
HAL Id: hal-03235591
https://hal.science/hal-03235591

Preprint submitted on 25 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Eliminating infinitely many cuts in non-wellfounded
MLL proof-nets

Abhishek De, Luc Pellissier, Alexis Saurin

To cite this version:
Abhishek De, Luc Pellissier, Alexis Saurin. Eliminating infinitely many cuts in non-wellfounded MLL
proof-nets. 2021. �hal-03235591�

https://hal.science/hal-03235591
https://hal.archives-ouvertes.fr

Eliminating infinitely many cuts in non-wellfounded 𝜇MLL proof-nets

ABHISHEK DE, Université de Paris, IRIF, CNRS, France

LUC PELLISSIER, LACL, Université Paris Est Créteil, France

ALEXIS SAURIN, Université de Paris, IRIF, CNRS, France

Non-wellfounded and circular proofs have been recognised over the past decade as a valuable tool to study logics expressing

(co)inductive properties, e.g. 𝜇-calculi. Such proofs are non-wellfounded sequent derivations together with a global validity condition

expressed in terms of progressing threads. While the cut-free fragment of circular proofs is satisfactory, cuts are poorly treated and the

non-canonicity of sequent proofs becomes a major issue in the non-wellfounded setting. The present paper develops the theory of

infinets – proof-nets for non-wellfounded proofs – allowing infinets with infinitely many cuts therefore solving a crucial shortcoming

of the previous work [21], characterising sequentialisation and proving a cut-elimination theorem. To that end, we provide an alternate

cut reduction for non-wellfounded sequent calculus.

ACM Reference Format:
Abhishek De, Luc Pellissier, and Alexis Saurin. 2021. Eliminating infinitely many cuts in non-wellfounded 𝜇MLL proof-nets. 1, 1

(May 2021), 41 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Fixed points. Fixed point theory occurs in just about every field of computer science, including program analysis [31],

games [14, 36], automata theory [32, 37] and especially in programming language theory because the semantics of

recursion can be described by fixed points [41]. In computational logic, inductive and coinductive reasoning can

be modelled in two paradigms: Martin-Löf’s inductive predicates [11, 13, 33] and fixed-point logics [3, 5, 8, 26, 40].

Non-wellfounded and circular proof systems [3, 7, 25, 26, 40] have received much attention in recent years: such proof

systems allow finitely-branching possibly infinitely deep derivation trees. However, when considering all possible

non-wellfounded derivations (a.k.a. pre-proofs), the resulting system is inconsistent: one can derive any sequent (see

fig. 4a) and thus needs to impose a global validity criterion to sieve the logically valid proofs from the unsound ones.

Typically, it requires that every infinite branch is supported by some thread tracing some formula in a bottom-up

manner and witnessing infinitely many progress points of a coinductive property. Furthermore, in this non-wellfounded

setting, termination of the cut-elimination procedure shall be replaced by productivity i.e. that arbitrarily large prefixes

of the result can be computed in a finite number of steps. The aforementioned validity condition is a sufficient, but non-

necessary, condition for productivity of cut-elimination. A particularly useful fragment of non-wellfounded derivations

is that of infinite but regular derivation trees, known as circular, or cyclic, derivations.

Authors’ addresses: Abhishek De, Université de Paris, IRIF, CNRS, F-75013, Paris, France, abhishek.de@irif.fr; Luc Pellissier, LACL, Université Paris Est

Créteil, F-94010, Créteil, France, luc.pellissier@lacl.fr; Alexis Saurin, Université de Paris, IRIF, CNRS, F-75013, Paris, France, alexis.saurin@irif.fr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Abhishek De, Luc Pellissier, and Alexis Saurin

CoInductive Stream := Cons : nat→ Stream→ Stream.

CoFixpoint f0 (n : nat) : Stream := Cons n (f0 (n+1)).

CoFixpoint f1 (n : nat) : Stream := let s := f1 (n+1) in

Cons n (match s with Cons h t ⇒ Cons h t end).

CoFixpoint f2 (n : nat) : Stream := let s := f2 (n+1) in

(match s with Cons h t ⇒ Cons n (Cons h t) end).

CoFixpoint f3 (n : nat) : Stream := let s := f3 (n+1) in

(match s with Cons h t ⇒ Cons h (Cons n t) end).

Fig. 1. Some productive and non-productive definitions

Productivity, from a proofs/programs perspective. Non-wellfounded proofs are currently handled in several proof-systems,

such as Coq, whose type checker checks for a guard condition to ensure productivity. In Figure 1, we show several Coq

coinductive definitions:

– f0 is the only valid Coq coinductive definition; (f0 n) computes the streams of naturals starting from n.

– f1 is a productive term, even though it is rejected by Coq type-checker as it fails to pass its guard condition. It

computes the same stream as f0.

– f2 is not productive only through reductions, and one needs to introduce a commutation rule: match 𝑒1 with 𝑝 => Cons (ℎ, 𝑡) ⇝
Cons (ℎ, match 𝑒1 with 𝑝 => 𝑡) if pattern 𝑝 does not occur free in ℎ (and symmetrically with 𝑡).

– f3 is not productive: producing the first element of (f3 n) requires to already have produced the first element of

each stream (f3 k) for k > n.

Proof theory of fixed point logics can tell us about the computational behaviour of these programs: following the

guiding principles of the Curry-Howard correspondence, notice first that (co)inductive types can be encoded as formulas

of the 𝜇-calculus. In 𝜇MALL (linear logic extended with least and greatest fixed points), one can represent the type of

nats and streams as N = 𝜇𝑋 .1 ⊕ 𝑋 and S = 𝜈𝑌 .N ⊗ 𝑌 . 1 We can represent natural numbers as well as the successor

function as the cut-free proofs respectively 𝜋𝑘 , 𝑘 ∈ N of type ⊢ N and 𝜋succ of type N ⊢ N presented in fig. 2. Also,

naturals are duplicable resources i.e. there is a proof 𝜋
dup

of N ⊢ N ⊗ N such that, when cut with 𝜋𝑘 , returns a pair of

(proofs representing) natural numbers.

𝜋
dup

=

𝜋0

⊢ N
𝜋0

⊢ N
(⊗)

⊢ N ⊗ N

(⊥)
1 ⊢ N ⊗ N

N ⊢ N ⊗ N

𝜋succ

N ⊢ N
𝜋succ

N ⊢ N
(⊗)

N,N ⊢ N ⊗ N

(`)
N ⊗ N ⊢ N ⊗ N

(Cut)
N ⊢ N ⊗ N

(&)
1 ⊕ N ⊢ N ⊗ N

(𝜈)
N ⊢ N ⊗ N

The following proposition, the proof of which is a routine check, characterizes the properties of 𝜋succ and 𝜋dup:

Proposition 1. For any natural number 𝑘 , we have:

𝜋𝑘 𝜋succ
(Cut)

⊢ N
−→★

c
𝜋𝑘+1

1
While we use a one-sided presentation of the sequent calculus in the technical developments of this paper, as common with classical LL, we show the

encoding of the above programs using two-sided sequents for clarity: 𝐹1, . . . , 𝐹𝑛 ⊢ 𝐺1, . . . ,𝐺𝑚 should be read as ⊢ 𝐹⊥
1
, . . . , 𝐹⊥𝑛 ,𝐺1, . . . ,𝐺𝑚 as usual

and left inference rules are written via the right rule of their dual connective.

Manuscript submitted to ACM

Eliminating infinitely many cuts in non-wellfounded 𝜇MLL proof-nets 3

𝜋0 = 𝜋
k+1 = Φ0 =

(1)
⊢ 1

(⊕1)⊢ 1 ⊕ N

(𝜇)
⊢ N

𝜋𝑘

⊢ N
(⊕2)⊢ 1 ⊕ N

(𝜇)
⊢ N

𝜋
dup

N ⊢ N ⊗ N

(Ax)
N ⊢ N

𝜋succ

N ⊢ N
N ⊢ S

(Cut)
N ⊢ S

(𝜈),(⊗)
N,N ⊢ S

(`)
N ⊗ N ⊢ S

(Cut)
N ⊢ S

𝜋succ = 𝜋𝑛
from

= 𝜋Cons =

(Ax)
N ⊢ N

(⊕2)
N ⊢ 1 ⊕ N

(𝜇)
N ⊢ N

𝜋𝑛

𝜋𝑛+1 𝜋𝑛+2
from

(𝜈) (⊗)
⊢ S

(⊗)
⊢ N ⊗ S

(𝜈)
⊢ S

(Ax)
N ⊢ N

(Ax)
S ⊢ S

(𝜈),(⊗)
N, S ⊢ S

Φ1 =
𝜋
dup

N ⊢ N ⊗ N

𝜋succ

N ⊢ N
N ⊢ S

(Cut)
N ⊢ S

(Ax)
N ⊢ N

𝜋Cons
(𝜇),(`)

S ⊢ S
(𝜈),(⊗)

N, S ⊢ S
(Cut)

N,N ⊢ S
(`)

N ⊗ N ⊢ S
(Cut)

N ⊢ S

Φ2 =
𝜋
dup

N ⊢ N ⊗ N

𝜋succ

N ⊢ N
N ⊢ S

(Cut)
N ⊢ S

(Ax)
N ⊢ N 𝜋Cons

(𝜈),(⊗)
N,N, S ⊢ S

(𝜇),(`)
N, S ⊢ S

(Cut)
N,N ⊢ S

(`)
N ⊗ N ⊢ S

(Cut)
N ⊢ S

Fig. 2. 𝜇MALL
∞
encodings of nat, of basics functions on nats and streams and of 𝑓0, 𝑓1 and 𝑓2 from fig. 1

and

𝜋𝑘 𝜋
dup

(Cut)
⊢ N ⊗ N

−→★
c

𝜋𝑘 𝜋𝑘
(⊗)

⊢ N ⊗ N

Similarly, one can represent streams of nats as cut-free non-wellfounded derivations of ⊢ S (e.g. in fig. 2 𝜋𝑛
from

represents the streams of successive nats starting from 𝑛) and functions on streams (e.g. 𝜋Cons represents the cons on

streams): in those derivations, we may have infinitely deep branches as for 𝜋𝑛
from

whose right-most branch is infinite.

One can encode the above coinductive programs as circular derivations2 of N ⊢ S, as shown in fig. 2: Φ0,Φ1 and Φ2

represent respectively f0, f1 and f2 (the encoding of f3 is shown in Appendix). One can, and will in the following,

consider cut-reduction relation −→c over those non-wellfounded proofs. For instance, the proof obtained by cutting Φ0

with 𝜋𝑛 will induce an infinite cut-reduction sequence converging to 𝜋𝑛
from

; the same happens when reducing a cut

between Φ1 and 𝜋𝑛 : those are productive. On the other hand, if 𝜋 ′ is obtained by cutting Φ2 with 𝜋𝑛 every derivation

that is reached by reduction sequence from 𝜋 ′ will have a cut as its last inference: cut cannot be eliminated from that

proof, it is a non-productive computation.
3
Interestingly, the difference between Φ1 and Φ2 is limited to the relative

order of the (𝜈) (⊗) inferences and the (𝜇) (`) depicted in green and red on fig. 2 and that difference, altogether with

non-wellfoundedness of the sequent derivations, will make the difference between a productive and a non-productive

cut-elimination. A simpler example of the same phenomenon will be given in fig. 4d and 4e and discussed below.

Proof-nets. As we have seen, some seemingly irrelevant differences (the relative order of the application of rules) induce

widely varying behaviour in 𝜇MALL sequent calculus. This phenomenon is related to the fact that the sequent calculus

for LL is non-canonical: a LL proof may be reduced to two cut-free proofs 𝜋1 and 𝜋2 which are different but guaranteed

to be equal up to irrelevant permutations of inference rules
4
. In other words, the permutations are denotationally trivial

i.e. J𝜋1K = J𝜋2K in any semantics. Proof-nets [29] were devised to overcome this sequentiality. A proof-net can be seen

as a graph whose nodes are inference rules, which are thus not ordered, and consequently less sequential than sequent

calculus proofs. As they are canonical, proof-nets are well-suited to represent computation.

2
Notice that derivations for the Φ𝑖 s contain back-edges, denoting the fact that the derivation tree is infinite but regular.

3
Indeed, to produce the first element of the stream the green (𝜈) (⊗) inferences, one first needs to make the red (𝜇) (`) inferences interact over the cut
but this requires first partially eliminating the cut of the derivation at the source of the back-edge, which is essentially the proof we started with: this

infinite chain of dependencies causes the non-productivity.

4
Normalisation for LL sits thus in the middle between classical sequent calculus LK — in which a proof (Lafont’s critical pair) can be reduced to any two

proofs of the same sequent — and natural deduction [28, 38] or 𝜆-calculus [16] normalisation which are confluent.

Manuscript submitted to ACM

4 Abhishek De, Luc Pellissier, and Alexis Saurin

Φ0 = 𝜋
dup

N ⊢ N ⊗ N

(Ax)
N ⊢ N

𝜋succ

N ⊢ N
N ⊢ S

(Cut)
N ⊢ S

(𝜈),(⊗)
N,N ⊢ S

(`)
N ⊗ N ⊢ S

(Cut)
N ⊢ S

Φ1 =

𝜋
dup

N ⊢ N ⊗ N

𝜋succ

N ⊢ N
N ⊢ S

(Cut)
N ⊢ S

(Ax)
N ⊢ N

(Ax)
N ⊢ N

(Ax)
S ⊢ S

(𝜈),(⊗)
N, S ⊢ S

(𝜇),(`)
S ⊢ S

(𝜈),(⊗)
N, S ⊢ S

(Cut)
N,N ⊢ S

(`)
N ⊗ N ⊢ S

(Cut)
N ⊢ S

Φ2 =

𝜋
dup

N ⊢ N ⊗ N

𝜋succ

N ⊢ N
N ⊢ S

(Cut)
N ⊢ S

(Ax)
N ⊢ N

(Ax)
N ⊢ N

(Ax)
S ⊢ S

(𝜈),(⊗)
N, S ⊢ S

(𝜈),(⊗)
N,N, S ⊢ S

(𝜇),(`)
N, S ⊢ S

(Cut)
N,N ⊢ S

(`)
N ⊗ N ⊢ S

(Cut)
N ⊢ S

Φ3 =

𝜋
dup

N ⊢ N ⊗ N

𝜋succ

N ⊢ N
N ⊢ S

(Cut)
N ⊢ S

(Ax)
N ⊢ N

(Ax)
N ⊢ N

(Ax)
S ⊢ S

(𝜈),(⊗)
N, S ⊢ S

(𝜈),(⊗)
N,N, S ⊢ S

(X)
N,N, S ⊢ S

(𝜇),(`)
N, S ⊢ S

(Cut)
N,N ⊢ S

(`)
N ⊗ N ⊢ S

(Cut)
N ⊢ S

Fig. 3. 𝜇MALL
∞
encodings of the Coq functions of Figure 1

.

.

.
.
.
.

.

.

.
.
.
.

𝜓

⊗ ⊗

𝜈 𝜈

⊗

𝜙

𝜈

Infinets. In [21], the authors defined infinets, canonical objects that capture exactly the equivalence

classes of pre-proofs under the equivalence by (possibly infinite) permutation of inferences (a.k.a.

permutative equivalence). Compared to MLL, more structure is needed in order to have suitable

non-wellfounded proof structures for 𝜇MLL
∞
. Consider the two proofs in fig. 4b and fig. 4c

5
. They

are not permutatively equivalent: no permutation will change the contents of the premises of a tensor.

However, naively desequentialising them by forgetting the order of inferences and keeping only the

subformula ordering ends up in the same proof structure (drawn on the left. The formula 𝜓 is left hanging as it is

not connected to any cell of the infinet) which means the proof-net equivalence would be coarser than permutation

equivalence. Indeed, the fact that𝜓 resides with either the rightmost or the leftmost infinite branch is lost in translation:

in order to be faithful, more structure in the form of “infinite axioms” is present in infinets. As usual axioms encapsulate

5
Omitting the indices for the time being.

Manuscript submitted to ACM

Eliminating infinitely many cuts in non-wellfounded 𝜇MLL proof-nets 5

.

.

.

⊢ (𝜇𝑋 .𝑋)𝛽𝑖 (𝜇)⊢ (𝜇𝑋 .𝑋)𝛽

.

.

.

⊢ (𝜈𝑋 .𝑋)𝛽⊥𝑖 , 𝜙𝛼 (𝜈)⊢ (𝜈𝑋 .𝑋)𝛽⊥ , 𝜙𝛼
(cut)⊢ 𝜙𝛼

(a) An unsound pre-proof, 𝜙 is arbitrary.

⊢ 𝜙𝛼𝑖𝑙 ,𝜓𝛽
⊢ 𝜙𝛼𝑖𝑟𝑖𝑙 ⊢ 𝜙𝛼𝑖𝑟𝑖𝑟 (𝜈⊗)⊢ 𝜙𝛼𝑖𝑟 (⊗)⊢ (𝜙 ⊗ 𝜙)𝛼𝑖 ,𝜓𝛽 (𝜈)⊢ 𝜙𝛼 ,𝜓𝛽

(b) 𝜙 = 𝜈𝑋 .𝑋 ⊗ 𝑋 and𝜓 = 𝜇𝑋 .𝜈𝑌 .𝑋

⊢ 𝜙𝛼𝑖𝑙𝑖𝑟 ⊢ 𝜙𝛼𝑖𝑙𝑖𝑙 (𝜈⊗)⊢ 𝜙𝛼𝑖𝑙 ⊢ 𝜙𝛼𝑖𝑟 ,𝜓𝛽 (⊗)⊢ (𝜙 ⊗ 𝜙)𝛼𝑖 ,𝜓𝛽 (𝜈)⊢ 𝜙𝛼 ,𝜓𝛽

(c) 𝜙 = 𝜈𝑋 .𝑋 ⊗ 𝑋 and𝜓 = 𝜇𝑋 .𝜈𝑌 .𝑋

(ax)⊢ (𝜈𝑋 .𝑋)𝛼𝑖𝑖 , (𝜇𝑌 .𝑌)𝛽𝑖 (𝜈2)⊢ (𝜈𝑋 .𝑋)𝛼 , (𝜇𝑌 .𝑌)𝛽𝑖 (𝜇)⊢ (𝜈𝑋 .𝑋)𝛼 , (𝜇𝑌 .𝑌)𝛽 ⊢ (𝜈𝑌 .𝑌)𝛽⊥
(cut)⊢ (𝜈𝑋 .𝑋)𝛼

(d) Non-productive cut-elimination

(ax)⊢ (𝜈𝑋 .𝑋)𝛼𝑖𝑖 , (𝜇𝑌 .𝑌)𝛽𝑖 (𝜇)⊢ (𝜈𝑋 .𝑋)𝛼𝑖𝑖 , (𝜇𝑌 .𝑌)𝛽 (𝜈2)⊢ (𝜈𝑋 .𝑋)𝛼 , (𝜇𝑌 .𝑌)𝛽 ⊢ (𝜈𝑌 .𝑌)𝛽⊥
(cut)⊢ (𝜈𝑋 .𝑋)𝛼

(e) Productive cut-elimination

Fig. 4. Non-wellfounded derivations. The back-edges between two sequents with the same underlying formulas are a way to represent

regular proofs: the derivation above the pointing sequent is equal to the one above the pointed one, up to address substitution. 𝛼 and

𝛽 are arbitrary addresses.

the information which formulas end up in which leaf of the proof tree, infinite axioms encapsulate the information

which formulas end up in which infinite branch of the non-wellfounded proof tree.

