric relationships among 3ts of different nodes (inter-node 

redundancy). Since 3ts have already been weighted in the previous step, the correction of the 

asymmetric dependency (i) concerns inclusions between informative nodes are present in the 

tree, and (ii) revises the weight of the 3ts assigned in the first step.  

Nelson and Platnick (1991) showed that every 3ts generated from a fully pectinate tree has 

a weight of 1, applying FW or not because there is no redundancy between the 3ts of a fully 

pectinate tree. The correction of inter-node redundancy requires checking the 3ts of each pair 

of nodes involving direct inclusion. Two 3ts in an asymmetric relationship will generate 

secondary 3ts that already exist as primary ones. Using the example of the tree (a(b(cd))) 

analysed in Figure 2, Nelson and Ladiges (1992: 491) showed that the statement a(cd) occurs 

in both series. This 3ts is the only one having a weight greater than 1 5/3 (2/3 + 1): it is the 

overweighed 3ts. The component a(bcd) bears the redundant 3ts because it is the only 

component of the tree that contains this particular 3ts corrected by FWcomp. The other 

component consists only of in-in relationships: its 3ts are therefore all essential to the 
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reconstruction of the tree and have a weight of 1. The analysis of the two asymmetric 

relationships of the tree highlights the overweight of a(cd): 

a(bc) + b(cd) → a(bd) + a(cd) 

a(bd) + b(cd) → a(bc) + a(cd) 

The secondary 3ts generated are a(bd), a(bc) and a(cd) (twice). All the 3ts resulting from 

asymmetric relationships of both components allow generating only one component: a(bcd). 

However, among all the 3ts, a(cd) appears twice while the others appear only once because 

the asymmetric relationship that overweighed this particular 3ts produces also a 

supplementary secondary 3ts, the only 3ts present in both components. The uncertainty of 

‘two 3ts out of three’ from the component a(bcd) can then be resolved: the two necessary 3ts 

are a(bd) and a(bc). a(cd) is deleted from the component a(bcd), and its weight (2/3) is 

equally distributed among the others — if its weight was not distributed between the 

remaining 3ts, the result would be that knowledge about asymmetric relationship between 

nodes would lead to a loss of phylogenetic information. In (a(b(cd))), the weight of each of 

the four 3ts becomes 1. The ambiguity is resolved. The analysis of inter-node relationships 

allows us to correct the weights of 3ts from intra-node relationships because the inclusion of 

one node in another carries specific phylogenetic information. 

To exemplify how polytomies are handled by this procedure, we apply these two steps to 

the tree (a(bc(de))) (Figure 3 and Table I). The six 3ts generated by the first component are 

weighted 1/2 (in-out relationships) and the three 3ts generated by the second component are 

weighed 1 (in-in relationships). The total information content of the tree is 6. It is noted that 

a(de) is present in both components, and can, therefore, be removed from the component 

a(bcde). After correction, the total weight of the tree is still 6, but the weights of the 3ts have 
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been corrected. This tree shows a polytomy. Unlike the weights of the 3ts derived from the 

tree (a(b(cd))), which all end up balanced at 1, the weights of some of the 3ts derived from 

(a(bc(de))) are still fractional, even if the correction makes them tend towards 1. The 

dichotomous pectinate structure is the most informative: it contains the maximum number of 

components, and these components are all dependent on each other. Uncertainty increases 

with the number of polytomies, and with the number of branches involved in polytomies. 

The last type of dependency is related to symmetric relationships. Since symmetric 

relationships only concern independent, i.e., disjoint, groups, there is no dependency to 

manage at the level of 3ts for correcting 3ts weights. Indeed, symmetric relationships never 

provide redundancy of any particular 3ts. 

An example with the analysis of the tree ((ab)(cd)) will illustrate this point (Appendix 

1B): 

((ab)(cd))) → (ab)cd + ab(cd) 

(ab)cd → c(ab) + d(ab) 

ab(cd) → a(cd) + b(cd) 

The weighting schemes proposed in the literature relay on the number of nodes. (i) The tree 

has a weight of 2 (corresponding to MW). Taken independently, each component of the tree 

also has a weight of 2; the choice of this weighting leads to accepting that the tree ((ab)(cd)) 

contains the same amount of phylogenetic information as (ab)cd or ab(cd). (ii) The tree has a 

weight of 4 and can be divided into two components without any loss of information 

(corresponding to the FW). However, since these two components are disjoint, they are 

independent. Here, the tree information is the sum of the information of its two independent 
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components. Both components have a weight of 2. Symmetric relationships do not create 

differential weights between the 3ts because no 3ts is overrepresented by n-ary statements. 