The non-canonicity of sequent calculus manifests itself more critically in the non-wellfounded setting: productivity

of cut-elimination is not preserved by permutative equivalence [6], as already noticed with fig. 2. The two pre-proofs

in figs. 4d and 4e witness the same phenomenon with simpler proof objects (they use neither additive nor multiplicative

connectives, only fixed points): they are permutatively equivalent but cut-elimination is productive only in the latter

(fig. 7). However they have the same infinet on which the cut-reduction rules that we propose can be applied (fig. 17).

Consequently, we believe that infinets are the proper framework for dealing with unrestricted cuts and more expressive

validity conditions (such as bouncing-validity). Understanding the impact of those permutations and how to quotient

them properly is a deep motivation for this work and for our investigation of proof-nets for non-wellfounded proofs:

we aim at benefiting from the canonicity of proof-nets to improve the dynamics of non-wellfounded derivation wrt.

cut-elimination.

Infinitely many cuts. The handling of the cuts in [21] has been rudimentary: only finitely many cuts are considered and

cut-elimination is basically interpreted as an infinitary abstract rewriting system with a metric: at first, one guesses the

normal form (a.k.a. big-step) then, a transfinite reduction sequence of small steps is shown to converge to the big-step

in the limit. To guess the limit, one has to sacrifice some structure viz. 𝜂-expand all axioms rendering the calculus

without axioms. This is a strong limitation when one see that examples as simple as Φ0,Φ1 and Φ2 contain infinitely

many cuts. The present paper provides a full treatment of cuts and axioms for non-wellfounded proofs.

Current trends and related works. Several strands of research around non-wellfounded and circular proofs are related to

the present work in various ways:

Expressing theories with circular proofs is a fruitful research direction [19, 20, 23]. Circular proofs also help

understanding the meta-theory of traditional fixed points logics such as the linear-time or modal 𝜇-calculi [3, 24, 25].

Validity criteria are subjet of active investigations. For instance, Baelde et al.[6] introduce bouncing-validity: threads

can bounce on axioms and cuts describing paths in proofs and validate more circular derivations.

The denotational semantics of circular proofs is yet to be fully understood and is a challenging direction [26, 30, 40].

Manuscript submitted to ACM

6 Abhishek De, Luc Pellissier, and Alexis Saurin

Sequentialisation

(Theorem 2)

Desequentialisation

(Proposition 8)

Pre-proofs

(Definition 4)

Valid pre-proofs

a.k.a proofs

(Definition 8)

Cut-free proofs

Non-wellfounded

proof structures

(Definition 11)

Infinets

(Definition 27)

Valid Infinets

(Definition 31)

Cut-free valid

infinets

Cut Elimination

(Theorem 1)
Cut Elimination

(Theorem 3)

Fig. 5. Schemata of the contributions

Interactive and automated theorem proving are impacted by circular proofs – which use a form of implicit

induction– [4, 15, 27, 34, 39], be it for building automated proofs of (co)inductive statements or for easing the manipu-

lation of coinduction in proof assistants such as Coq. This active research topic can be impacted by advances on the

fine-grained structure of circular proofs [12, 22] or approaches such as copatterns [2].

Alternative styles for handling non-wellfounded proofs are actively researched to provide solutions to some of

the limitations of sequent proofs. In addition to De and Saurin’s line of work on proof-nets [21], an interesting direction

is that of Das on designing deep-inference proof systems for circular reasoning [18].

The present work – devising proof-nets for non-wellfounded proof theory – nestles itself naturally in the last

category, but is also related to other approaches: (i) proof-nets are closer to semantics than sequent proofs and infinets

can potentially impact the understanding of the denotational invariants of non-wellfounded proofs and the design of

their denotational semantics. (ii) the validity criteria could be improved as the bouncing-validity condition will strongly

benefit from less sequential proof structures.

Organisation of the contributions. This work strengthens the definition for non-wellfounded proof structures—and their

correctness criterion—to accommodate infinitely many cuts: in this situation, some infinite axioms are only virtually

present, and made explicit through cut-elimination. Our main contribution is the cut-elimination result for infinets

with atoms and infinitely many cuts by reconciling the locality of the big-step and non-locality of the small-step. To

prove that result we need to provide an alternate cut reduction system of 𝜇MLL
∞

sequent calculus. The contributions

are summarised in fig. 5.

In section 2, we recall the necessary background on fixed-point logics and non-wellfounded proof theory. In section 3,

we provide a new cut-elimination result for 𝜇MLL
∞

sequent calculus which is an alternative to Baelde et al [6, 7]

cut-elimination and is more suited for proof-nets. In section 4, we informally discuss the necessary structure to be added

to MLL proof-nets. In section 5, we formalize this intuition and define non-wellfounded proof structures. We state the

correctness criterion in section 6, which leads us to develop and adapt the theory of kingdoms to non-wellfounded

structures, an additional contribution of the work. This allows us to provide a sequentialisation procedure extending

that of [21]. We introduce a new cut reduction system in section 7 and establish the cut-elimination theorem by showing

productivity of cut-reduction for valid infinets. Section 8 concludes with future directions.

Manuscript submitted to ACM

Eliminating infinitely many cuts in non-wellfounded 𝜇MLL proof-nets 7

2 BACKGROUND

𝜇MALL
∞
, the non-wellfounded extension of MALL, the multiplicative additive fragment of linear logic, with least and

greatest fixed points operators, was introduced in [7, 25]. In this paper, we only consider the unit-free multiplicative

fragment which we call 𝜇MLL
∞
. In this section, we recall some basic definitions.

Definition 1. Given two disjoint infinite sets of atoms A = {𝐴, 𝐵, . . . }, and of propositional variablesV = {𝑋,𝑌, . . . },
𝜇MLL

∞ pre-formulas are given by the following grammar (where 𝐴 ∈ A, 𝑋 ∈ V):

𝜙,𝜓 ::= 𝐴 | 𝐴⊥ | 𝑋 | 𝜙 `𝜓 | 𝜙 ⊗𝜓 | 𝜇𝑋 .𝜙 | 𝜈𝑋 .𝜙

𝜇, 𝜈 bind the variable 𝑋 in 𝜙 . Free and bound variables, as well as capture-avoiding substitution are defined as usual. The

subformula ordering is denoted ≤. A closed pre-formula (i.e. no free variables), is called a formula.

We define negation, (•)⊥, as a meta-operation on pre-formulas (with 𝑋⊥ = 𝑋) and will use it only on formulas. As it

is not part of the syntax, we do not need any positivity condition on the fixed-point expressions. As expected, the least

and greatest fixed point are the dual of each other.

The system is classical, hence, it is enough to consider a one-sided proof system. However, in order to keep track of

progressing threads (i.e. validity) and also while translating into proof nets, it is useful to distinguish occurrences of

the same formula within a sequent. A 𝜇MLL
∞ sequent is an expression ⊢ Δ where Δ is a finite set of pairwise disjoint

formula occurrences. We will now define these terms introduced.

Definition 2. An (in)finite address is a (in)finite word in {𝑙, 𝑟 , 𝑖}∞6
. Negation extends over addresses as the morphism

satisfying 𝑙⊥ = 𝑟 , 𝑟⊥ = 𝑙 , and 𝑖⊥ = 𝑖 . We call 𝛼 ′ a sub-address of 𝛼 if 𝛼 is a prefix of 𝛼 ′. 𝛼 and 𝛽 are said to be disjoint if
the greatest common prefix of 𝛼 and 𝛽 is not equal to 𝛼 or 𝛽 .

Definition 3. A formula occurrence (denoted by 𝐹,𝐺, ...) is given by a formula 𝜙 and a finite address 𝛼 , written

𝜙𝛼 . Let addr(𝜙𝛼) = 𝛼 . Operations on formulas extend to occurrences: 𝜙𝛼
⊥ = 𝜙⊥

𝛼⊥ ; for ★ ∈ {`, ⊗}, 𝐹 ★𝐺 = (𝜙 ★𝜓)𝛼
if 𝐹 = 𝜙𝛼𝑙 and 𝐺 = 𝜓𝛼𝑟 ; for 𝜎 ∈ {𝜇, 𝜈}, 𝜎𝑋 .𝐹 = (𝜎𝑋 .𝜙)𝛼 if 𝐹 = 𝜙𝛼𝑖 . Substitution of occurrences forgets addresses i.e.

(𝜙𝛼) [𝜓𝛽/𝑋] = (𝜙 [𝜓/𝑋])𝛼 . We say that occurrences are disjoint when their addresses are. Given 𝐹,𝐺 two occurrences,𝐺

is called a suboccurrence of 𝐹 (written 𝐺 ⊑ 𝐹) if addr(𝐺) is a subaddress of addr(𝐹). Finally, ⌈•⌉ denotes the address
erasure operation on occurrences.

We are now ready to define the derivation trees of 𝜇MLL
∞
.

Definition 4. A pre-proof of 𝜇MLL
∞
is a possibly infinite tree generated from the inferences of unit-free multiplicative

linear logic and the following rules:

⊢ 𝐺 [𝜇𝑋 .𝐺/𝑋],Δ
(𝜇)⊢ 𝜇𝑋 .𝐺,Δ

⊢ 𝐺 [𝜈𝑋 .𝐺/𝑋],Δ
(𝜈)⊢ 𝜈𝑋 .𝐺,Δ

Given a pre-proof, 𝜋 , addr(𝜋) ⊆ {𝑙, 𝑟 , 𝑖}∞ is a set of addresses s.t. a finite address 𝛼 ∈ addr(𝜋) iff there is an occurrence

𝐹 , in an axiom in 𝜋 with addr(𝐹) = 𝛼 and an infinite address 𝛼 ∈ addr(𝜋) iff all the strict prefixes of 𝛼 are addresses of

occurrences appearing in 𝜋 .

Example 1. The three trees in fig. 4 are pre-proofs. If we call 𝜋 the proof in fig. 4b, we have that addr(𝜋) = 𝛼.(𝑖 (𝑙 +
𝑟))𝜔 ∪ {𝛽}.
6
For any finite set of alphabets,𝐴,𝐴∞ denotes the set of finite and infinite words made of letters from𝐴.

Manuscript submitted to ACM

8 Abhishek De, Luc Pellissier, and Alexis Saurin

We will directly present examples on formula, leaving the reader to add the addresses in a coherent way.

Infinitary proof systems depart peculiarly from their wellfounded counterparts: in spite of the rules being locally

sound, it is possible to derive any sequent, as in Figure 4a. We impose a global validity criterion on pre-proofs. Valid

pre-proofs are simply called proofs.

Definition 5. Let 𝛾 = (𝑠𝑖)𝑖∈𝜔 be an infinite branch of a pre-proof. A thread of 𝛾 is a sequence 𝜏 = {𝐹𝑖 }𝑖∈𝜔 such that

there exists 𝑗 ≥ 0 such that for all 𝑖 < 𝜔 , we have 𝐹𝑖 ∈ 𝑠𝑖+𝑗 and either 𝐹𝑖 is suboccurrence of 𝐹𝑖+1 or 𝐹𝑖 = 𝐹𝑖+1. We denote

the sequence of formulas {⌈𝐹𝑖 ⌉}𝑖∈𝐼 by ⌈𝜏⌉.

Proposition 2 ([25], pg. 53). The ≤ ordering is a total order on the set Inf (⌈𝜏⌉) where Inf (𝜏) is the set of formulas

occurring infinitely often in 𝜏 .

Definition 6. A thread is said to be straight if it is not ultimately constant. A straight thread, 𝜏 , is said to be valid if

min(Inf (⌈𝜏⌉)) is a 𝜈-formula.

Definition 7. An infinite branch of a pre-proof is called real if it has at least one straight thread and virtual otherwise.
It is valid if it has a valid thread.

Definition 8. Let 𝜋 be a 𝜇MLL
∞
pre-proof. It is straight-thread valid if all its infinite branches are valid.

Remark 1. Observe that a proof does not have virtual branches. Furthermore, if a pre-proof has virtual branches, then it

has infinitely many cuts.

Example 2. Consider the pre-proof (say 𝜋) in fig. 4b. The left-most branch contains two threads: one following the

formula 𝜙 , the other the formula𝜓 . The first one is straight and valid, the second is not: accordingly, this branch is supported

by a valid thread. As it is also the case of the other infinite branches, 𝜋 is a proof.

3 CUT-ELIMINATION IN 𝜇MLL
∞ SEQUENT CALCULUS

In finitary proof theory, cut elimination may proceed by reducing topmost cuts but there is no such thing, in general, as

a topmost cut in non-wellfounded proof-theory. Previous cut-elimination results relied on reduction of bottom-most

cuts [6, 7, 25, 26] using a generalized cut-rule, the multicut, which abstracts over a finite subtree made of cut (and

axiom) rules. In those approaches, when two cuts are immediately above one another, they are merged instead of being

permuted. The following is an example of a multicut rule: the red lines indicate the context and the blue lines indicate

two cuts that have been merged.

⊢ 𝐹 ′, 𝐺 ⊢ 𝐺⊥, 𝐻 ⊢ 𝐻⊥, 𝐾 ′
(mcut)

⊢ 𝐹, 𝐾

A less sequential approach to cut-elimination. While the multicut brings uniformity in the treatment of cut-elimination

in sequent calculus, it is not well-suited for our purpose of developing a canonical and parallel treatment of cuts in

non-wellfounded proof systems. It is indeed better-suited to use the usual cut-rule to draw a comparison between

cut-reductions in sequent systems and in proof-nets, as we will do in the last sections of the paper. To serve this purpose,

we develop here an alternative approach to cut-elimination for non-wellfounded proof which avoids the use of the

multicut but on the standard cut instead and we will prove a new cut-elimination result in this case. We shall simply

retain however a degenerated case of the multi-cut, the unary case, used to perform lazily the cut-axiom reduction and

relocation of addresses. Indeed, as we work with explicit occurrences, the cut/ax case is as follows:
Manuscript submitted to ACM

Eliminating infinitely many cuts in non-wellfounded 𝜇MLL proof-nets 9

⊢ Γ, 𝐹 [𝜇𝑋 .𝐹/𝑋]
(𝜇)

⊢ Γ, 𝜇𝑋 .𝐹
⊢ 𝐹⊥ [𝜈𝑋 .𝐹⊥/𝑋],Δ

(𝜈)
⊢ 𝜈𝑋 .𝐹⊥,Δ

(Cut)
⊢ Γ,Δ

⊢ Γ, 𝐹 [𝜎𝑋 .𝐹/𝑋],𝐺
(𝜎)

⊢ Γ, 𝜎𝑋 .𝐹,𝐺 ⊢ 𝐺⊥,Δ
(Cut)

⊢ Γ, 𝜎𝑋 .𝐹,Δ
Γ,𝐺⊥

⊢ Δ, 𝐹 ,𝐺 ⊢ Σ, 𝐹⊥
(cut)

⊢ Δ, Σ,𝐺
(cut)

⊢ Γ,Δ, Σ

(Ax)
⊢ 𝐴, 𝐵⊥

𝜋

⊢ 𝐵, Γ
(Cut)

⊢ 𝐴, Γ
↓c ↓c ↓c ↓c

⊢ Γ, 𝐹 [𝜇𝑋 .𝐹/𝑋] ⊢ 𝐹⊥ [𝜈𝑋 .𝐹⊥/𝑋],Δ
(Cut)

⊢ Γ,Δ

⊢ Γ, 𝐹 [𝜎𝑋 .𝐹/𝑋],𝐺 ⊢ 𝐺⊥,Δ
(Cut)

⊢ Γ, 𝐹 [𝜎𝑋 .𝐹/𝑋],Δ
(𝜎)

⊢ Γ, 𝜎𝑋 .𝐹,Δ

Γ,𝐺⊥ ⊢ Δ, 𝐹 ,𝐺
(cut)

⊢ Γ,Δ, 𝐹 ⊢ Σ, 𝐹⊥
(cut)

⊢ Γ,Δ, Σ

𝜋

⊢ 𝐵, Γ
(Loc(𝜄))

⊢ 𝐴, Γ

Fig. 6. Main cases for 𝜇MLL
∞
cut reduction, −→c. (With 𝜎 ∈ {𝜇, 𝜈 } and 𝜄 st. 𝜄 (𝐴) = 𝐵, 𝜄 (𝐻) = 𝐻 for 𝐻 ∈ Γ.)

𝜋 −→4

c

(ax)⊢ (𝜈𝑋 .𝑋)𝛼𝑖𝑖 , (𝜇𝑌 .𝑌)𝛽𝑖 (𝜇)⊢ (𝜈𝑋 .𝑋)𝛼𝑖𝑖 , (𝜇𝑌 .𝑌)𝛽

(ax)⊢ (𝜈𝑋 .𝑋)𝛽⊥𝑖𝑖 , (𝜇𝑌 .𝑌)𝛾𝑖 (𝜇)⊢ (𝜈𝑋 .𝑋)𝛽⊥𝑖𝑖 , (𝜇𝑌 .𝑌)𝛾 (𝜈2)⊢ (𝜈𝑋 .𝑋)𝛽⊥ , (𝜇𝑌 .𝑌)𝛾 (cut)⊢ (𝜈𝑋 .𝑋)𝛼𝑖𝑖 , (𝜇𝑌 .𝑌)𝛾 (𝜈)⊢ (𝜈𝑋 .𝑋)𝛼𝑖 , (𝜇𝑌 .𝑌)𝛾
𝜋

⊢ (𝜈𝑌 .𝑌)𝛾⊥ (cut)⊢ (𝜈𝑋 .𝑋)𝛼𝑖 (𝜈)⊢ (𝜈𝑋 .𝑋)𝛼 −→3

c

(ax)⊢ (𝜈𝑋 .𝑋)𝛽⊥𝑖𝑖 , (𝜇𝑌 .𝑌)𝛾𝑖 (𝜇)⊢ (𝜈𝑋 .𝑋)𝛽⊥𝑖𝑖 , (𝜇𝑌 .𝑌)𝛾 (Loc)⊢ (𝜈𝑋 .𝑋)𝛼𝑖𝑖𝑖 , (𝜇𝑌 .𝑌)𝛾 (𝜈2)⊢ (𝜈𝑋 .𝑋)𝛼𝑖 , (𝜇𝑌 .𝑌)𝛾
𝜋

⊢ (𝜈𝑌 .𝑌)𝛾⊥ (cut)⊢ (𝜈𝑌 .𝑌)𝛼𝑖 (𝜈)⊢ (𝜈𝑋 .𝑋)𝛼

Fig. 7. A productive sequence of cut-elimination

(ax)

⊢ 𝐹,𝐺⊥
𝜋

⊢ 𝐺, Γ
(cut)

⊢ 𝐹, Γ

with ⌈𝐹 ⌉ = ⌈𝐺⌉, which cannot simply be reduced to

𝜋

⊢ 𝐹, Γ as the occurrences do not match (indeed, the addresses of

𝐹 and 𝐺 are in fact disjoint). Instead of doing a substitution of occurrences in 𝜋 (which is a non-wellfounded object),

we treat this substitution lazily, in the form of an explicit substitution [1] adding the following unary inference rule:

𝑠 ′
(Loc(𝜄))

𝑠
where 𝜄 is a one-to-one map from 𝑠 to 𝑠 ′ such that for all 𝐹 ∈ 𝑠 , 𝜄 (𝐹) ≡ 𝐹 . In the rest of the paper, when writing

𝜇MLL
∞
, we mean 𝜇MLL

∞
extended with (Loc(𝜄)).