Therefore, there is no justification for correcting in any way the weight of the 3ts intra-node. 

Following Nelson and Ladiges (1992: 492): ‘For cladogram 11, there is one internal 

node, ((AB)(CD)), with four statements, each with an absolute value of ¾’. The authors 

provided no justification of their result, which cannot be found using either FWcomp. or 

FWtotal. However, as already pointed out by Nelson and Ladiges, if two totally dichotomous 

trees with the same number of leaves (more than four) are compared, the tree with more 

symmetric nodes will have less information content. The information content does need to 

reflect that. The information is maximal in pectinate trees because they are devoid of 

independent couples of nodes. For example, the weight of (a(b(c(de)))) is 10 whereas the 

weight of (a((bc)(de))) is 9.  

The analytical procedure inherent to three-taxon analysis allows proposing a different 

measurement of phylogenetic information of a tree or a set of trees, as the sum of the 

fractional weighting of its/their three-item statements. Our amended version FWcor. is the 

unique weighting scheme that takes into account dependency emerging both from intra-node 

(in-out relationships) and inter-node redundancy (asymmetric relationships), which leads us 

to believe that this is also a highly accurate way to quantify phylogenetic information in the 

cladistic paradigm. Our proposal of FWcor. has been implemented in the software LisBeth 

(Zaragüeta et al., 2012). 
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SIMULATIONS 

MATERIAL AND METHODS 

Following theoretical foundations of the relationship between dependency and weighting 

developed in the previous parts, our aim here is to simulate datasets and analyses to 

empirically test the efficiency of FWcor. versus current alternative methods. Each simulation 

consists in 1) generate a tree (named hereafter ‘the original tree’), 2) produce two subtrees, 3) 

generate noise in the subtrees, 4) use the subtrees with different weighting schemes to 5) 

reconstruct an optimal tree (and produce a strict consensus if several optimal trees exist) and 

6) compare this optimal tree (or the strict consensus of all optimal trees) with the original one 

to assess the relative efficiency of the different weighing schemes (Fig. 4). Each original tree 

is randomly generated using the python package ete3 (Huerta-Cepas et al., 2016) and 

contains 11 terminal taxa. Two subtrees are generated. Each is a copy of the original tree 

from which a defined number m of terminal taxa has been removed (m goes from 0 to 8; the 

choice of taxa is random). For each generation, 1000 simulations are run, leading to a total of 

9000 runs. All the runs were repeated by introducing a varying amount of random noise by 

taxa permutations to simulate homoplasy and/or distortion. The different amount of distortion 

is included by pruning and regrafting a number n of taxa (n goes from 0 to 5). The choice of 

the pruned taxa and the regrafting locations are both random. The 9,000 runs were thus 

repeated 6 times leading to 54,000 runs. To combine both subtrees in the optimal tree, we 

used two supertree methods to reconstruct the optimal tree, one based on a parsimony 

approach (i.e., Matrix Representation with Parsimony) using PAUP 4.0a (Swofford, 2003), 

and the other based on a 3ta approach (Three-taxon analysis; Nelson and Platnick, 1991) with 

three different weighing schemes: FWcor., FWcomp., and MW (in our simulations MW and 
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FWtotal. give always the exact same results because the trees of each analysis always have the 

same number of terminal taxa), using Lisbeth (Zaragüeta et al., 2012). Note that when all 

trees of an analysis have the same number of taxa, the total fractional weight would lead to 

the same results as the minimal weight because the weights of all 3ts are the same for a given 

tree. The total number of runs is increased to 216,000. The ability of the methods to 

reconstruct the original tree is assessed by three complementary metrics. Triplet distance 

metrics (Tavares, 2018) were preferred to Robinson-Foulds, because the latter is strongly 

influenced by wildcard taxa. This is a common problem in supertree simulation analyses 

(Penny et al., 1982). Finally, the triplet distance metrics can be decomposed for our purpose 

in true resolutions (TR) and false resolutions (FR; Grand et al., 2013; Rineau et al., 2018). 

The first one, named TR, is the number of 3ts founded in both the original and optimal trees 

divided by the number of 3ts of the original tree. This can be viewed as the proportion of the 

3ts from the original tree that is present in the optimal one. The second one, named FR, is the 

number of 3ts founded in the optimal tree but not in the original tree, divided by the number 

of 3ts of the optimal tree. This can be viewed as the proportion of the 3ts from the optimal 

tree that were not present in the original one. At last, the efficiency (TR – FR; range: [-100; 

100]), allow to synthesise the results. -100 is the case where all phylogenetic relationships are 

false and the tree is completely resolved (i.e., dichotomous); 100 where all phylogenetic 

relationships are true and the tree is completely resolved. A null result means that there are as 

many true and false phylogenetic relationships, regardless of how well resolved the optimal 

tree is. In order to characterise the quantity of information brought by optimal trees, we 

counted internal nodes and 3ts from optimal tree for maximising precision, hereafter named 

constrict resolution and constrict information content respectively. 
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 The results were then analysed using R software (R Development Core Team, 2008). We 

first explored the simulations by performing a PCA to provide a global overview of the 

covariations between the variables involved in the analyses. These variables consist in the 

starting parameters (i.e., number of permutations and number of taxa in subtrees), the number 

of optimal trees as well as their number of taxa, both the resolution and the information 

content of the strict consensus and finally, the 3 measures of the results quality (i.e., true 

resolutions, false resolutions and efficiency). Then, we describe in more details the 

relationships between the variables of interest. As those relationships show an important 

degree of complexity, we were not able to model them in a satisfactory manner. As a 

consequence, we used linear models to describe and test the relative efficiency of the 

methods and weighting schemes as well as other variables that can modify their relative 

efficiencies. 

RESULTS AND DISCUSSION 

The two first axes of the PCA represent 73 % of the dataset variance. The first axis 

represents mostly the contribution of TR and four positively correlated variables that are: the 

constrict resolution, the constrict information content, the number n of taxa in subtrees, and 

the number of taxa in the optimal tree (related to the more or less important overlapping of 

the taxa sets of the subtrees; Fig. 5). For a given number of permutations, the amount of TR 

compared to the number of taxa in subtrees has an S-shaped distribution (see Fig. S1A), 

consequently TR tends to a horizontal asymptote (e.g. 100% of TR for 0 permutations when 

the number of taxa in subtrees tends to the one in the original tree). As the number of 

permutations increases, the asymptote decreases. The second axis of the PCA is mostly 

structured by FR (Fig. 5). As expected, the number of permutations (i.e., the quantity of 
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noise) correlates mainly with this axis. In details, for a given number of permutations, the 

number of FR firstly increases with the number of taxa in subtrees and then decreases (Fig. 

S1B). Obviously, the efficiency (TR – FR) positively correlates to the first axis (thus to TR) 

and negatively to the second axis (thus to FR) (Figs. 5, S1C). Finally, the number of optimal 

trees does not correlate much with the other variables.  

The relationships between all variables were thoroughly explored. The relative amount of 

TR and FR depends also greatly on the number of taxa in the optimal tree (Fig. S2). For a 

given number of taxa in the optimal tree, most of the runs fall on a line going from 0% TR 

and 100% FR to 0% FR and a percentage p of TR. This percentage p reaches 100% when the 

number of taxa in the optimal tree equals the one in the original tree. These lines represent the 

maximal resolution reachable with fully bifurcating optimal trees. 