Definition 9 (𝜇MLL
∞

cut reduction). The reduction system −→c is obtained by extending the usualMLL reduction

system with fixed points reductions, cut-commutation rules and a new cut-axiom rules introducing Loc(𝜄) depicted in fig. 6

on p.9 (Full details in Appendix A.)

Example 3. Consider the sequent-calculus pre-proof 𝜋 in fig. 4e. We draw a finite reduction sequence of it in fig. 7. We

see that after finitely many steps, it reduces to a proof that is a reduction of 𝜋 above a 𝜈 rule. Note that this is impossible

to do with the pre-proof in fig. 4d, as any commutation would necessitate to place a 𝜇 below the cut. (A more complete

reduction is drawn in the Appendix, fig. 23.)

The previous cut-reduction system admits infinitary cut-elimination. (A proof can be found in Appendix A.)

Theorem 1. If 𝜋0 is a 𝜇MLL
∞
proof, there is sequence of 𝜇MLL

∞
proofs (𝜋𝑖)𝑖∈𝜔 with 𝜋𝑖 −→c 𝜋𝑖+1 (strongly) converging

to a cut-free 𝜇MLL
∞
proof 𝜋 ′.

4 TRIPS

In [21], we desequentialise pre-proofs by forgetting the order of the inferences, keeping only the subformula ordering

and adding a notion of infinite axioms to account for straight threads residing in infinite branches of pre-proofs.

Manuscript submitted to ACM

10 Abhishek De, Luc Pellissier, and Alexis Saurin

(ax)
⊢ 𝐴, 𝐴⊥

★

⊢ 𝐴,𝜈𝑋 .𝑋 (𝜈)⊢ 𝐴,𝜈𝑋 .𝑋 (cut)
★ ⊢ 𝐴,𝜈𝑋 .𝑋

(a)

.

.

.

𝐴 𝐴⊥ 𝐴 𝐴⊥ · · ·
ax ax

ax∞𝑟

cut cut

𝜈

𝜈𝑋 .𝑋

𝜈

(b) Naive desequentialisation of fig. 8a

.

.

.

𝐴 𝐴⊥ 𝐴 𝐴⊥ · · ·
ax ax

ax∞𝑟

cut cut

𝜈

𝜈𝑋 .𝑋

𝜈

(c) Desequentialisation of fig. 8a

★

⊢ 𝐴⊥, 𝐻
(ax)

⊢ 𝐴, 𝐴⊥ ⊗
⊢ 𝐻, 𝐴⊥ ⊗ 𝐴, 𝐴⊥ (`)
𝐻 ` (𝐴⊥ ⊗ 𝐴), 𝐴⊥ (𝜈)

★ ⊢ 𝐻, 𝐴⊥

(d) 𝐻 = 𝜈𝑋 .𝑋 ` (𝐴⊥ ⊗ 𝐴)

.

.

. 𝐴⊥

.

.

.

𝐴 𝐴⊥

𝐴 𝐴⊥

𝐴

ax

ax

ax

ax∞𝑟
⊗

O

𝜈
⊗

O

𝜈

⊗

O

𝐻

𝜈

(e) Naive desequentialisation of fig. 8d

.

.

. 𝐴⊥

.

.

.

𝐴 𝐴⊥

𝐴 𝐴⊥

𝐴

ax

ax

ax

ax∞𝑟

⊗

O

𝜈
⊗

O

𝜈

⊗

O

𝐻

𝜈

(f) Desequentialisation of fig. 8d

(ax)
⊢ 𝐴, 𝐴⊥

(ax)
⊢ 𝐴, 𝐴⊥

★

⊢ 𝐴, 𝐴⊥ (cut)
⊢ 𝐴, 𝐴⊥ (cut)

★ ⊢ 𝐴, 𝐴⊥

(g)

𝐴 𝐴⊥ 𝐴 𝐴⊥
.
.
.

𝐴 𝐴⊥ 𝐴 𝐴⊥
.
.
.

ax ax

cut cut
ax ax

cut cut

(h) Naive desequentialisation of fig. 8g

𝐴 𝐴⊥ 𝐴 𝐴⊥
.
.
.

𝐴 𝐴⊥ 𝐴 𝐴⊥
.
.
.

ax ax

cut cut
ax ax

ax∞𝑣

cut cut

(i) Desequentialization of fig. 8g

Fig. 8. Naive and faithful desequentialisations of 𝜇MLL
∞
simple pre-proofs. Back-edges are depicted using pointers (★). Red and blue

curves indicate trips.

Consider the proof structure in fig. 8b, the naive desequentialisation of the pre-proof in fig. 8a. There is an infinite

axiom “above” the undirected ray of 𝜈 nodes (which corresponds to a straight thread) and there is an undirected ray, 𝜌 ,

of alternating axioms and cuts. Observe that every 𝐴 introduced by a cut resides with the straight thread in the only

infinite branch in fig. 8a: this is lost in translation. Since infinite axioms capture the invariant of an infinite branch, 𝜌

should be included in the infinite axiom in a correct desequentialisation as in fig. 8c. Paths like 𝜌 alternating through

axioms and cuts are called visitable paths.

Visitable paths can be formed using tensor nodes as well: a similar situation can be reproduced using tensors and a

fixed point formula. Consider the proof structure in fig. 8e, the naive desequentialisation of the pre-proof in fig. 8b.

Here as well the visitable path of alternating axioms and tensors (in red) should be included in the infinite axiom above

the undirected ray of 𝜈 nodes.

When translating pre-proofs into proof structures, one needs to recognise these paths on pre-proofs. We therefore

introduce the notion of trips.

Definition 10. Given a pre-proof 𝜋 , a trip starting from 𝐹1 is a sequence 𝜏 = {(𝑠𝑖 , 𝐹𝑖 , 𝑑𝑖)}𝑖∈𝜔 where 𝑠𝑖 is a sequent in

𝜋 , 𝐹𝑖 ∈ 𝑠𝑖 and 𝑑𝑖 ∈ {↑, ↓} such that 𝑑1 = ↑ and for every 𝑖 < 𝜔 exactly one of the following holds:

– 𝑑𝑖 = 𝑑𝑖+1 = ↑, 𝑠𝑖+1 is a premise of 𝑠𝑖 and 𝐹𝑖+1 ⊑ 𝐹𝑖 .
– 𝑑𝑖 = 𝑑𝑖+1 = ↓, 𝑠𝑖 is a premise of 𝑠𝑖+1 and 𝐹𝑖 ⊑ 𝐹𝑖+1.

Manuscript submitted to ACM

Eliminating infinitely many cuts in non-wellfounded 𝜇MLL proof-nets 11

– 𝑑𝑖 = ↑, 𝑑𝑖+1 = ↓, 𝑠𝑖 = 𝑠𝑖+1 = {𝐹𝑖 , 𝐹𝑖+1} and 𝑠𝑖 is conclusion of a (ax) rule.
– 𝑑𝑖 =↑, 𝑑𝑖+1 =↓, 𝑠𝑖 = 𝑠𝑖+1 and there exist straight threads 𝜏 and 𝜏 ′ that start from 𝐹𝑖 and 𝐹𝑖+1 respectively and belong

to the same infinite branch.

– 𝑑𝑖 = ↓, 𝑑𝑖+1 = ↑, 𝑠𝑖 and 𝑠𝑖+1 are the premises of a (cut) rule on 𝐹𝑖 and 𝐹𝑖+1.
– 𝑑𝑖 = ↓, 𝑑𝑖+1 = ↑, 𝑠𝑖 and 𝑠𝑖+1 are the premises of a (⊗) rule on 𝐹𝑖 and 𝐹𝑖+1.

Further, 𝜏 satisfies the following conditions:

– For every 𝑖, 𝑗 < 𝜔 , there does not exist a sequent, 𝑠 , in 𝜋 such that 𝐹𝑖 ` 𝐹 𝑗 ∈ 𝑠 .
– There are infinitely many terms of the form (𝑠, 𝐹 , ↓).

Informally, a trip is sequence of pointed sequents (i.e. sequents with a principal formula occurrence) with directions

tracing a path bouncing on axioms, cuts or tensors that does not go through two premises of a ` rule: anticipating the

next section, trips are special types of switching paths. The trips in pre-proofs of fig. 8 are indicated as coloured lines.

Proposition 3. Let ((𝑠𝑖 , 𝐹𝑖 , 𝑑𝑖))𝑖∈𝜔 be a trip of a pre-proof 𝜋 . Then there exists an infinite branch that has infinitely

many common terms with (𝑠𝑖)𝑖∈𝜔 . Furthermore, if there exist two such infinite branches 𝛾1 and 𝛾2 then 𝛾1 = 𝛾2 after finitely

many terms.

Proof. Suppose not. Then it contains infinitely many sequents from two diverging infinite branches, 𝛾1 and 𝛾2, of

𝜋 . Let 𝛾 be the finite common prefix of 𝛾1 and 𝛾2. By construction, there is a tensor or a cut rule in 𝛾 such that it has

premises 𝑠𝑙 and 𝑠𝑟 respectively and it introduces 𝐹𝑙 and 𝐹𝑟 respectively such that 𝑠𝑙 and 𝑠𝑟 occurs infinitely often in the

trip. By construction, during a downward travel via 𝑠𝑙 (resp. 𝑠𝑟), in order to change directions, the trip must be through

𝐹𝑙 (resp. 𝐹𝑟) rather than any other occurrence of 𝑠𝑙 (resp. 𝑠𝑟). Similarly, during the immediately succeeding upward travel,

the trip must be through (𝑠𝑟 , 𝐹𝑟 , ↑). So, there is a finite trip starting from (𝑠𝑟 , 𝐹𝑟 , ↑) and (𝑠𝑟 , 𝐹𝑟 , ↓). Schematically this

finite trip looks like the following. We will show by induction on 𝑛 that such a finite trip cannot exist.

𝐺1 𝐺⊥
1

𝐹𝑟 𝐹 1
𝑙

𝐺2 𝐺⊥
2

𝐹 1𝑟 𝐹 2
𝑙 𝐹 2𝑟 · · ·

𝐺𝑛 𝐺⊥𝑛

𝐹𝑛
𝑙
(= 𝐹𝑟)

Base Case We have 𝐹 1
𝑙
= 𝐹𝑟 . Then, 𝐺1 and 𝐺1

⊥
are suboccurrences of 𝐹𝑟 . Let 𝐺

′
be the suboccurrence which is the

greatest common prefix of𝐺1 and𝐺1

⊥
in the FL-graph of 𝐹𝑟 . The outermost operator of𝐺 ′ must be either a parr

or a tensor. In case it is a parr, the finite trip goes through two premises of 𝐺 ′ which is not allowed. If it is a

tensor, then 𝐺1 and 𝐺1

⊥
go to different sequents and there cannot be axiom with them.

Induction Step Then,𝐺1 and𝐺𝑛
⊥
are suboccurrences of 𝐹𝑟 . Let𝐺

′
be the suboccurrence which is the greatest common

prefix of 𝐺1 and 𝐺𝑛
⊥
in the FL-graph of 𝐹𝑟 . The outermost operator of 𝐺 ′ must be a tensor (parr is ruled out by

the same logic as above). Let 𝐺 ′ = 𝐻 ⊗ 𝐻 ′. Since the finite trip goes through 𝐺 ′, {𝐻,𝐻 ′} = {𝐹𝑚
𝑙
, 𝐹𝑚𝑟 } for some

𝑚 < 𝑛. But then we can follow 𝐹𝑚𝑟 down to 𝐹𝑟 (since𝐺
′
is a suboccurrence of 𝐹𝑟). Hence we must have a shorter

finite trip of the requisite form. By induction hypothesis that does not exist.

Hence a trip can be associated with at most one infinite branch. Further observe by the above argument every

sequent is repeated at most finitely often in a trip, so a trip visits higher and higher (or deeper depending on one’s

perspective) sequents. Hence there is an infinite branch associated with every trip. □

Manuscript submitted to ACM

12 Abhishek De, Luc Pellissier, and Alexis Saurin

From proposition 3 we can associate a unique maximal infinite branch with a trip. Observe that trips correspond to

visitable paths (up to a choice of axioms to bounce on) and the infinite branch associated with a trip corresponds to the

infinite axiom above the corresponding visitable path.

Consider the pre-proof in fig. 8c and its corresponding proof structure in fig. 8h. They have two trips and visitable

paths respectively. We can argue as before that an infinite axiom should be atop the two visitable paths, however no

infinite axiom is available. We need to introduce a new infinite axiom which we call a virtual axiom as in fig. 8i. We will

thus distinguish between infinite axioms that are supported by a straight thread (which we will call real axioms) and

infinite axioms supported by visitable paths (virtual axioms). The intuition that an infinite axiom is the invariant of an

infinite branch still carries forward.

𝜋

⊢ 𝐴, 𝐴⊥

★

⊢ 𝐴,𝜈𝑋 .𝑋 (𝜈)⊢ 𝐴,𝜈𝑋 .𝑋 (cut)
★ ⊢ 𝐴,𝜈𝑋 .𝑋

Fig. 9. Let 𝜋 be the proof in fig. 8(c)

Let us ruminate about the procedure to desequentialise the pre-proof in fig. 9. In the first parse of the proof, one

shall recognise the infinitely many visitable paths from the infinitely many trips (each occurrence of 𝜋 generating two

trips). Then, the second parse will illuminate the fact there is a “higher order trip" (indicated in blue in fig. 9) which

should correspond to a visitable path
7
that resides with the infinite undirected 𝜈-ray in a real axiom. We distinguish this

visitable path from others, as it is only revealed in the second parse of the proof. We call such visitable paths, higher

order visitable paths. To simplify the presentation, we will only consider pre-proofs without higher order trips which we

call simple pre-proofs. Our results scale to general pre-proofs but all our key ideas and techniques can be illustrated

over simple pre-proofs. We bookend this discussion summarizing the terms introduced:

Pre-proofs Non-wellfounded Proof Structures

Axioms Finite axiom links

Real branches Real axioms

Virtual branches Virtual axioms

Trips Visitable paths

Higher order trips Higher order visitable paths

Remark 2. The infinets introduced in [21] do not have this crucial additional structure of visitable paths (rendering the

original definition of 𝜇MLL
∞
proof structures in that paper incomplete), which can feature even in proof structures with

finitely many cuts.

5 NON-WELLFOUNDED PROOF STRUCTURES

NWFPS. In section 4 we have treated infinitary proof structures as infinite graphs. This is imprecise since infinite

axioms—nodes which join infinite paths in their infinite directions—are meaningless graphically. We formalise our

intuition by adapting the formalism of [17] to our setting.

7
Imagine bouncing through 𝜋 as bouncing on a generalized axiom.

Manuscript submitted to ACM

Eliminating infinitely many cuts in non-wellfounded 𝜇MLL proof-nets 13

Definition 11. A non-wellfounded proof structure (abbreviated nwfps) is a 6-tuple ({𝐹𝑈𝑖

𝑖
}𝑖∈𝐼 ,𝔎,Θ𝑓 ,Θ𝑟 ,𝑉 ,Θ𝑣)

which respectively comprises of a set of partial syntax trees, a set of cuts, a set of finite axioms, a set of real axioms, a set of

visitable ends, and a set of virtual axioms. A nwfps is denoted by R,S, etc.

We will now explain the meaning of each term.

Definition 12. A syntax tree of a formula occurrence 𝐹 is the (possibly infinite) unfolding tree of the Fischer-Ladner

graph of 𝐹 . The syntax tree induces a prefix closed language, L𝐹 ⊂ {𝑙, 𝑟 , 𝑖}∞ s.t. there is a natural bijection between the

finite (resp. infinite) words in L𝐹 and the finite (resp. infinite) paths of the tree. A partial syntax tree, 𝐹𝑈 , is a subtree of
the syntax tree of the formula occurrence, 𝐹 , s.t. 𝑈 ⊆ L𝐹 and 𝑈 represents a bar of the syntax tree of 𝐹 i.e. any 𝑢,𝑢 ′ ∈ 𝑈
are pairwise disjoint and for every 𝑢𝑎𝑣 ∈ 𝑈 , there is a 𝑣 ′ s.t. 𝑢𝑎⊥𝑣 ′ ∈ 𝑈 . For a finite 𝑢 ∈ 𝑈 , we denote by (𝐹,𝑢) the unique
suboccurrence of 𝐹 with the address addr(𝐹) .𝑢.

𝐹

𝑈

𝑈

L𝐹

(a) A schematic partial syntax tree

Axiom Links

Conclusions + Cut Occurrences

Partial

Syntax

Trees

(b) A schematic proof net

Fig. 10. Illustration of partial syntax trees and proof nets

We illustrate a schematic partial syntax tree in fig. 10a. MLL proof nets without cuts can be seen as a forest of

partial syntax trees of the occurrences in the conclusion sequent and axiom links between their leaves as in fig. 10b. To

incorporate cuts we need to add the partial syntax tree of the cut occurrences (along with the axioms links involving

their leaves) and links between dual cut occurrences. Hence a proof-net would be a 3-tuple ({𝐹𝑈𝑖

𝑖
}𝑖∈𝐼 ,𝔎,Θ) where:

– for all 𝑖 ∈ 𝐼 , 𝐹𝑈𝑖

𝑖
is a partial syntax tree; {𝐹𝑖 }𝑖∈𝐼 is called the set of doors.

– 𝔎 is the set of cuts i.e. a (possibly empty) set of disjoint subsets of {𝐹𝑖 }𝑖∈𝐼 of the form {𝐶,𝐶⊥}; and,
– Θ is the set of axiom links i.e. a partition of the set of leaves, L =

⋃
𝑖∈𝐼 {𝛼𝑖𝑢𝑖 | addr(𝐹𝑖) = 𝛼𝑖 , 𝑢𝑖 ∈ 𝑈𝑖 } such that

each cell is pair of dual addresses i.e. of the form {𝛼𝑖𝑢𝑖 , 𝛼 𝑗𝑢 𝑗 } such that ⌈(𝐹𝑖 , 𝑢𝑖)⌉ =
⌈
(𝐹 𝑗 , 𝑢 𝑗)

⌉
.

However, recall from section 4 that axioms are finite, real or virtual. So, in 𝜇MLL
∞
, Θ = Θ𝑓 ⊎ Θ𝑟 ⊎ Θ𝑣 where:

– Θ𝑓 is the set of finite axioms: its elements are pairs of finite dual addresses from L. They are links between

leaves of partial syntax trees denoted by ax in fig. 8.

– Θ𝑟 is the set of real axioms: the invariant of an infinite branch of a pre-proof supported by a straight thread. Its

elements necessarily contain at least one infinite address and might contain visitable paths. They are denoted by

ax∞𝑟 in figs. 8c and 8f.

– Θ𝑣 is the set of virtual axioms: the invariant of an infinite branch of a pre-proof supported by a visitable thread.

Its elements necessarily contain visitable paths and might contain finite addresses from L. They are denoted by

ax∞𝑣 in fig. 8i.

Hence Θ is a partition over L ∪𝑉 where 𝑉 is the set of visitable paths. Observe that permutation of inference rules

in a pre-proof can induce a permutation of terms in its trips. However, if we only take the principal formulas of a trip

(without repetition), this sequence is invariant. Further observe that this sequence is fixed by only stating the points

of alternation of directions i.e. the cuts and tensors for ↓ to ↑ and finite and real axioms for ↑ to ↓. Hence 𝑉 is a set of

Manuscript submitted to ACM

14 Abhishek De, Luc Pellissier, and Alexis Saurin

sequences of alternating tensors (or cuts) and axioms. We must impose a sanity condition since any such sequence

cannot be a visitable path. Now recall we have higher-order visitable path which go through visitable paths. Hence one

needs to define the set of visitable paths incrementally.

The level 0 approximant of a nwfps has components ({𝐹𝑈𝑖

𝑖
}𝑖∈𝐼 ,𝔎,Θ𝑓 ,Θ𝑟) where Θ𝑓 ∪ Θ𝑟 contains subsets of L:

it is the nwfps minus its visitable paths.

Example 4. Consider the nwfps in fig. 8f. Its level 0 approximant is of the form ({𝐻𝑈1 , (𝐴⊥
𝛽
)𝑈2 }, ∅, {𝜃𝑛}𝑛≥0, {{(𝑖𝑙)𝜔 })

such that 𝛼 and 𝛽 are disjoint, 𝑈1 = (𝑖𝑙)∗ .𝑖𝑟 (𝑙 + 𝑟) + (𝑖𝑙)𝜔 , 𝑈2 is simply {𝜖}, 𝜃0 = {𝛼𝑖𝑟2, 𝛽} and for every 𝑛 > 0,

𝜃𝑛 = {(𝑖𝑙)𝑛−1𝑖𝑟2, (𝑖𝑙)𝑛−1𝑖𝑟𝑙}.

On top of a level 0 approximant we will augment the information of visitable paths and potentially add virtual

axioms. In the process, real axioms might also be augmented with visitable paths. We will now formalize the notion of

a level 0 visitable path (which is a visitable path that does not go through other visitable paths).

Definition 13. Given a level 0 approximant, a level 0 visitable path is an infinite sequence {𝑡𝑖 }𝑖∈N such that if 𝑖 is

odd then 𝑡𝑖 is either a tensor formula occurrence (𝐹 𝑗 , 𝑢) for some 𝑗 ∈ 𝐼 and 𝑢 ∈ 𝑈 𝑗 or an element of 𝔎 and if 𝑖 is even then

𝑡𝑖 ∈ Θ𝑓 ⊎ Θ𝑟 . Further, there exists a pair of infinite sequences of addresses, ({𝑙𝑖 }𝑖∈N,{𝑟𝑖 }𝑖∈N)such that for every 𝑖 ∈ N:

– If 𝑡2𝑖−1 = (𝐹 𝑗 , 𝑢) is a tensor formula, then 𝑢 is a prefix of 𝑙𝑖 and 𝑟𝑖 .

– If 𝑡2𝑖−1 = {𝐶,𝐶⊥}, then addr(𝐶) and addr(𝐶⊥) are prefixes of 𝑙𝑖 and 𝑟𝑖 respectively.
– {𝑟𝑖 , 𝑙𝑖+1} ⊆ 𝑡2𝑖 .

Two visitable paths are equivalent if they share a common tail
8
. Their equivalence classes are called visitable ends.

Remark 3. In definition 13, the choice to start tensors or cuts instead of axioms is arbitrary.

Definition 14. A level 1 approximant is a 6-tuple ({𝐹𝑈𝑖

𝑖
}𝑖∈𝐼 ,𝔎,Θ𝑓 ,Θ𝑟 ,𝑉 ,Θ𝑣) which respectively comprises of a set

of partial syntax trees, a set of cuts, a set of finite axioms, a set of real axioms, a set of visitable ends, and a set of virtual

axioms such that the following hold:

– {𝐹𝑖 }𝑖∈𝐼 \
⋃
𝜅∈𝔎 𝜅 is finite.

– Θ𝑓 ⊎Θ𝑟 ⊎Θ𝑣 is a partition of the set
⋃
𝑖∈𝐼 {𝛼𝑖𝑢𝑖 | addr(𝐹𝑖) = 𝛼𝑖 , 𝑢𝑖 ∈ 𝑈𝑖 }∪𝑉 such Θ𝑓 has only elements containing

finite dual addresses, elements of Θ𝑟 necessarily contain an infinite address, and, elements of Θ𝑣 do not contain

infinite addresses and necessarily contain at least one visitable end.

One can similarly define a level 𝜆 visitable path and a level 𝜆 approximant for any ordinal 𝜆. It is helpful to remember

the following maxim for any successor ordinal 𝜆:

Level 𝜆 + 1 approximant = Level 𝜆 approximant

+ level 𝜆 visitable path

Just like a smooth function is the sum of its all its 𝑛th order approximants (Taylor expansion), a non-wellfounded

proof structure (abbreviated nwfps) is well-defined if it is the union of all its approximants.

Definition 15. A simple nwfps is a nwfps that is identical to its level 1 approximant.

In the rest of the paper, we refer to simple nwfps as nwfps unless explicitly mentioned.
9

8
In the parlance of infinite graph theory, subrays of a ray are called its tail and ends are rays quotiented by a common tail.

9
nwfps are treated in full generality in the appendix (section 5.1).

Manuscript submitted to ACM

Eliminating infinitely many cuts in non-wellfounded 𝜇MLL proof-nets 15

Example 5. In fig. 8f, we have the visitable path 𝜌 = {𝑡𝑛}𝑛∈N∗ such that

𝑡𝑛 =


𝜃 ′ 𝑛 = 1;

𝜃 ⌊ 𝑛
2
⌋ 𝑛 is odd;

(𝐵1, (𝑖𝑙) ⌊
𝑛
2
⌋𝑖𝑟) 𝑛 is even.

Check that every other visitable path we can produce is a suffix of this. Hence there is only one visitable end (say, [𝜌]).
Observe that we need to augment 𝜃0 by adding this visitable end i.e. 𝜃0 = {{(𝑖𝑙)𝜔 , [𝜌]}. There are no virtual axioms, hence

Θ𝑣 = ∅. Check that Θ𝑓 ∪ Θ𝑟 ∪ Θ𝑣 is a partition of 𝛼𝑈1 ∪ 𝛽𝑈2 ∪ {[𝜌]}. Furthermore, there cannot be any visitable paths of

level 2. Hence this is a simple nwfps.

𝜙𝛼

𝜙𝛽

loc

Fig. 11. The opera-

tor loc changes the

address of 𝜙 from 𝛼

to 𝛽 .

Desequentialization. Desequentialization of a 𝜇MLL
∞

pre-proof is not as straightforward as in

MLL. Let 𝜋 be a pre-proof of the 𝜇MLL
∞
sequent ⊢ Γ. We will translate to a level 0 approximant

first:

– for any cut in 𝜋 that introduces two occurrences, 𝐶 and 𝐶⊥, {𝐶,𝐶⊥} ∈ 𝔎.
– {𝐹𝑖 }𝑖∈𝐼 = Γ ∪⋃

𝜅∈𝔎 𝜅.

– for every 𝑖 ∈ 𝐼 ,𝑈𝑖 = addr(𝐹𝑖)−1addr(𝜋).
– for every axiom linking (𝐹𝑖 , 𝑢𝑖) to (𝐹 𝑗 , 𝑢 𝑗), {addr(𝐹𝑖).𝑢𝑖 , addr(𝐹 𝑗) .𝑢 𝑗 } ∈ Θ𝑓 .
– for every real infinite branch 𝛾 in 𝜋 , {addr(𝐹𝑖).𝑢𝑖 }𝑖∈𝐼 ′ ∈ Θ where it is the largest set such

that 𝐼 ′ ⊆ 𝐼 and either 𝑢𝑖 is infinite and addr(𝐹𝑖) .𝑢𝑖 corresponds to a straight thread of 𝛾 or

𝑢𝑖 is finite and (𝐹𝑖 , 𝑢𝑖) occurs in infinitely many sequents along 𝛾 .

To produce the set of visitable ends of the desequentialization, given a trip in 𝜋 , we collect the points of alternation of

directions which gives us a sequence of cuts or tensor and axioms: this is a visitable path in the level 0 approximant.

This gives us a set of visitable path, which in turn will give us a set of visitable ends, 𝑉 . We are now ready to define the

desequentialization of a pre-proof 𝜋 .

Definition 16. The desequentialization of 𝜋 , ({𝐹𝑈𝑖

𝑖
}𝑖∈𝐼 ,𝔎,Θ𝑓 ,Θ𝑟 ,𝑉 ,Θ𝑣), denoted Deseq(𝜋), is such that:

– ({𝐹𝑈𝑖

𝑖
}𝑖∈𝐼 ,𝔎,Θ𝑓 ,Θ𝑟) is the level 0 approximant as described above.

– 𝑉 is the set of visitable ends of the level 0 approximant.

– For every real infinite branch, 𝛾 , in 𝜋 that has a trip associated with it, let 𝜃 be its corresponding real infinite axiom.

Update 𝜃 as 𝜃 ∪𝑉 ′ where 𝑉 ′ is the largest set such that for every 𝑣 ∈ 𝑉 ′ ⊆ 𝑉 there exists a trip 𝜌 associated with 𝛾

such that 𝑣 is obtained from 𝜌 .

– For every virtual infinite branch, 𝛾 , in 𝜋 , {addr(𝐹𝑖).𝑢𝑖 }𝑖∈𝐼 ′ ∪𝑉 ′ ∈ Θ𝑣 is the largest such that 𝐼 ′ ⊆ 𝐼 , every 𝑢𝑖 is
finite, (𝐹𝑖 , 𝑢𝑖) occurs in infinitely many sequents along 𝛾 and for every 𝑣 ∈ 𝑉 ′ ⊆ 𝑉 there exists a trip 𝜌 associated

with 𝛾 such that 𝑣 is obtained from 𝜌 .

Example 6. If we desequentialize the proof in fig. 8d we get the nwfps described in examples 4 and 5.

5.1 Treating non-simple proofs

We will first give a more granular definition of higher order trips and then go on to define higher order visitable paths.

Let trips as defined in definition 10 be known as level 0 trips. We refine the definition of higher order trips to define a

level 𝜆 + 1 trip for a successor ordinal 𝜆.

Manuscript submitted to ACM

16 Abhishek De, Luc Pellissier, and Alexis Saurin

Definition 17. Given a pre-proof 𝜋 , a level 𝜆 + 1 trip is an infinite sequence 𝜏 = {(𝑠𝑖 , 𝐹𝑖 , 𝑑𝑖)}𝑖∈𝜔 where 𝑠𝑖 is a sequent

in 𝜋 , 𝐹𝑖 ∈ 𝑠𝑖 and 𝑑𝑖 ∈ {↑, ↓, ↑𝜔 , ↓𝜔 } such that for every 𝑖, 𝑗 < 𝜔 exactly one of the following holds:

– either 𝑑𝑖 = ↑, 𝑑𝑖+1 = ↓, 𝑠𝑖 = 𝑠𝑖+1 and there exist level 𝜆′ trips 𝜏 and 𝜏 ′ (where 𝜆′ ≤ 𝜆), starting from 𝐹𝑖 and 𝐹𝑖+1 and

they have the same infinite branch associated with them; or,

– they fall into one of the conditions of definition 10.

Further, 𝜏 satisfies the following conditions:

– For every 𝑖, 𝑗 < 𝜔 , there does not exist a sequent, 𝑠 , in 𝜋 such that 𝐹𝑖 ` 𝐹 𝑗 ∈ 𝑠 .
– There are infinitely many terms of the form (𝑠, 𝐹 , ↓).

The set of all level 𝜆 trips for a limit ordinal 𝜆 is the union of the sets of all level 𝜆′ trips for every 𝜆′ < 𝜆.

Observe that proposition 3 will still hold in this case. Correspondingly, we will define a level 𝑘 visitable path. To

define a level 𝜆 + 1 visitable path, we assume that we have the level 𝜆 approximant i.e. the level 0 approximant along

with all level 𝜆 visitable paths and virtual axioms pertaining to them.

Definition 18. Given a level 𝜆 approximant, a level 𝜆 + 1 visitable path is an infinite sequence {𝑡𝑖 }𝑖∈N such that if 𝑖

is odd then 𝑡𝑖 is either a tensor formula occurrence (𝐵 𝑗 , 𝑢) for some 𝑗 ∈ 𝐼 and 𝑢 ∈ 𝑈 𝑗 or an element of 𝔎 and if 𝑖 is even

then 𝑡𝑖 ∈ Θ𝑓 ⊎ Θ𝑟 ∈ Θ𝑣 such that:

– either there is a switching path from 𝑡2𝑖 from 𝑡2𝑖+2 via 𝑡2𝑖+1 à la definition 13,

– or, there are level 𝜆′ visitable paths (where 𝜆′ ≤ 𝜆) starting from 𝑡2𝑖 and 𝑡2𝑖+2 respectively such that the ends

corresponding to them reside in 𝑡2𝑖+1.

The set of all level 𝜆 visitable paths for a limit ordinal 𝜆 is the union of the sets of all level 𝜆′ visitable paths for every

𝜆′ < 𝜆. Visitable ends are defined on the set of all visitable paths. The level of an end is the level of the visitable path

of the largest level in it. Consequently the progress from simple nwfps to general nwfps happens through a simple

embellishment of 𝑉 , the set of visitable ends.

Desequentialisation to a level 0 approximant is unperturbed. The rest of the desequentialisation happens recursively.

We recursively recognize visitable paths and add new virtual axioms or embellish existing infinite axioms. One can

think of this procedure as starting with a level 0 approximant and an empty set for the visitable paths and virtual

axioms and imagine process of adding visitable ends and embellishing and/or creating infinite axioms as a monotonic

function on the space of nwfps getting better approximations in every iteration. In essence, for each 𝜆 we create a

level 𝜆 approximant of desequentialisation. Monotonicity guarantees a fixed point i.e. we are guaranteed to stabilize for

some 𝜆 when we neither add new visitable paths nor augment/create infinite axioms.

Let ({𝐵𝑈𝑖

𝑖
}𝑖∈𝐼 ,𝔎,Θ𝑓 ,Θ𝑟 ,𝑉 ,Θ𝑣) be level 𝜆 approximant of the desequentialisation of 𝜋 for some successor ordinal 𝜆.

The level 𝜆 + 1 approximant of the desequentialisation of 𝜋 is ({𝐵𝑈𝑖

𝑖
}𝑖∈𝐼 ,𝔎,Θ𝑓 ,Θ′𝑟 ,𝑉 ′,Θ′𝑣) such that:

– Given level 𝜆 approximant, one can compute 𝑉𝜆 , the set of level 𝜆 visitable ends. 𝑉
′ = 𝑉 ∪𝑉𝜆 .

– For every real infinite branch,𝛾 , in 𝜋 that has a trip associated with it, let 𝜃 be the real infinite axiom corresponding

to it. Update 𝜃 as 𝜃 ∪𝑉 ′′ where 𝑉 ′′ is the largest set such that for every 𝑣 ∈ 𝑉 ′′ ⊆ 𝑉 ′ there is a set of trips of 𝜋
with a common tail associated with 𝛾 .

– For every virtual infinite branch, 𝛾 , in 𝜋 , {addr(𝐵𝑖).𝑢𝑖 }𝑖∈𝐼 ′ ∪𝑉 ′′ ∈ Θ𝑣 is the largest such that 𝐼 ′ ⊆ 𝐼 , every 𝑢𝑖 is
finite, (𝐵𝑖 , 𝑢𝑖) occurs in infinitely many sequents along 𝛾 and for every 𝑣 ∈ 𝑉 ′′ ⊆ 𝑉 ′ there is a set of trips of 𝜋
with a common tail associated with 𝛾 .

Manuscript submitted to ACM

Eliminating infinitely many cuts in non-wellfounded 𝜇MLL proof-nets 17

Desequentialisation to a level 𝜆 approximant for a limit ordinal 𝜆 is given by taking component-wise unions of level

𝜆′ approximants for 𝜆′ < 𝜆.

5.2 An illustration of desequentialisation

Consider the proof in fig. 8d (more specifically the unfolding of that circular proof). Let us call it𝜋 . Let ({𝐵𝑈1

1
, 𝐵
𝑈2

2
}, ∅,Θ𝑓 ,Θ𝑟)

be the straight fragment. Since we have two conclusions and no cuts, there are two partial systanx trees. Let 𝐵1 = 𝐻

and 𝐵2 = 𝐴⊥
𝛽
such that 𝛼 and 𝛽 are disjoint. Now we trace the suboccurrences of 𝐵1 and 𝐵2. We get that 𝑈1 =

(𝑖𝑙)∗ .𝑖𝑟 (𝑙 + 𝑟) + (𝑖𝑙)𝜔 and𝑈2 is simply {𝜖}. Now we look at each axiom link and observe that 𝜃 ′ = {𝛼𝑖𝑟2, 𝛽} ∈ Θ𝑓 and
for every 𝑛 ≥ 0, 𝜃𝑛 = {(𝑖𝑙)𝑛+1𝑖𝑟2, (𝑖𝑙)𝑛𝑖𝑟𝑙} ∈ Θ𝑓 . Now observe that that the left-most branch of 𝜋 is infinite and has

exactly one straight thread. Hence 𝜃 ′′{{(𝑖𝑙)𝜔 } ∈ Θ𝑟 .
By reading off the alternating tensors and finite axioms along the trip indicated in fig. 8d, we obtain the visitable

path 𝜌 = {𝑡𝑛}𝑛∈N∗ such that

𝑡𝑛 =


𝜃 ′ 𝑛 = 1;

𝜃 ⌊ 𝑛
2
⌋ 𝑛 is odd;

(𝐵1, (𝑖𝑙) ⌊
𝑛
2
⌋𝑖𝑟) 𝑛 is even.

Check that every other visitable path we can produce is a suffix of this. Hence there is only one visitable end (say, [𝜌]).
Now observe every element of [𝜌] is associated with the left-most branch of 𝜋 . Hence we augment 𝜃 ′′ by adding this

visitable end i.e. 𝜃 ′′ = {{(𝑖𝑙)𝜔 , [𝜌]}. There are no virtual axioms, hence Θ𝑣 = ∅. Check that Θ𝑓 ∪ Θ𝑟Θ𝑣 is a partition of

𝛼𝑈1 ∪ 𝛽𝑈2 ∪ {[𝜌]}.