As concluded from the PCA, the variance of the dataset can be mostly summed up by TR, 

FR, the number of taxa in subtrees, and the number of permutations. The relationships 

between those variables are mostly monotonous. Thus, we computed two linear models with 

respectively TR and FR as dependent variables and as independent variables for both models: 

the number of taxa in subtrees, the number of permutations, and the different types of 

analyses (MRP, 3ta with FWcor., FWcomp., or MW/ FWtotal). These models thus have three 

variables and we included all the interactions terms. The homoscedasticity is not verified. For 

example, the variance of TR drastically increases in relation to the number of taxa in 

subtrees. As a consequence, we do not expect from these models to test for the effects but 

rather to investigate main tendencies and to observe specific interactions between the 

different types of analyses and the other variables (summaries of linear models are provided 

in Table S2). We use the function interact_plot from the R package jtools to visualise to three 
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interactions as well as main effects from isolated variables at the same time (Fig. 6). Linearity 

checks are provided in the supplementary information (Fig. S3). The relationships are 

consistent with what inferred from the PCA. The increase of TR with the number of taxa in 

subtrees depends on the number of permutations. The higher the number of permutations is, 

the lower the increase of TR in relation to the number of taxa in subtrees. The main results 

with the substantial effect are that FWcor. and FWcomp. are indistinct from each other and better 

compared to MRP and MW as the number of taxa in subtrees increases. The increase of FR 

with the number of permutations also depends on the number of taxa in subtrees and the type 

of analysis. For a few taxa in subtrees, the analyses are indistinct no matter the number of 

permutations. With both the increase of the number of taxa and permutations, differences 

between analyses increase with the order of FR amount: MW, MRP, and indistinctively 

FWcor. and FWcomp. (Fig. 6). The efficiency decreases with the number of permutations. It also 

increases with the number of taxa in subtrees, especially at a low number of taxa. The 

numerous taxa in subtrees are, the higher the slope of this relationship is. In other terms, the 

efficiency does not really increase with the number of taxa in subtrees for too noisy datasets. 

This being said, FWcor. and FWcomp. have better efficiencies compared to MRP and MW as 

the number of taxa in subtrees increases (Fig. 6). 

In conclusion, FWcor. and FWcomp. provide more resolved trees in comparison to MRP and 

MW. As the number of true resolutions (TR) is generally higher than the number of false 

resolutions (FR), efficiency is a bit better for FWcor. and FWcomp. This leads us to recommend 

these weighting methods for the purpose of supertree reconstruction methods, cladistics 

methods, or metrics using 3ts. These are very preliminary results and they need to be 

confirmed in other conditions such as the type of noise, the tree shape. Future works will 

have to study more precisely the differential effect of FWcor. versus FWcomp., which was 
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indistinguishable in our simulations. The absence of significant differences between FWcor. 

and FWcomp. may be related to the very low number of source trees. The higher the number of 

source trees is, the more incongruent relationships there is. It is the incongruence that will 

lead to the choice of this or that 3ts, and the choice should be biased with the FWcomp. which 

will weight some 3ts to more than 1, which is theoretically flawed. The most obvious lead to 

explain these results could be the parameters of the analysis.  

CONCLUSION 

Our paper focuses on the different types of relationships within a 3ts set coming from a 

phylogeny, some of them being directly responsible for the emergence of dependency. We 

also proposed a method for evolutionary biologists whose aim is to completely eliminate 

dependency from which all methods based on three-taxon statements currently suffer. 

We propose for the first time a method of 3ts weighting based on intra-node and inter-

node redundancy. Ideally, any phylogenetic or supertree analysis should only include datasets 

whose elements (hierarchical trees) are independent of each other, to eliminate any possibility 

of bias. We have shown that the simple decomposition of a tree into its components leads to a 

loss of information and that our method of corrected fractional weighting is the only 

procedure able to fully delete all the redundancies. We have also shown using computer 

simulations that the absence of weighting can significantly reduce the effectiveness of any 

method based on the 3ts. We also proposed the first empirical comparison between supertree 

component methods (MRP) and 3ts (three-taxon analysis), confirming the efficiency of 

methods which decompose trees into 3ts. More precisely, the most efficient methods are 

those which weight 3ts through a decomposition step into components, as Fractional 

Weighting. Finally, understanding the dependency relationships between the 3ts will permit 
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to improve the accuracy and efficiency of supertree methods, consensus methods and 

phylogenetic analysis methods based on 3ts. “Triplet distance” metrics should expect the 

same handling. Even cladistic methods that do not a priori require decomposition (Mavrodiev 

et al., 2017) can benefit from fractional weighting by assigning to each starting tree a weight 

corresponding to its true phylogenetic information content, i.e., to the sum of the weighted 

triplets it contains. To conclude, we hope to open new debates and to fuel methodological 

discussions on how phylogenetic information should be weighted following 3ts inference 

rules in order to improve the accuracy of analyses.  
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CAPTIONS 

Figure 1. 