5.3 Non-wellfounded substructures

A proof structure S is called a substructure of a proof structure R if there is an injective map𝑚 : S → R preserving

links. Since nwfps are not presented graphically, we need to specify the exact nature of this injection: Let S =

({𝐵𝑈𝑖

𝑖
}𝑖∈𝐼 ,𝔎,Θ𝑓 ,Θ𝑟 ,𝑉 ,Θ𝑣) and R = ({𝐵′𝑈

′
𝑖

𝑖
}𝑖∈𝐼 ,𝔎′,Θ′𝑓 ,Θ

′
𝑟 ,𝑉
′,Θ′𝑣). Then,𝑚 : {(𝐵𝑖 , 𝑢) | 𝑢 ∈ 𝑈𝑖 , 𝑖 ∈ 𝐼 } → {(𝐵′𝑖 , 𝑢) | 𝑢 ∈

𝑈 ′
𝑖
, 𝑖 ∈ 𝐼 ′} such that:

– For all 𝑖 ∈ 𝐼 , ⌈𝐵𝑖 ⌉ = ⌈𝑚(𝐵𝑖)⌉.
– For all 𝑖 ∈ 𝐼 ,𝑈𝑖 = 𝑈 ′𝑗 where𝑚(𝐵𝑖) = 𝐵

′
𝑗
.

– For all {𝐶,𝐶⊥} ∈ 𝔎, we have {𝑚(𝐶),𝑚(𝐶⊥)} ∈ 𝔎′. Hence we can lift 𝑚 to cuts writing 𝑚({𝐶,𝐶⊥}) =

{𝑚(𝐶),𝑚(𝐶⊥)}.
– for all 𝜃 ∈ Θ𝑓 , we have 𝜃 ′ ∈ Θ′𝑓 where 𝜃 ′ = {addr(𝑚(𝐵))𝑢 | 𝛼𝑢 ∈ 𝜃, addr(𝐵) = 𝛼}. Hence we can lift𝑚 to finite

axioms by writing𝑚(𝜃) = 𝜃 ′. Exactly the same follows for real axioms that do not contain a visitable end.

– Let 𝑇 be the set of all visitable paths in S. Then {{𝑚(𝑡𝑖)}𝑖∈N | {𝑡𝑖 }𝑖∈N ∈ 𝑇 } is the set of visitable paths of R.
Hence we can lift𝑚 to visitable ends.

– Now we can lift𝑚 to rest of the real axioms and virtual axioms.

In other words, the sub-nwfps of a nwfps,R is an injective map between the set of their formula occurrences that

can be lifted to the other components. We define the intersection, S ∩ S′ of two sub-nwfps, S and S′. Let𝑚 : S → R
and𝑚′ : S′ → R be the injective maps specifying the two sub-NWFPS. Consider R restricted to the set of formula

occurrences Im(𝑚) ∩ Im(𝑚′). Observe that the trivial identity map induces a sub-nwfps. We call this sub-nwfps,

S ∩ S′.
Manuscript submitted to ACM

18 Abhishek De, Luc Pellissier, and Alexis Saurin

Proposition 4. Let R be a DR-correct nwfps. For any occurrence 𝐹 in R, 𝑘 (𝐹) exists and is unique.

Proof. The idea is to show that there is at least one sub-nwfps with 𝐹 as the lowermost occurrence. Then, we will

show uniqueness.

Suppose 𝐹 is a suboccurrence of the door, 𝐹𝑖 , in R. Consider the partial syntax tree, 𝐹𝑈𝑖

𝑖
in R. Consider a bar of this

tree with 𝐹 . We cut the tree at this bar and take the subtree under each element of the bar to be new partial syntax trees.

If 𝐹𝑖 is not a cut occurrence then it is easy to check that this gives us a sub-nwfps. If {𝐹𝑖 , 𝐹 𝑗 } is a cut, take a switching
of R and disconnect the cut. Now remove the connected component containing 𝐹 𝑗 and restore the premisses of the

parrs erased by the switching. This gives us a sub-nwfps with 𝐹 as a door. Let 𝑆 be the set of sub-nwfps with 𝐹 as a

door. Then,

𝑘 (𝐹) =
⋂
S∈𝑆
S

□

Proposition 5. Let R be a DR-correct nwfps. Then, the relation≪ is a partial order on {(𝐵𝑖 , 𝑢) | 𝑢 ∈ 𝑈𝑖 \𝑈𝑖 , 𝑖 ∈ 𝐼 }.

Proof. Reflexivity: Follows by definition.

Anti-symmetry: Suppose 𝑋 ∈ 𝑘 (𝑌) and 𝑌 ∈ 𝑘 (𝑋). Consider 𝑘 (𝑋) ∩ 𝐾 (𝑌). This is a sub-nwfps that contains 𝑋

as a door but is smaller than or equal to 𝑘 (𝑋). Hence, 𝑘 (𝑋) = 𝑘 (𝑋) ∩ 𝑘 (𝑌). Similarly, 𝑘 (𝑌) = 𝑘 (𝑋) ∩ 𝑘 (𝑌). Hence,
𝑘 (𝑋 = 𝑘 (𝑌). But 𝑘 is obtained by injective maps, this implies 𝑋 = 𝑌 .

Transitivity: Suppose 𝑋 ∈ 𝑘 (𝑌) and 𝑌 ∈ 𝑘 (𝑍). Consider 𝑘 (𝑌) ∩ 𝑘 (𝑍). This is a sub-nwfps that contains 𝑌 as a door

but is smaller than or equal to 𝑘 (𝑌). Hence 𝑘 (𝑌) = 𝑘 (𝑌) ∩ 𝑘 (𝑍) ⊂ 𝑘 (𝑍). Hence 𝑥 ∈ 𝑘 (𝑍). □

5.4 Treating NWFPS with locs

Recall from section 3 we are in an extended system i.e. 𝜇MLL
∞
with (Loc(𝜄)). Hence we need add new relocation cells

with one premise and one conclusion, changing the addresses (as illustrated in fig. 11). Formally nwfps have one

more component loc: a bijection between a finite subset 𝐿 of L and a finite subset 𝐶 of doors such that the underlying

formulæ of the image and the antecedent are equal. However, since the geometry of nwfps is completely unaffected by

the presence of finitely many loc nodes we will ignore them. To carry cut-elimination, we introduce non-canonical

nwfps that contain new relocalization cells.

Definition 19 (non-canonical nwfps). A simple nwfps is a 7-tuple

({𝐵𝑈𝑖

𝑖
}𝑖∈𝐼 ,𝔎,Θ𝑓 ,Θ𝑟 ,𝑉 ,Θ𝑣, loc)

which respectively comprises of a set of partial syntax trees, a set of cuts, a set of finite axioms, a set of real axioms, a set of

visitable ends, a set of virtual axioms and a relocation function such that the following hold:

– loc is a bijection between a finite subset 𝐿 of the leaves of the partial trees and a finite subset 𝐶 of the conclusions

such that the underlying formulæ of the image and the antecedent are equal;

–

⋃
𝜅∈𝔎 𝜅 is disjoint from the image of loc;

– {𝐵𝑖 }𝑖∈𝐼 \
⋃
𝜅∈𝔎 𝜅 is finite;

– a visitable path is an infinite sequence {𝑡𝑖 }𝑖∈N such that if 𝑖 is odd then 𝑡𝑖 is

– either a tensor formula occurrence (𝐵 𝑗 , 𝑢) for some 𝑗 ∈ 𝐼 and 𝑢 ∈ 𝑈 𝑗
– or an element of 𝔎

Manuscript submitted to ACM

Eliminating infinitely many cuts in non-wellfounded 𝜇MLL proof-nets 19

– or in the image of loc

and if 𝑖 is even then 𝑡𝑖 ∈ Θ𝑓 ⊎Θ𝑟 or in the domain of definition of loc. Further, there exists a pair of infinite sequences

of addresses, ({𝑙𝑖 }𝑖∈N,{𝑟𝑖 }𝑖∈N) such that for every 𝑖 ∈ N:
– If 𝑡2𝑖 = (𝐵 𝑗 , 𝑢) is a tensor formula, then 𝑢 is a prefix of 𝑙𝑖 and 𝑟𝑖 .

– If 𝑡2𝑖 = {𝐶,𝐶⊥}, then addr(𝐶) and addr(𝐶⊥) are prefixes of 𝑙𝑖 and 𝑟𝑖 respectively.
– {𝑟𝑖 , 𝑙𝑖+1} ⊆ 𝑡2𝑖+1.
Two visitable paths are said to be equivalent if they share a common tail. The equivalence classes of visitable paths

are called visitable ends.
– Θ𝑓 ⊎ Θ𝑟 ⊎ Θ𝑣 is a partition of the set(⋃

𝑖∈𝐼
{𝛼𝑖𝑢𝑖 | addr(𝐵𝑖) = 𝛼𝑖 , 𝑢𝑖 ∈ 𝑈𝑖 } ∪𝑉

)
\𝐶

such Θ𝑓 has only elements containing finite dual addresses, elements of Θ𝑟 necessarily contain an infinite address,

and, elements of Θ𝑣 do not contain infinite addresses and necessarily contain at least one visitable end.

Informally, loc represents the possibility to change the addresses locally. It can be simulated inside canonical nwfps.

If we decided to represent non-canonical nwfps, we would do so by adding a type of cell, with one premise and one

conclusion, changing the addresses.

Proposition 6. A non-canonical nwfps defines a nwfps by replacing all the loc by ax/cut.

This is a form of 𝜂-expansion of relocation. Relocations are inside kingdoms.

6 CORRECTNESS CRITERION

In this section, we develop a correctness criterion on nwfps, strengthening the correctness criterion in [21] to account

for visitable paths. It has two conditions:

DR-correct: The switching graph is acyclic and connected.

Lock-free: The dependence graph [9, 21] is locally finite and contains no ray as a subgraph.

DR-correctness. Because 𝜇MLL
∞
containsMLL, DR-correctness is necessary. However, in the setting of nwfps, DR-

correctness needs to be rephrased in terms of orthogonal partitions. The reason why it is not sufficient is more subtle:

the presence of infinitely many vertices in a nwfps leads to pathological cases where in order to sequentialise a certain

vertex needs to wait for infinitely many vertices to sequentialise.

Definition 20. Given a nwfps, R = ({𝐹𝑖 }𝑖∈𝐼 , {𝑈𝑖 }𝑖∈𝐼 ,𝔎,Θ𝑓 ,Θ𝑟 ,𝑉 ,Θ𝑣), a switching, 𝑠𝑤 , of R is set of functions

{𝑠𝑤𝑖 : 𝑃𝑖 → {𝑙, 𝑟 }}𝑖∈𝐼 s.t. for every 𝑖 ∈ 𝐼 , 𝑃𝑖 ⊆ 𝑈𝑖 and ⌈(𝐹𝑖 , 𝑝)⌉ is a `-formula for all 𝑝 ∈ 𝑃𝑖 .

Observe that a switching of a nwfps can be fixed on its level 0 approximant.

Definition 21. Let 𝑠𝑤 be a switching of R. Let 𝑢 be a substring of a word𝑤 in 𝑈𝑖 . Then, 𝑢 is said to be unbroken if

for all 𝑗 ∈ {1, . . . , 𝑛 − 1}, 𝑠𝑤𝑖 (𝑣𝑢1 . . . 𝑢 𝑗) ≠ 𝑢 𝑗+1 where 𝑢 = 𝑢1 . . . 𝑢𝑛 and 𝑣𝑢 is a prefix of𝑤 for some word 𝑣 .

Fix a switching, 𝑠𝑤 , of R. Let SW ⊆ L2
such that (𝑥,𝑦) ∈ SW iff either 𝑥 = 𝑦 or one of the following holds:

– 𝑤 = 𝑥 ∩ 𝑦 ≠ 𝜖10. Let𝑤𝑢 = 𝑥 and𝑤𝑣 = 𝑦. Then, 𝑢 and 𝑣 are unbroken;

10
i.e. 𝑥 and 𝑦 are not disjoint and the 𝑤 is their largest common prefix.

Manuscript submitted to ACM

20 Abhishek De, Luc Pellissier, and Alexis Saurin

– 𝑥 = 𝛼𝑢 and 𝑦 = 𝛼 ′𝑣 such that addr(𝐶) = 𝛼, addr(𝐶⊥) = 𝛼 ′, {𝐶,𝐶⊥} ∈ 𝔎 and 𝑢, 𝑣 are unbroken.

Observe that SW is an equivalence. If we see the elements of L as the collection of leaves of the partial syntax trees of a

proof net, cells of SW are the connected components of that proof net under the switching 𝑠𝑤 and without axiom links.

Definition 22. The level 0 orthogonal graph of R for the switching, 𝑠𝑤 , (denoted𝐺𝑠𝑤
0
(R)) is the undirected bipartite

multigraph, (Θ, [SW], 𝐸0), where Θ = Θ𝑓 ∪Θ𝑟 ∪Θ𝑣 i.e. the axioms of R, [SW] is the set of equivalence classes of SW and

(𝑥,𝑦) ∈ 𝐸0 iff 𝑥 ∩ 𝑦 ≠ ∅.

Observe that for a nwfps with no visitable paths, DR-correctness as stated in [21] means that, for every switching,

the orthogonal graph is acyclic and connected. However, as discussed in section 4, this is not enough in general and

visitable paths need to be incorporated into orthogonal graphs.

Proposition 7. There is a one-one correspondence between 𝐸R =
⋃
𝑠𝑤{[𝜌] | [𝜌] is an end in 𝐺𝑠𝑤

0
(R)} and the set of

visitable ends of R.

Definition 23. Given a level 0 orthgonal graph𝐺𝑠𝑤
0
(R) = (Θ, [SW], 𝐸0), the level 1 orthogonal graph (denoted

𝐺𝑠𝑤
1
(R)) is the undirected hybridgraph11 (Θ, [SW], 𝐸0, 𝐸1) such that for every 𝜃 ∈ Θ𝑟 ∪ Θ𝑣 that contains a visitable end,

{𝜃 } ∪ 𝑆 ∈ 𝐸1 where 𝑆 ⊆ Θ ∪ [SW] is the set of all nodes appearing in every end of 𝜃 . A pure path in 𝐺𝑠𝑤
1
(R) is path

comprised of only 𝐸0 or 𝐸1 but not both.

Definition 24. A nwfps, R, is said to be DR-correct if for any switching 𝑠𝑤 , between any two nodes of𝐺𝑠𝑤
1
(R) there

is exactly one pure path.

Example 7. We illustrate checking DR-correctness when all the `s switches of the proof structure in fig. 8f are switched

to the left. The following figure (without the coloured region) is the level 0 orthogonal graph corresponding to it. It has two

connected components and one of them has an infinite path (denoted by 𝜌). The cyan region is an extra hyperedge added in

the level 1 orthogonal graph. Observe that there is exactly one pure path between two nodes.

{𝛽,𝛼𝑖𝑟 2 } {𝛼𝑖𝑟𝑙,𝛼𝑖𝑙𝑖𝑟 2 } {𝛼𝑖𝑙𝑖𝑟𝑙,𝛼 (𝑖𝑙)2𝑖𝑟 2 } · · ·

· · ·

𝜌

{𝛼 (𝑖𝑙)𝜔 ,𝜌 }

{𝛽 } {𝛼𝑖𝑟 2,𝛼𝑖𝑟𝑙 } {𝛼𝑖𝑙𝑖𝑟 2,𝛼𝑖𝑙𝑖𝑟𝑙 } {𝛼 (𝑖𝑙)𝜔 }

Lock-freeness. We reformulate the condition in [21] (for finitely many cuts) through non-wellfounded substructures

(sub-nwfps) and kingdoms (adapted from [10]). Viewed as graphs, a sub-nwfps
12

is a subgraph that is a nwfps. The

kingdom of a formula occurrence, 𝐹 , is the upward-closed sub-nwfps starting from 𝐹 .

Definition 25. Let R be a DR-correct nwfps. Given 𝐵𝑖 and𝑢 ∈ 𝑈𝑖 , the kingdom, 𝑘 (𝐵𝑖 , 𝑢), of (𝐵𝑖 , 𝑢) is the smallest DR-

correct sub-nwfps of R with (𝐵𝑖 , 𝑢) as one of its doors. We define a relation on the set of occurrences {(𝐵𝑖 , 𝑢) | 𝑢 ∈ 𝑈𝑖 , 𝑖 ∈ 𝐼 }
by 𝑋 ≪ 𝑌 iff 𝑋 ∈ 𝑘 (𝑌).

Example 8. The nwfps in fig. 12 is DR-correct. The kingdom 𝐾 (𝑝1) and 𝐾 (𝑡2) are drawn in cyan and magenta. Observe

that 𝑡1 ≪ 𝑝1 ≪ 𝑡2 ≪ 𝑝2 ≪ · · ·

Definition 26. A nwfps is lock-free if {𝑚 | 𝑛 ≪𝑚} is finite for all 𝑛.
11
We coin the term hybridgraph for a graph with both normal edges and hyperedges.

12
See Section 5.3

Manuscript submitted to ACM

Eliminating infinitely many cuts in non-wellfounded 𝜇MLL proof-nets 21

Fig. 12. A DR-correct nwfps exhibiting kingdoms

Definition 27. A nwfps is an infinet if it is DR-correct and lock-free.

Proposition 8. Let 𝜋 be a pre-proof. Deseq(𝜋) is an infinet.

Proof. The crux of the proof is to show DR-correctness. For lock-freeness, observe that if an occurrence, 𝐴, first

appears in a sequent above the sequent of the first appearance of an occurrence 𝐵 then 𝐴 cannot be in the kingdom of

𝐵. We will first outline the game-plan and then lay the details.

– The orthogonal graph is acyclic.

– If the orthogonal graph is disconnected then there exists visitable paths.

– If there are no visitable paths we are done. Suppose not.

– The corresponding 1st level orthogonal graph is acyclic. The argument for this basically is the same for acyclicity

of the orthogonal graph.

– If the 1st level orthogonal graph is disconnected then there exists higher order visitable paths. The proof for this

mimics that of the second item.

– Since a simple proof does not have higher order visitable paths, we are done.

So, we basically need to prove the first two items. Let us start with the first. Suppose the orthogonal graph has a

cycle. Although the graph could potentially be infinite, a cycle must be finite by definition (in fact, with even number of

vertices since the graph is bipartite). Let the cycle be 𝑟0, 𝑟1, . . . , 𝑟𝑛, 𝑟0 where for all 𝑗 ∈
{
0, ·, ⌊𝑛

2
⌋
}
we have that 𝑟2𝑗 ∈ [𝑅0]

and 𝑟2𝑗+1 ∈ [𝑅𝑠𝑤
0
]. Choose 𝑢 𝑗 ∈ 𝑟2𝑗 ∩𝑟2𝑗+1. Since 𝑢 𝑗 , 𝑢 𝑗+1 are in same cell of 𝑅𝑠𝑤

0
, they must be connected by a tensor or

a cut node. For each 𝑗 , call this particular node 𝑡 𝑗 . Observe that 𝑡 𝑗 , 𝑡 𝑗+1 cannot be separated by a tensor or a cut because

they share two pieces of an axiom, 𝑟2𝑗 . So, 𝑡 𝑗 and 𝑡 𝑗+1 must happen one after the other. This leads to a contradiction in

order of introduction of the 𝑡 𝑗 ’s.

For the second item assume the orthogonal graph is disconnected. Say, in the graph of the nwfps, occurrences 𝐹 and

𝐺 are disconnected. (This can be stated via elements of [𝑅0] and [𝑅𝑠𝑤
0
] but we avoid that for the sake of clarity. We will

keep referring to the graph of the nwfps for the rest of the proof but note that this can be made rigorous. Since 𝐹,𝐺 are

suboccurrences of some conclusions which started out in the same sequent, there must have been a point in the course

Manuscript submitted to ACM

22 Abhishek De, Luc Pellissier, and Alexis Saurin

of the pre-proof where a tensor or cut separated them or some occurrences of which they were suboccurrences. WLOG

it is a cut. Schematically we are in the following situation

Δ1 Δ2

cut

𝐹 𝐺

But we assumed that the graph is disconnected. So either the connection between 𝐴 and the left premise of the cut or

the connected between 𝐵 and the right premise of the cut is snapped. We now continue the same argument. If this

procedure stops, we end up in a connected graph which is not possible. Thus this procedure continues and we have

produced a infinite sequence of cuts or tensors. We claim that this is a visitable path. Cuts can only be connected via

axioms. Hence if we have infinitely many cuts we are done. Tensors can either be connected as suboccurrences or via

axioms. If we have infinitely many tensors connected as suboccurrences, we have a straight thread that must reside

in an infinite branch with 𝐴 and 𝐵. This is absurd. Hence if there are infinitely many tensors, they are connected via

axioms. Therefore there exists visitable paths. □

Sequentialisation. We now give an informal description of the corecursive definition of sequentialisation. The technique

in [21] basically follows the standard procedure for MLL but with a guarantee of fairness preventing a situation where

the exploration of a branch is forgotten since the sequentialisation of another branch is forever prioritized. Fairness is

ensured by time-stamping the doors of the infinet with elements of N ∪ {∞}, which dictates that at any particular step

the node with the least time-stamp is to be sequentialised.

We strengthen this time-stamping to account for infinitely many cuts. Given an infinet, we treat cuts as tensors:

a “quasi” infinet (say R) with potentially infinitely many conclusions. We carefully initialize the time-stamping such

that infinitely many numbers are free to be used as time-stamps at later stages of the sequentialisation. Consider

𝑡R which injectively time-stamps every maximal door in the ≪ ordering by powers of two
13

and every other door

by∞. Seqentialise(R, 𝑡R) chooses the door, 𝐹 , with least time-stamp, applies the corresponding rule on the finite

prefix of the sequentialisation being built, and relaunches Seqentialise(R ′, 𝑡R′) for every sub-infinet, R ′ and the

time-stamping that results from removing 𝐹 from R.

Theorem 2. Given an infinet, R, and a proper time-stamping, 𝑡R , Deseq(Sequentialise(R, 𝑡R)) = R.

6.1 Details on sequentialisation

We formally define the sequentialisation function.

Definition 28. Let R be an infinet and 𝑡R a time-stamping which injectively time-stamps every maximal door in

the≪ ordering by powers of two and every other door by∞. We define the pre-proof Sequentialise(R, 𝑡R) is defined in
Figure 13, Sequentialise being a corecursive function.

Remark 4. Assuming one considers a fragment of infinet in which the necessary operations are computable (such as

the transformation from 𝑡R to 𝑡R′ for instance), the previous function can be turned into a corecursive algorithm, which is

obviously not the case for the full set of infinets.

Manuscript submitted to ACM

Eliminating infinitely many cuts in non-wellfounded 𝜇MLL proof-nets 23

function Seqentialise(R,𝑡R)
Choose a conclusion 𝐹 in R s.t. 𝑡R (𝐹) ≠ ∞.
if R is an axiom link between 𝐹 and some 𝐺 then

return
(𝑎𝑥)⊢ 𝐹,𝐺

else if 𝐹 = 𝐺 ` 𝐻 then
R ′ is R with ` node above 𝐹 removed and new conclusions, 𝐺 and 𝐻 .

𝑡R′ (𝑥) =


𝑡R (𝑥) if 𝑥 ∈ Γ ∧ 𝑡R (𝑥) ≠ ∞;
∞ if 𝑥 is not maximal in≪ ordering;

𝑡 if 𝑡R (𝑥) = ∞∨ 𝑥 = 𝐺 ∨ 𝑥 = 𝐻.

where 𝑡 is a fresh time-stamp larger than 𝑡R (𝐹).

return
Seqentialise(R ′, 𝑡R′) (`)⊢ Γ,𝐺 ` 𝐻

else if 𝐹 = 𝐺 ⊗ 𝐻 then
R1,R2 are the two infinets with conclusions Γ ∪ {𝐺} and Δ ∪ {𝐻 } respectively that we get by removing

the ⊗ node above 𝐹 in R. 𝑡R1 and 𝑡R2 are 𝑡R extended with timestamps for 𝐺 and 𝐻 respectively. 𝐺 (resp. 𝐻) is

time-stamped by 𝑡 larger than 𝑡R (𝐹) if it is maximal in≪ ordering in R1 (resp. R2) and by∞ otherwise.

return
𝜋1 𝜋2 (⊗)⊢ Γ,Δ,𝐺 ⊗ 𝐻 with 𝜋1 = Seqentialise(R1, 𝑡R1) and 𝜋2 = Seqentialise(R2, 𝑡R2).

else if 𝐹 = 𝜎𝑋 .𝐺 (𝑋) then ⊲ 𝜎 = {𝜇, 𝜈}
R ′ is R with 𝜎 node above 𝐹 removed and new conclusion 𝐺 [𝐹/𝑋].
𝑡R′ is 𝑡R with a fresh timestamp for 𝐺 [𝐹/𝑋] larger than 𝑡R (𝐹).

return
Seqentialise(R ′, 𝑡R′) (𝜎)⊢ Γ, 𝜎𝑋 .𝐺 (𝑋)

end if
end function

Fig. 13. The function Sequentialise

Proposition 9. Let R be an infinet. If a door, 𝐹 , of the form 𝐺 ⊗ 𝐻 , is maximal in the≪ ordering, then there exists

infinets, R1 and R2 with doors 𝐺 and 𝐻 respectively such that R can be construed as:

Δ1 Δ2

𝐵

⊗

R1 R2

Proof. We will prove the contrapositive. Let 𝑥 be a non-splitting conclusion. Since 𝑥 is not splitting there is a parr

node such that there is a switching path from each premise of the parr node to each premise of 𝑥 . Follow this parr node

to a conclusion, 𝑦. Observe that 𝑥 ≪ 𝑦 and hence 𝑥 is not maximal. □

Lemma 1. Deseq(Sequentialise(R, 𝑡R)) is a sub-infinet of R.

Proof. Proposition 9 ensures the local sanity of each step of sequentialisation i.e. it ensures that we don’t prematurely

sequentialise a node. By proposition 5 and lock-freeness we have that if R is an infinet then the maximal element

in the kingdom ordering exists. It is easy to check that at each step R ′,R1,R2 (depending on the case) is an infinet.

Hence if we assume that every iterative step is O(1) (for example obtaining 𝑡R′ from 𝑡R), then Seqentialise is

13
This labelling is arbitrary: any cofinite sequence in place of powers of two works.

Manuscript submitted to ACM

24 Abhishek De, Luc Pellissier, and Alexis Saurin

productive and produces a pre-proof, 𝜋R . Since this pre-proof is made of elements of R, Deseq(𝜋R) is a sub-infinet of
R by construction. □

Lemma 2. The time-stamping assigns a finite natural number to every occurrence of the infinet that one starts with after

some iterations of the sequentialisation process.

Proof. We will prove by contradiction. Suppose there are nodes which are never assigned a finite natural number

by the time stamping algorithm. Among them choose 𝑡 such that it has the least distance from a conclusion in the

original infinet.

Then after finite iterations of the sequentialisation process, it becomes the conclusion (otherwise we would have

found a node with even a lesser distance). Since it is not assigned a finite number, it is not maximal in the kingdom

ordering. Consider 𝑆 = {𝑠 | 𝑡 ≪ 𝑠}. Since 𝑡 is not maximal 𝑆 is non-empty. By lock-freeness 𝑆 is finite.

Now, choose any 𝑠 ∈ 𝑆 and follow it to its conclusion, 𝑐 . If 𝑐 is splitting, then after finite iterations of the sequentiali-

sation process, we have a proof structure, S, that needs to be sequentialised such there is conclusion in S which is

a premise of 𝑐 . We can continue like this until the conclusion of 𝑠 (say 𝑡 ′) is non-splitting (otherwise 𝑠 will become

eventually splitting and we continue the sequentialisation by choosing another element 𝑠 ′ ∈ 𝑆). We note that 𝑡 ≪ 𝑠 ≪ 𝑡 ′

and 𝑡 ′ is not maximal. We continue as before when we encountered a non-maximal node 𝑡 . If it is possible to continue

this procedure ad infinitum we create an infinite ascending chain in≪ contradicting lock-freeness. So, after finitely

many iterations every element of 𝑆 will be sequentialised and hence 𝑡 will be maximal and will be assigned a finite

time-stamp. □

6.2 Correctness of non-simple proofs

We will now explain checking DR-correctness on general nwfps. We recursively construct the level 𝜆 + 1 orthogonal
graph. Proposition 7 lifts to level 𝜆 orthogonal graphs for any ordinal 𝜆. An infinite simple path in a level 𝜆 orthogonal

graph corresponds to a level 𝜆 visitable path. Assuming that we have a level 𝜆 orthogonal graph, this helps us construct

a level 𝜆 + 1 orthogonal graph à la definition 23.

Definition 29. Given a level 𝜆 orthgonal graph 𝐺𝑠𝑤
𝜆
(R) = (Θ, [SW], {𝐸𝑖 }𝑖≤𝜆), the level 𝜆 + 1 orthogonal graph

(denoted𝐺𝑠𝑤
𝜆+1 (R)) is the undirected hybridgraph (Θ, [SW], {𝐸𝑖 }𝑖≤𝜆+1) such that for every end, [𝜌] of𝐺

𝑠𝑤
𝜆

, {𝜃 } ∪𝑆 ∈ 𝐸𝜆+1
where 𝑆 ⊆ Θ ∪ [SW] is the set of all nodes appearing in every ray of [𝜌] and 𝜃 ∈ Θ is the axiom containing 𝑣 , the visitable

end corresponding to [𝜌].

Pure paths are defined as usual. Observe that the set of nodes in invariant in the construction from a level 𝜆 to a

level 𝜆 + 1 i.e. only new hyperedges are added at each step. Hence the this can be seen as a monotonic graph rewriting.

Consequently, we have a graph in the limit which we simply call 𝐺𝑠𝑤 (R).

Definition 30. A nwfps, R, is said to be DR-correct if for all switchings, 𝑠𝑤 , between any two nodes of 𝐺𝑠𝑤 (R) there
is exactly one pure path.

7 CUT-ELIMINATION FOR VALID INFINETS

We now provide the main result of this paper: cut-elimination on infinets. As discussed in section 1, validity is sufficient

(but not necessary, see figs. 4d and 4e) for its productivity. We retain the notion of validity in the sequent calculus and

simply lift definition 8 to nwfps.

Manuscript submitted to ACM

Eliminating infinitely many cuts in non-wellfounded 𝜇MLL proof-nets 25

𝐴
.
.
.S

𝐴1 · · · 𝐴𝑛 𝐴⊥
cut

ax∞𝑟

𝜈𝑋 .𝑋

𝜈

𝜈𝑋 .𝑋

𝜈

(a) R: a cut with an infinite axiom

𝐴⊥
.
.
.

𝐴1 · · ·

S

𝐴𝑛

𝜈𝑋 .𝑋

𝜈

𝜈𝑋 .𝑋

𝜈

(b) Naive cut-elimination in R

𝜋 =

.

.

.
(𝜈)⊢ Γ, 𝜈𝑋 .𝑋
(𝜈)⊢ Γ, 𝜈𝑋 .𝑋
(𝜈)⊢ Γ, 𝜈𝑋 .𝑋

(c) The normal proof 𝜋

.

.

.

𝐴1 · · · 𝐴𝑛

ax∞𝑟

𝜈𝑋 .𝑋

𝜈

𝜈𝑋 .𝑋

𝜈

(d) Desequentialisation of 𝜋

Fig. 14. Exhibiting the necessity of the kingdom erasure rule

𝜋 =

𝜋 ′

⊢ Γ, 𝐴⊥

.

.

.
(𝜈)⊢ 𝜈𝑋 .𝑋,𝐴
(𝜈)⊢ 𝜈𝑋 .𝑋,𝐴
(Cut)⊢ Γ, 𝜈𝑋 .𝑋 ∼

𝜋 ′

⊢ Γ, 𝐴⊥

.

.

.
(𝜈)⊢ 𝜈𝑋 .𝑋,𝐴
(Cut)⊢ Γ, 𝜈𝑋 .𝑋

(𝜈)⊢ Γ, 𝜈𝑋 .𝑋

∼

𝜋 ′

⊢ Γ, 𝐴⊥
.
.
.
(Cut)⊢ Γ, 𝜈𝑋 .𝑋
(𝜈)⊢ Γ, 𝜈𝑋 .𝑋
(𝜈)⊢ Γ, 𝜈𝑋 .𝑋 ∼ · · ·

Fig. 15. A productive infinite reduction

Definition 31. A nwfps R is valid if Θ𝑣 = ∅ and for 𝜃 ∈ Θ𝑟 , there is 𝛼𝑢 ∈ 𝜃 such that addr(𝐹𝑖) = 𝛼 and (𝐹𝑖 , 𝑣) is a
𝜈-formula for infinitely many prefixes 𝑣 of 𝑢.

Proposition 10. 𝜋 is a proof iff Deseq(𝜋) is a valid infinet.

Cut-reduction rules. The cut-elimination procedure for infinets is adapted from MLL: during cut-elimination, finite

axioms interact with cuts by annihilating one another, replaced by a wire. To understand the rule for infinite axioms,

consider the infinet, R, in fig. 14a. The straightforward adaptation of the finitary rule makes no sense, as it would result

in reducing R to the object in fig. 14b which is not an infinet: first, it requires to put a structure S atop of an infinite

path of 𝜈-cells; second, the types of this infinite path do not match
14
. To justify a better rule, let us see the situation in

sequent calculus: consider a sequentialisation 𝜋 as in fig. 15 of R (where Deseq(𝜋 ′) = S and Γ = {𝐴1, . . . , 𝐴𝑛}).
The infinite axiom is represented in 𝜋 by the infinite branch and the only way to make it interact with 𝜋 ′ (in the way

S interacts with the infinite axiom) using the rules in definition 9 is by commuting the cut with one 𝜈-rule. Iterating

such permutations builds the infinite sequence of proofs of fig. 15 which all desequentialise to R.
This sequence converges to the proof in fig. 14c, where 𝜋 ′ has been deleted and Γ is supported by the infinite branch.

Desequentialised, this yields the proof-structure in fig. 14d. So, an infinitary axiom and a cut interact by removing

the whole subinfinet “above” the cut. Now recall that the kingdom of an occurrence is the subinfinet that is always

sequentialised above it . Hence, the subinfinet that has to be erased is indeed a kingdom. Although this operation will

be represented by a single rule it does not correspond to one step of cut-elimination in the sequent calculus but to

an infinite sequence of permutations. The complete set of cut-reduction rules are the ones illustrated in fig. 16 and

14
Along the infinite 𝜈-ray, the types ought to remain equal to 𝜈𝑋 .𝑋 , but change to𝐴⊥ above.

Manuscript submitted to ACM

26 Abhishek De, Luc Pellissier, and Alexis Saurin

𝜙⊥
𝛼⊥

Γ ∪ Δ

Δ −→{𝜙,𝜙⊥ }

𝑘 (𝜙𝛼)

Γ 𝜙𝛼
cut

ax∞𝑟

ax∞𝑟
(𝐹 ′)𝛼𝑖 (𝐹 ′⊥)𝛼⊥𝑖 (𝐹 ′)𝛼𝑖 (𝐹 ′⊥)𝛼⊥𝑖

(𝜇𝑋 .𝐹)𝛼
𝜇

(𝜈𝑋 .𝐹⊥)𝛼⊥ −→{𝜇𝑋 .𝐹,𝜈𝑋 .𝐹⊥ }
𝜈

cut

cut

𝜙𝛽

𝜙𝛼
𝜙⊥
𝛽⊥ 𝜙𝛽 −→{𝜙,𝜙⊥ }

ax

cut

𝜙𝛼

loc

Fig. 16. Cut reduction rules for 𝜇MLL
∞
infinets. 𝑘 (𝜙𝛼) denotes the kingdom of the occurrence 𝜙𝛼 .

the usual ⊗/` rule ofMLL cut reduction. A sequence of infinets, (R𝑖)𝑖⩾0, is called a reduction sequence if for all 𝑖 ,
R𝑖 →𝜅 R𝑖+1 for some cut 𝜅 in R𝑖 .

Definition 32 (baby-step cut-reduction rules). Let

R = ({𝐵𝑈𝑖

𝑖
}𝑖∈𝐼 ,𝔎,Θ𝑓 ,Θ𝑟 ,𝑉 ,Θ𝑣, loc)

be a non-canonical nwfps. Suppose there exists {𝜙𝛼 , 𝜙⊥𝛽 } ∈ 𝔎.

finite axiom if there exists 𝑎 ∈ Θ𝑓 such that 𝜙𝛼 ∈ 𝑎, then, 𝑎 = {𝜙𝛼 , 𝜙⊥𝛼⊥ }.
– loc is not defined on 𝜙⊥

𝛽
, as 𝜙⊥

𝛽
is part of a cut. Hence, we can consider the extension loc

′
of the loc function defined

also on it, by loc
′(𝜙⊥

𝛽
) = 𝜙⊥

𝛼⊥ ;

– 𝜙𝛼 is a conclusion, but its partial syntax tree is limited to itself;

Hence,

R ′ = (({𝐵𝑈𝑖

𝑖
}𝑖∈𝐼 \ {𝜙𝛼 },𝔎 \ {{𝜙𝛼 , 𝜙⊥𝛽 }},Θ𝑓 \ {{𝜙𝛼 , 𝜙

⊥
𝛼⊥ }},Θ𝑟 ,𝑉 ,Θ𝑣, loc

′)

is a non-canonical nwfps: indeed, 𝑉 is a set of equivalence classes of visitable paths in the level 0 approximant

of R and for any of these equivalence classes, an infinity of representatives are also visitable paths in the level 0

approximant of R ′. Here and after, we will not distinguish.
multiplicatives if 𝜙 = 𝜓 ⊗ 𝜑 and 𝛼 ∉ 𝑈𝑖 , 𝛽 ∉ 𝑈𝑖 , then

– the partial syntax trees 𝐵
𝑈𝜙𝛼

𝜙𝛼
and 𝐵

𝑈𝜙⊥

𝜙⊥
𝛽

are actually disjoint unions:

𝐵
𝑈𝜙𝛼

𝜙𝛼
=𝐵

𝑈𝜓𝛼.𝑙

𝜓𝛼.𝑙
∪ 𝐵𝑈𝜑𝛼.𝑟

𝜑𝛼.𝑟
∪ 𝜙𝛼

𝐵
𝑈𝜙⊥

𝜙⊥
𝛼⊥

=𝐵
𝑈𝜓⊥

𝜓⊥
𝛽.𝑟

∪ 𝐵
𝑈𝜑⊥

𝜑⊥
𝛽.𝑙

∪ 𝜙⊥
𝛽

Hence,

B = {𝐵𝑈𝑖

𝑖
}𝑖∈𝐼 \ {𝐵

𝑈𝜙𝛼

𝜙𝛼
, 𝐵
𝑈𝜙⊥

𝜙⊥
𝛽⊥
} ∪ {𝐵𝑈𝜓𝛼.𝑙

𝜓𝛼.𝑙
, 𝐵
𝑈𝜑𝛼.𝑟
𝜑𝛼.𝑟

, 𝐵
𝑈𝜓⊥

𝜓⊥
𝛽.𝑟

, 𝐵
𝑈𝜑⊥

𝜑⊥
𝛽.𝑙

}

is a set of partial syntax trees.