Four possible types of relationships between pairs of 3ts can be combined. Two 3ts 

sharing two taxa in common can be combined into a 4-taxon tree from which it is possible to 

deduct 0, 1 or 2 3ts. The black dots correspond to the leaves common to both 3ts. A. In-in nts 

relationship. B. In-out nts relationship. C. Asymmetric relationship. D. Symmetric 

relationship. 

Figure 2. 

Fractional weighting procedure with correction of inter-node redundancy on (a(b(cd))). 

The dichotomous pectinate tree only produces 3ts of weight 1. 

Figure 3. 

Fractional weighting procedure on (a(bc(de)). The tree is not completely resolved, which 

leads to uncertainty amongst 3ts and the persistence of fractional weightings for five of them. 

Figure 4. 

Flow-chart describing the steps for each run of the simulations: generation of an original 

tree, sampling of two subtrees with n taxa, pruning and regrafting of taxa, supertree analysis, 

comparison of the optimal tree(s) with the original tree in order to calculate TR, FR, and 

efficiency. 

Figure 5. 

Variables factor map of the PCA for the two first principal components (PCA function 

from FactoMineR R package). The first axis represents 51.34% of the variance and correlates 

positively with TR (true resolutions), numbers of taxa in subtrees and optimal tree, strict 
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consensus (sc) information content and resolution. The second axis represents 21.02% of the 

variance and correlates positively with FR (false resolutions) and the number of 

permutations. The variance of the efficiency is split between the first and second axis. 

Figure 6. 

Interaction plots illustrating three linear models all including as independent variables the 

number of taxa in subtrees, the number of permutations and the types of analysis (function 

interact_plot from jtools R package. a. TR (number of true resolutions) as dependent 

variable. b. FR (number of false resolutions) as dependent variable. c. Efficiency as 

dependent variable. Types of lines represent the types of analysis, solid line: FWcor., dashed 

line: FWcomp., pointed line: MW, dashed and pointed line: MRP. 

Table I. 

Decomposition of the tree (a(bc(de)) into 3ts and calculation of their weights using 

different methods. 

Table II. 

Pseudocode detailing the steps of removing the dependency of a set of 3ts from a tree by 

fractional weighting. 
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SUPPORTING INFORMATION 

Figure S1.  

Boxplots of true resolutions (TR), false resolutions (FR) and efficiency in regard to the 

number of taxa in subtrees, split by the type of analysis (MRP: matrix representation with 

parsimony, FWcor.: 3ta with corrected fractional weighting, MW: 3ta with minimal weighting, 

FWcomp.: 3ta with fractional weighting per component) and the number of permutations. 

Figure S2.  

Movie of a three dimensions block diagram with the percentages of true and false 

resolutions (TR and FR), the number of taxa in the optimal tree (also highlighted by colors). 

Darkening of each color depends on the resolutions of the optimal tree, dark corresponds to 

poorly resolved trees and bright corresponds to well-resolved tree.  

Figure S3.  

Loess smoothed lines indicating a deviation from linearity effect from the three linear 

models.  

Table S1 

A. Analysis of the different types of relationships between 3ts from a pectinate tree 

(a(b(cd))) and its components ab(cd) and a(bcd) taken independently. B. Analysis of the 

different types of relationships between 3ts from a symmetric tree ((ab)(cd)) and its 

components ab(cd) and (ab)cd taken independently. C. Analysis of the different types of 

relationships between 3ts from a mixed tree (((ab)(cd))e) and its components (ab)cde, 

ab(cd)e, and (abcd)e taken independently. The different types of relationships are in-in, in-

out, asymmetric (a), symmetric (s). An empty cell means 3ts are compatible but not 

combinable. 
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Table S2.  

Summaries of the three linear models containing formulas of the models (bold), the 

estimates of each coefficient as well as standard error, t-values, and p-values. 

 