– we set 𝔎′ = 𝔎 \ {{𝜙𝛼 , 𝜙⊥𝛽 }} ∪ {{𝜓𝛼.𝑙 ,𝜓
⊥
𝛽.𝑙
}} ∪ {{𝜑𝛼.𝑟 , 𝜑⊥𝛽.𝑟 }}

Hence,

R ′ = (B,𝔎′,Θ𝑓 ,Θ𝑟 ,𝑉 ,Θ𝑣, loc)

is a non-canonical nwfps.

fix-point if 𝜙 = 𝜇𝑋 .𝐹 (𝑋) and 𝛼 ∉ 𝑈𝑖 , 𝛽 ∉ 𝑈𝑖 , then

– let

B = {𝐵𝑈𝑖

𝑖
}𝑖∈𝐼 \ {𝐵

𝑈𝜙𝛼

𝜙𝛼
, 𝐵
𝑈𝜙⊥

𝜙⊥
𝛽⊥
} ∪ {𝐵𝑈𝜙𝛼

𝜙𝛼
\ {𝜙𝛼 }, 𝐵

𝑈𝜙⊥

𝜙⊥
𝛽⊥
\ {𝜙⊥

𝛽
}}

– the set 𝔎′ = 𝔎 \ {{𝜙𝛼 , 𝜙⊥𝛽 }} ∪ {{𝐹 (𝜙)𝛼.𝑖 , (𝐹 (𝜙))
⊥
𝛽.𝑖
}} is a set of pair of conclusions of B

Manuscript submitted to ACM

Eliminating infinitely many cuts in non-wellfounded 𝜇MLL proof-nets 27

Hence,

R ′ = (B,𝔎′,Θ𝑓 ,Θ𝑟 ,𝑉 ,Θ𝑣, loc)

is a non-canonical nwfps.

infinite axiom if there exists a real infinite axiom 𝑎 ∈ Θ𝑟 such that 𝛼 ∈ 𝑎, then, let 𝐾 (𝜙𝛽) be the kingdom of the

occurrence 𝜙𝛽 . It is a non-canonical nwfps:

𝐾 (𝜙𝛽) = (B𝐾 ,𝔎𝐾 ,Θ𝐾𝑓 ,Θ
𝐾
𝑟 ,𝑉

𝐾 ,Θ𝐾𝑣 , loc)

where B𝐾 = {𝐵𝑈𝑖

𝑖,𝐾
}𝑖∈𝐽 . All the formulæ 𝐵𝑖,𝐾 are occurrences in R. Let:

– 𝑈𝑖 (𝐾) be the set of addresses in𝑈𝑖 that are suffixes of the addresses in B𝐾 . We set𝑈 ′
𝑖
= 𝑈𝑖 ∪𝑈𝑖 (𝐾) for all 𝑖 ∈ 𝐼 .

– 𝐹 ′(𝐾) = (𝐾) \ 𝔎𝐾

– Θ′
𝑓
= Θ𝑓 \ Θ𝐾𝑓

– Θ′𝑟 = Θ𝑟 \ 𝜃𝐾𝑓
– 𝑉 ′ = 𝑉 \𝑉𝐾

– Θ′ = Θ \ Θ𝐾𝑣
– loc

′
is the restriction of loc to the axioms in Θ′

𝑓

Hence,

R ′ = ({𝐵𝑈
′
𝑖

𝑖
}𝑖∈𝐼 ,𝔎′,Θ′𝑓 ,Θ

′
𝑟 ,𝑉
′,Θ′𝑣, loc

′)

in a non-canonical nwfps.

relocation if 𝜙𝛼 is a leaf and in the domain of loc, then let

– B′ = {𝐵𝑈𝑖

𝑖
}𝑖∈𝐼 \ {𝜙𝛼 };

– 𝔎′ = 𝔎 \ {{𝜙⊥
𝛽
, 𝜙𝛼 }} ∪ {{𝜙⊥𝛽 , 𝜙𝛾 }} where 𝜙𝛾 is such that loc(𝜙𝛼) = 𝜙𝛾 ;

– loc
′
is the restriction of loc to its domain without 𝜙𝛼 .

Hence,

R ′ = (B′,𝔎′,Θ𝑓 ,Θ𝑟 ,𝑉 ,Θ𝑣, loc′)

is a non-canonical nwfps.

Else, if there exists 𝜙𝛼 and 𝜙𝛽 such that loc(𝜙𝛼) = 𝜙𝛽 and:

relocation-axiom there exists 𝑎 ∈ Θ𝑓 such that 𝜙𝛽 ∈ 𝑎.
– B′ = {𝐵𝑈𝑖

𝑖
}𝑖∈𝐼 \ {𝜙𝛽 };

– let {𝜙𝛽 , 𝜙⊥𝛾 } = 𝑎. We set 𝑎′ = {𝜙𝛼 , 𝜙⊥𝛾 } and Θ′𝑓 = Θ𝑓 \ 𝑎 ∪ 𝑎′.
– loc

′
is the restriction to loc undefined on 𝜙𝛼 .

Hence,

R ′ = (B′,𝔎,Θ′
𝑓
,Θ𝑟 ,𝑉 ,Θ𝑣, loc

′)

is a non-canonical nwfps.

relocation-multiplicative if 𝜙 = 𝜓 ⊗ 𝜑 and 𝛽 ∉ 𝑈𝜙𝛽
, then the partial syntax tree 𝐵

𝑈𝜙𝛽

𝜙𝛽
is actually the disjoint union:

𝐵
𝑈𝜙𝛽

𝜙𝛽
= 𝐵

𝑈𝜓𝛽.𝑙

𝜓𝛽.𝑙
∪ 𝐵

𝑈𝜑𝛽.𝑟

𝜑𝛽.𝑟
∪ {𝜙𝛽 }

– let B′ = {𝐵𝑈𝑖

𝑖
}𝑖∈𝐼 \ {𝐵

𝑈𝜙𝛽

𝜙𝛽
} ∪ {𝐵

𝑈𝜓𝛽.𝑙

𝜓𝛽.𝑙
, 𝐵
𝑈𝜑𝛽.𝑟

𝜑𝛽.𝑟
}

– loc
′
is defined as loc undefined on 𝜙𝛼 extended with loc(𝜓𝛼.𝑙) = 𝜓𝛽.𝑙 and loc(𝜑𝛼.𝑟) = 𝜑𝛽.𝑟 .

Manuscript submitted to ACM

28 Abhishek De, Luc Pellissier, and Alexis Saurin

Hence,

R ′ = (B′,𝔎,Θ𝑓 ,Θ𝑟 ,𝑉 ,Θ𝑣, loc′)

is a non-canonical nwfps.

relocation-fixpoint if 𝜙 = 𝜇𝑋 .𝐹 (𝑋) and 𝛽 ∉ 𝑈𝜙𝛽
, then the partial syntax tree 𝐵

𝑈𝜙𝛽

𝜙𝛽
is actually of the form:

𝐵𝜙𝛽
= 𝐵

𝑈𝐹 (𝜙)𝛽.𝑖
𝐹 (𝜙)𝛽.𝑖

∪ {𝜙𝛽 }

– let B′ = {𝐵𝑈𝑖

𝑖
}𝑖∈𝐼 \ {𝐵

𝑈𝜙𝛽

𝜙𝛽
} ∪ {𝐵

𝑈𝐹 (𝜙)𝛽.𝑖
𝐹 (𝜙)𝛽.𝑖

}
– loc

′
is defined as loc undefined on 𝜙𝛼 extended with loc(𝐹 (𝜙)𝛼.𝑖) = 𝐹 (𝜙)𝛽.𝑖 .

Hence,

R ′ = (B′,𝔎,Θ𝑓 ,Θ𝑟 ,𝑉 ,Θ𝑣, loc′)

is a non-canonical nwfps.

relocation-infinite axiom if 𝜙𝛽 ∈ 𝑎 ∈ Θ𝑟 , then let 𝑎′ = 𝑎 \ {𝜙𝛽 } ∪ {𝜙𝛼 } and loc′ defined as equal to loc but undefined
on 𝜙𝛼 ;

R ′ = ({𝐵𝑈𝑖

𝑖
}𝑖∈𝐼 \ {𝜙𝛽 },𝔎,Θ𝑓 ,Θ𝑟 ,𝑉 ,Θ𝑣, loc′)

is a non-canonical nwfps.

relocation-relocation if loc is defined on 𝜙𝛽 with loc(𝜙𝛽) = 𝜙𝛾 , then we set

– loc
′
as the restriction of loc, undefined on 𝜙𝛼 and 𝜙𝛽 .

R ′ = ({𝐵𝑈𝑖

𝑖
}𝑖∈𝐼 \ {𝜙𝛽 },𝔎,Θ𝑓 ,Θ𝑟 ,𝑉 ,Θ𝑣, loc′)

is a non-canonical nwfps.

In all the cases above, we set

R → R ′.

This is a baby-step reduction for nwfps, as reducing it produces a non-canonical nwfps. Nonetheless, we will prove

after introducing limits of reduction sequences that, if R is an nwfps, reducing to R1, a non-canonical nwfps, there

exists a reduction sequence involving only loc-rules such that its limit is an nwfps.

Proposition 11. Cut-reduction on infinets is confluent.

R

R1 R2

R0

∗ ∗

∗ ∗

The proof of confluence leads us to consider a kingdom 𝑘 (𝐹) as a generalized axiom, whose internal dynamics along

cut-elimination does not interact with the exterior and can be merged with an infinite axiom: viewed in that light, there

are only three reduction rules in infinets: reducing multiplicative cuts, reducing cuts on fixed-point formulas and cuts

against generalized axioms (be they finite, infinite, or kingdoms) which erase the kingdom of one of the premise.

Manuscript submitted to ACM

Eliminating infinitely many cuts in non-wellfounded 𝜇MLL proof-nets 29

Proposition 12. Cut-reduction on infinets is locally confluent.

R

R1 R2

R0
∗ ∗

Proof. Let R be an infinet; and R → R1 and R → R2 be two reductions. If none of the reductions are involving an

infinitary axiom, the proof is as usual: if the redexes do not overlap, then the diamond can be closed, if they overlap,

both of the reductions are of the form ax/cut, and hence, the reducts are already equal.

If one of the reduction reduces an infinite axiom against a cut, then, we have three possibilities:

(1) the redexes are disjoint. In that case, local confluence follows from the same argument as above;

(2) the reductions both are of the form infinite axiom vs. cut, and the infinite axiom is shared by the two redexes. In

that case, in R1, the kingdom above the other premise of one cut is erased and its conclusions are attached to

the infinite axiom, while the same happens to the other cut in R2. Closing the diamond is done by erasing the

kingdom of the premise of the remaining cut in both cases;

(3) the redexes overlap, but not by sharing an infinite axiom. In that case, one redex is actually included in the other:

indeed, every redex is included in a kingdom.

□

Although not finite, the reduction relation is finite on finite nwfps, and the reduction sequences can be rewritten as

the composition of a reduction sequence on a finite nwfps cut with an infinite constant one. Hence, the confluence.

Limits of reduction sequences. To prove that an infinite sequence of these reductions converges to some infinet, it is

possible to define a topology on the set of infinets, which accounts for the cuts moving upwards during the cut-reduction

procedure, by giving weights to cuts. One way to achieve it is to consider the heights of the cuts in a sequentialisation:

basically, we use a sequentialisation to give a tree-like ordering to a proof-structure, and hence, a notion of distance

compatible with the reduction. This method works for straight thread valid infinets, as we have theorem 1 for the

sequent calculus.

Thus, infinitary cut-elimination is carried out in valid and correct nwfps: correctness to use the tree topology of

the sequentialisations (𝜋 and 𝜋 ′ are at a distance ≤ 2
−ℎ

if they coincide up to height ℎ); validity to ensure productivity.

As the reductions we introduced for infinets do not correspond to a single step of cut-reduction in the sequent

calculus, we introduce a new reduction in the sequent calculus. We define the family of relations {⇒ℎ | ℎ ∈ N} on
𝜇MLL

∞
proofs such that 𝜋0 ⇒ℎ 𝜋

′
if the restrictions of 𝜋0 and 𝜋

′
below height ℎ coincide and

– either 𝜋 ′ is the limit of an infinite sequence (𝜋𝑖)𝑖⩾0 such that for all 𝑖 ≥ 0, 𝜋𝑖+1 is obtained from 𝜋𝑖 by a

permutation

– or there exists a finite sequence (𝜋𝑖)𝑖⩽𝑛 such that for all 𝑖 ≤ 𝑛 − 1, 𝜋𝑖+1 is obtained from 𝜋𝑖 by a permutation of

an inference rule, and 𝜋 ′ can be obtained from 𝜋𝑛 by an external cut-reduction.

Definition 33. We say that 𝜋 ⇒ℎ 𝜋
′
is a sequentialisation of a reduction, R →𝜅 R ′, if Deseq(𝜋) = R and

Deseq(𝜋 ′) = R ′ and ℎ is maximal (i.e. for every ℎ′ > ℎ, 𝜋 ⇏ℎ′ 𝜋
′
).

Manuscript submitted to ACM

30 Abhishek De, Luc Pellissier, and Alexis Saurin

We also extend Def. 33 to define a sequentialisation of a reduction sequence.

Lemma 3. Let R0 be valid and (R𝑖)𝑖⩾0 be a reduction sequence. Every sequentialisation of (R𝑖)𝑖⩾0 has a limit which is a

proof. Furthermore, the limits 𝜋 and 𝜋 ′ of two sequentialisations of the reduction sequence satisfy Deseq(𝜋) = Deseq(𝜋 ′).

Proof. We prove it by observing the following facts:

– for every reduction step, there exists a sequentialisation; we prove it by case analysis, by first noting that

S0 is a valid infinet, and hence can be sequentialised: if the reduction is ⊗/`, 𝜈/𝜇 or cut/ax, the cells in the

proof-structure have corresponding rules in the sequent calculus proof. By doing some permutations, these rules

can be put immediately above a cut rule. Among all these permutations, some are such that the untouched height

is maximal: the ones that only do permutations above the cut.

For the
∞
ax/cut reductions, the reduction can be simulated by an infinite number of permutations above the cut

rule in the sequent calculus proof, while not modifying anything below.

– given a sequentialisation of the reduction sequence

S0 S1 S2 · · · S𝑘 · · ·

𝜋0 𝜋1 𝜋2 · · · 𝜋𝑘 · · ·
ℎ0 ℎ1 ℎ2 ℎ𝑘−1 ℎ𝑘

we can take the sequence (ℎ𝑖)𝑖⩾0 as going to the infinity.

Indeed, each reduction step of ⇒ℎ is either a standard cut-reduction step preceded by a finite number of

permutations or an infinite sequence of permutations that erases a subproof by pushing it above an infinite

branch. We know [7, Theorem 28] that cut-elimination is productive for the cut-reduction in the sequent calculus,

and adding the erasure of brnaches by pushing them along infinite cut does not perturbate this result.

The only thing to prove is that the permutations before any elimination does not mess with productivity. It is not

the case, indeed: consider a lowest-height cut in 𝜋0. It will be eliminated at a reduction step 𝑖 . As all the (ℎ 𝑗)0⩽ 𝑗≤𝑖
are all maximal, no permutation in the sequence (𝜋 𝑗)0⩽ 𝑗≤𝑖 have touched it, hence, the cut is untouched in 𝜋𝑖 ,

and either deleted or replaced in 𝜋𝑖+1 by a cut at higher height. As there are only finitely many cuts at this height

ℎ𝑖 , there exists a 𝑗 such that for all 𝑘 > 𝑗 , ℎ𝑘 > ℎ𝑖 .

– We still have to prove that two choices of initial sequentialisation 𝜋0 and 𝜋
′
0
yield two limits that desequentialise

to the same infinet.

Let 𝐻 > 0 be an height. As (ℎ𝑖)𝑖>0 goes to the infinity, there exists a 𝑗 > 0 such that for all 𝑘 ⩾ 𝑗 , ℎ𝑘 > 𝐻 .

The rules below 𝐻 in 𝜋 𝑗 are all permutated in 𝜋 ′
𝑗
and can be above ℎ′

𝑗
: they have no reason to be stabilized.

Nonetheless, there exists a 𝑗 ′ ⩾ 𝑗 such that they are stabilized. Hence, the image of the desequentialisation of

the restriction of 𝜋 𝑗 to height 𝐻 is included (as a sub-nwfps) in the image of the desequentialisation of the

restriction of 𝜋 ′
𝑗 ′ to height ℎ′

𝑗 ′ .

So, ultimately, the two limits are equal.

□

Definition 34. Let R0 be valid and (R𝑖)𝑖⩾0 be a reduction sequence.The limit of (R𝑖)𝑖⩾0 is the desequentialisation of

the limit of a sequentialisation of (R𝑖)𝑖⩾0.

Fair sequences. Just as in the sequent calculus, not every reduction sequences converge towards a cut-free infinet: it is

possible to never reduce some cuts.

Manuscript submitted to ACM

Eliminating infinitely many cuts in non-wellfounded 𝜇MLL proof-nets 31

Definition 35. A reduction sequence (R𝑖)𝑖⩾0 is fair if for every 𝑖 ≥ 0 and 𝑟 such that R𝑖 →𝑟 R ′, there is some 𝑗 ≥ 𝑖 ,
such that 𝑟 cannot be reduced in R 𝑗 , i.e. there is no infinet, R ′′ such that R 𝑗 →𝑟 R ′′.

Example 9. Consider the desequentialisation of the pre-proofs in figs. 4d and 4e and the steps of cut reduction on it in

fig. 17 using the rules in fig. 16. Observe it closely resembles the reduction sequence in example 3.

Theorem 3. Let R0 be a valid infinet and (R𝑖)𝑖⩾0 be a fair reduction sequence. Its limit is a valid cut-free infinet.

𝜈𝑋 .𝑋𝛼𝑖𝑖
𝜇𝑌 .𝑌𝛽𝑖 𝜈𝑌 .𝑌𝛽⊥𝑖𝑖 𝜇𝑍 .𝑍𝛾𝑖 · · ·

ax ax

𝜈𝑋 .𝑋𝛼𝑖

𝜈

𝜈𝑋 .𝑋𝛼

𝜈

𝜇𝑌 .𝑌𝛽

𝜇

𝜈𝑌 .𝑌𝛽⊥𝑖

𝜈

𝜈𝑌 .𝑌𝛽⊥

𝜈

cut

𝜇𝑍 .𝑍𝛾

𝜇

cut

→𝑟

𝜈𝑋 .𝑋𝛼𝑖𝑖
𝜇𝑌 .𝑌𝛽𝑖 𝜈𝑌 .𝑌𝛽⊥𝑖𝑖 𝜇𝑍 .𝑍𝛾𝑖 · · ·

ax ax

𝜈𝑋 .𝑋𝛼𝑖

𝜈

𝜈𝑋 .𝑋𝛼

𝜈

𝜈𝑌 .𝑌𝛽⊥𝑖

𝜈

cut

𝜇𝑍 .𝑍𝛾

𝜇

cut

→𝑟

𝜈𝑌 .𝑌𝛽⊥𝑖𝑖 𝜇𝑍 .𝑍𝛾𝑖 · · ·
ax

𝜈𝑌 .𝑌𝛽⊥𝑖

𝜈

𝜈𝑌 .𝑌𝛼𝑖𝑖

loc

𝜈𝑌 .𝑌𝛼𝑖

𝜈

𝜈𝑋 .𝑋𝛼

𝜈

𝜇𝑍 .𝑍𝛾

𝜇

cut

Fig. 17. Cut reduction on the desequentialisation of the pre-proofs in figs. 4d and 4e

8 CONCLUSION AND FUTUREWORK

We have developed the parallel syntax of non-wellfounded proof theory by generalizing the non-wellfounded proof

structures in [21] to account for the presence of infinitely many cuts; and provided a cut-elimination result on these

structures. Indeed the requirement of containing only finitely many cuts in [21] prevents to consider any circular

pre-proof having a cut between the target and the source of a back-edge, as in fig. 4e. With our present generalization

and confluent cut-elimination, we hope to contribute to a better understanding of non-wellfounded proofs, from both a

syntactical and semantical point of view.

In future work we plan to improve our cut-elimination result, express more flexible validity conditions and understand

what are circular infinets. We sketch few ideas.

Bouncing-valid infinets and cut-elimination. The motivation for investigating proof nets for 𝜇MLL
∞
is cut-elimination

in bouncing-valid proof objects, for which the situation is not satisfactory: on the one hand, we have no criterion

for proof-nets; on the other hand, criteria for the sequent calculus are not as strong as they could be. This work on

cut-elimination for straight-thread valid proof-nets is a good stepping stone: our technique for defining the limit of a

Manuscript submitted to ACM

32 Abhishek De, Luc Pellissier, and Alexis Saurin

sequence of reduction is independent from the validity criterion—we are just unable for the time being to characterize

correctly its domain of validity, which should correspond to a notion of bouncing-validity. A further approach will be

to investigate other cut-elimination proof methods developed in the infinitary setting, for instance Mints’ continuous

cut-elimination [35].

Finitely presentable (f.p.) infinets. Regular (or circular) pre-proofs are those that can be represented by back-edges: they

are a f.p. fragment of general pre-proofs. Algorithmically such structures are interesting: they allow one to explore

decidability questions (checking validity for example). Thus a meaningful formulation of f.p. infinets is worth exploring.

Other than decidability questions, there are several interesting directions in this endeavour:

(1) Firstly, can the class of infinets that are the desequentialisation of some circular pre-proofs be characterized? Let

us call this class circular infinets.

(2) Further, this raises the question whether the Brotherston-Simpson conjecture can be addressed via proof nets. In

other words if we define proof nets for finitary 𝜇MLL with Park’s rules, the connection between these proof nets

and circular infinets could shed new light on finitization techniques.

(3) We can imagine having a fragment of f.p. infinets, called regular infinets, by considering finitely many cuts,

regular partial syntax trees and the set of axioms given by a regular transducer. We conjecture that circular

infinets ⫋ regular infinets.

(4) Circularity of proofs is not preserved by cut-elimination. Hence, if it turns out that cut-elimination in regular

infinets is decidable and produces regular infinets, then this partially culminates the quest for the class of f.p.

proof objects of 𝜇MALL
∞
that are closed under cut-elimination.

REFERENCES
[1] Martín Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit substitutions. Journal of Functional Programming, 1(4):375–416,

1991.

[2] Andreas Abel and Brigitte Pientka. Wellfounded recursion with copatterns: a unified approach to termination and productivity. In Greg Morrisett

and Tarmo Uustalu, editors, ACM SIGPLAN International Conference on Functional Programming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013,

pages 185–196. ACM, 2013.

[3] Bahareh Afshari, Gerhard Jäger, and Graham E. Leigh. An infinitary treatment of full mu-calculus. In Rosalie Iemhoff, Michael Moortgat, and Ruy

de Queiroz, editors, Logic, Language, Information, and Computation, pages 17–34, Berlin, Heidelberg, 2019. Springer Berlin Heidelberg.

[4] Jürgen Avenhaus, Ulrich Kühler, Tobias Schmidt-Samoa, and Claus-Peter Wirth. How to prove inductive theorems? QUODLIBET! In Automated

Deduction - CADE-19, 19th International Conference on Automated Deduction Miami Beach, FL, USA, July 28 - August 2, 2003, Proceedings, volume 2741

of Lecture Notes in Computer Science, pages 328–333. Springer, 2003.

[5] David Baelde. On the proof theory of regular fixed points. In Martin Giese and Arild Waaler, editors, Automated Reasoning with Analytic Tableaux

and Related Methods, 18th International Conference, TABLEAUX 2009, Oslo, Norway, July 6-10, 2009. Proceedings, volume 5607 of Lecture Notes in

Computer Science, pages 93–107. Springer, 2009.

[6] David Baelde, Amina Doumane, Denis Kuperberg, and Alexis Saurin. Bouncing threads for circular and non-wellfounded proofs. https://arxiv.org/

abs/2005.08257, 2020.

[7] David Baelde, Amina Doumane, and Alexis Saurin. Infinitary proof theory: the multiplicative additive case. In 25th EACSL Annual Conference

on Computer Science Logic, CSL 2016, August 29 - September 1, 2016, Marseille, France, volume 62 of LIPIcs, pages 42:1–42:17. Schloss Dagstuhl -

Leibniz-Zentrum fuer Informatik, 2016.

[8] David Baelde and Dale Miller. Least and greatest fixed points in linear logic. In Nachum Dershowitz and Andrei Voronkov, editors, Logic for

Programming, Artificial Intelligence, and Reasoning, 14th International Conference, LPAR 2007, Yerevan, Armenia, October 15-19, 2007, Proceedings,

volume 4790 of Lecture Notes in Computer Science, pages 92–106. Springer, 2007.

[9] Marc Bagnol, Amina Doumane, and Alexis Saurin. On the dependencies of logical rules. In Foundations of Software Science and Computation

Structures - 18th International Conference, FoSSaCS 2015, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015,

London, UK, April 11-18, 2015. Proceedings, pages 436–450, 2015.

[10] G. Bellin and J. van de Wiele. Subnets of proof-nets in MLL
-
. In Proceedings of the Workshop on Advances in Linear Logic, page 249–270, USA, 1995.

Cambridge University Press.

Manuscript submitted to ACM

https://arxiv.org/abs/2005.08257
https://arxiv.org/abs/2005.08257

Eliminating infinitely many cuts in non-wellfounded 𝜇MLL proof-nets 33

[11] James Brotherston. Cyclic proofs for first-order logic with inductive definitions. In Bernhard Beckert, editor, Automated Reasoning with Analytic

Tableaux and Related Methods, pages 78–92, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[12] James Brotherston, Nikos Gorogiannis, and Rasmus Lerchedahl Petersen. A generic cyclic theorem prover. In Programming Languages and Systems

- 10th Asian Symposium, APLAS 2012, Kyoto, Japan, December 11-13, 2012. Proceedings, volume 7705 of Lecture Notes in Computer Science, pages

350–367. Springer, 2012.

[13] James Brotherston and Alex Simpson. Sequent calculi for induction and infinite descent. Journal of Logic and Computation, 21(6):1177–1216, 10 2010.

[14] J. Richard Buchi and Lawrence H. Landweber. Solving sequential conditions by finite-state strategies. Transactions of the American Mathematical

Society, 138:295–311, 1969.

[15] Alan Bundy. The automation of proof by mathematical induction. In Handbook of Automated Reasoning (in 2 volumes), pages 845–911. Elsevier and

MIT Press, 2001.

[16] Alonzo Church and J. B. Rosser. Some properties of conversion. Transactions of the American Mathematical Society, 39(3):472–482, 1936.

[17] Pierre-Louis Curien. Introduction to linear logic and ludics, part ii, 2006.

[18] Anupam Das. Structure vs. invariants in proofs: project announcement. Talk at CiSS-19, http://www.cse.chalmers.se/~bahafs/CiSS2019/programme.

html, 2019.

[19] Anupam Das, Amina Doumane, and Damien Pous. Left-handed completeness for kleene algebra, via cyclic proofs. In LPAR, volume 57 of EPiC Series

in Computing, pages 271–289. EasyChair, 2018.

[20] Anupam Das and Damien Pous. A cut-free cyclic proof system for kleene algebra. In Renate A. Schmidt and Cláudia Nalon, editors, Automated

Reasoning with Analytic Tableaux and Related Methods, pages 261–277, Cham, 2017. Springer International Publishing.

[21] Abhishek De and Alexis Saurin. Infinets: The parallel syntax for non-wellfounded proof-theory. In Serenella Cerrito and Andrei Popescu, editors,

TABLEAUX 2019, pages 297–316. Springer International Publishing, 2019.

[22] Farzaneh Derakhshan and Frank Pfenning. Circular Proofs as Session-Typed Processes: A Local Validity Condition. arXiv e-prints, page

arXiv:1908.01909, August 2019.

[23] Simon Docherty and Reuben N. S. Rowe. A non-wellfounded, labelled proof system for propositional dynamic logic. In Serenella Cerrito and Andrei

Popescu, editors, Automated Reasoning with Analytic Tableaux and Related Methods, pages 335–352, Cham, 2019. Springer International Publishing.

[24] Amina Doumane. Constructive completeness for the linear-time 𝜇-calculus. In LICS, pages 1–12. IEEE Computer Society, 2017.

[25] Amina Doumane. On the infinitary proof theory of logics with fixed points. (Théorie de la démonstration infinitaire pour les logiques à points fixes).

PhD thesis, Paris Diderot University, France, 2017.

[26] Jérôme Fortier and Luigi Santocanale. Cuts for circular proofs: semantics and cut-elimination. In CSL, 2013.

[27] Eduardo Giménez. Structural recursive definitions in type theory. In K. G. Larsen, S. Skyum, and G. Winskel, editors, Proceedings 25th Int. Coll. on

Automata, Languages and Programming, ICALP’98, Aalborg, Denmark, 13–17 July 1998, volume 1443 of LNCS, pages 397–408. Springer-Verlag, Berlin,

1998.

[28] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50(1):1–102, January 1987.

[29] Jean-Yves Girard. Proof-nets: The parallel syntax for proof-theory. In Logic and Algebra, pages 97–124. Marcel Dekker, 1996.

[30] Farzad Jafarrahmani. Denotational semantics of linear logic with least and greatest fixpoint. Master’s thesis, Université Paris Diderot, 2018.

[31] Gary A. Kildall. A unified approach to global program optimization. In Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles

of Programming Languages, POPL ’73, page 194–206, New York, NY, USA, 1973. Association for Computing Machinery.

[32] Dexter Kozen. Results on the propositional 𝜇-calculus. Theoretical Computer Science, 27(3):333 – 354, 1983. Special Issue Ninth International

Colloquium on Automata, Languages and Programming (ICALP) Aarhus, Summer 1982.

[33] Per Martin-Löf. An intuitionistic theory of types: Predicative part. In H.E. Rose and J.C. Shepherdson, editors, Logic Colloquium ’73, volume 80 of

Studies in Logic and the Foundations of Mathematics, pages 73 – 118. Elsevier, 1975.

[34] Ralph Matthes. Monotone fixed-point types and strong normalization. In Georg Gottlob, Etienne Grandjean, and Katrin Seyr, editors, Computer

Science Logic, pages 298–312, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[35] Grigori E Mints. Finite investigations of transfinite derivations. Journal of Soviet Mathematics, 10(4):548–596, 1978.

[36] J. F. Nash. Equilibrium points in 𝑁 -person games. Proceedings of the National Academy of Sciences of the United States of America, 36(48-49), 1950.

[37] Damian Niwiński. Fixed point characterization of infinite behavior of finite-state systems. Theor. Comput. Sci., 189(1–2):1–69, December 1997.

[38] Dag Prawitz. Natural Deduction: A Proof-Theoretical Study. Dover Publications, 1965.

[39] Martin Protzen. Lazy generation of induction hypotheses. In Alan Bundy, editor, Automated Deduction — CADE-12, pages 42–56, Berlin, Heidelberg,

1994. Springer Berlin Heidelberg.

[40] Luigi Santocanale. A calculus of circular proofs and its categorical semantics. In Mogens Nielsen and Uffe Engberg, editors, Foundations of Software

Science and Computation Structures, volume 2303 of Lecture Notes in Computer Science, pages 357–371. Springer, 2002.

[41] Dana Scott. Outline of a mathematical theory of computation. Technical Report PRG02, OUCL, November 1970.

Manuscript submitted to ACM

http://www.cse.chalmers.se/~bahafs/CiSS2019/programme.html
http://www.cse.chalmers.se/~bahafs/CiSS2019/programme.html

34 Abhishek De, Luc Pellissier, and Alexis Saurin

C
⊢ Δ, 𝐹 ′ ⊢ Γ,𝐺 ′

(⊗)
⊢ Δ, Γ, 𝐹 ′ ⊗ 𝐺 ′

mcut(𝜄,⊥⊥)
⊢ ΣΔ, ΣΓ, 𝐹 ⊗ 𝐺

−→
𝑟

CΔ ⊢ Δ, 𝐹 ′
mcut(𝜄′,⊥⊥)

⊢ ΣΔ, 𝐹
CΓ ⊢ Γ,𝐺 ′

mcut(𝜄′′,⊥⊥)
⊢ ΣΓ,𝐺

(⊗)
⊢ ΣΔ, ΣΓ, 𝐹 ⊗ 𝐺

C
⊢ Δ, 𝐹 ′,𝐺 ′

(`)
⊢ Δ, 𝐹 ′ `𝐺 ′

mcut(𝜄,⊥⊥)
⊢ Σ, 𝐹 `𝐺

−→
𝑟

C ⊢ Δ, 𝐹 ′,𝐺 ′
mcut(𝜄′,⊥⊥)

⊢ Σ, 𝐹 ,𝐺
(`)

⊢ Σ, 𝐹 `𝐺

C
⊢ Δ, 𝐹 ′[𝜎𝑋 .𝐹 ′/𝑋]

(𝜎)
⊢ Δ, 𝜎𝑋 .𝐹 ′

mcut(𝜄,⊥⊥)
⊢ Σ, 𝜎𝑋 .𝐹

−→
𝑟

C ⊢ Δ, 𝐹 ′[𝜎𝑋 .𝐹 ′/𝑋]
mcut(𝜄′,⊥⊥)

⊢ Σ, 𝐹 [𝜎𝑋 .𝐹/𝑋]
(𝜎)

⊢ Σ, 𝜎𝑋 .𝐹

In the first reduction ((⊗)/(mcut)) we require that 𝜄 (𝐹 ⊗ 𝐺) = 𝐹 ′ ⊗ 𝐺 ′ and take 𝜄 ′ and 𝜄 ′′ that coincide with 𝜄 on ΣΔ
and ΣΓ respectively, and such that 𝜄 ′(𝐹) = 𝐹 ′ and 𝜄 ′′(𝐺) = 𝐺 ′. In the other reductions 𝜄 and 𝜄 ′ are similarly constrained.

Fig. 18. (mcut) Commutation reduction rules, where 𝑟 = (ext, 𝐹) and 𝐹 is the principal occurrence.

A DETAILS ON CUT-ELIMINATION FOR 𝜇MLL
∞ SEQUENT CALCULUS

Multicut reduction rules. For the sake of completeness we will spell out the multicut reduction system for unit-free

𝜇MLL
∞
.

Definition 36. Given sequents 𝑠, 𝑠1, . . . , 𝑠𝑛 where 𝑛 > 0 and such that 𝑠𝑖 , 𝑠 𝑗 are disjoint for all 𝑖 ≠ 𝑗 , a multicut of
conclusion 𝑠 and premisses (𝑠𝑖)𝑖∈[1;𝑛] is given by an injection 𝜄 : 𝑠 ↦→ ∪𝑖∈[1;𝑛]𝑠𝑖 and a binary relation |= ⊆ (∪𝑖∈[1;𝑛]𝑠𝑖)2

such that:

– For all 𝐹 ∈ 𝑠 , 𝜄 (𝐹) ≡ 𝐹 .
– For all 𝐹,𝐺 ∈ ∪𝑖∈[1;𝑛]𝑠𝑖 , 𝐹 |=𝐺 implies 𝐹 ≡ 𝐺⊥.
– dom(|=) = (∪𝑖∈[1;𝑛]𝑠𝑖) \ im(𝜄).
– Given two sequents 𝑠𝑖 and 𝑠 𝑗 , we say that they are |= -connected on a pair of formula occurrences (𝐹,𝐺) when 𝐹 ∈ 𝑠𝑖
and 𝐺 ∈ 𝑠 𝑗 such that 𝐹 |=𝐺 . We say that they are |= -connected, and we write 𝑠𝑖 |= 𝑠 𝑗 , when they are |= -connected on
some 𝐹,𝐺 . The relation |= on sequents must satisfy two conditions:

– two sequents must be |= -connected on at most one pair of occurrences 𝐹,𝐺 ;

– the graph of the relation |= must be connected and acyclic.

We write this multicut rule as:

𝑠1 . . . 𝑠𝑛
mcut(𝜄,⊥⊥)

𝑠

Definition 37. Mcut commutation are defined in fig. 18. In the first commutation rule, the sets CΔ and CΓ are the

subsets of C which are respectively connected to Δ and Γ respectively. More precisely,

CΔ = {𝑠 | ∃𝑠 ′, 𝑠 |= ∗𝑠 ′ and 𝑠 ′ is |= -connected to
⊢ Δ, Γ, 𝐹 ⊗ 𝐺 on an occurrence of Δ},

where |= ∗ is the symmetric transitive closure of the relation |= on sequents. CΓ is defined similarly.

Manuscript submitted to ACM

Eliminating infinitely many cuts in non-wellfounded 𝜇MLL proof-nets 35

C
⊢ Δ, 𝐹 ⊢ Γ,𝐺

(⊗)
⊢ Δ, Γ, 𝐹 ⊗ 𝐺

⊢ Θ, 𝐹 ′⊥,𝐺 ′⊥
(`)

⊢ Θ, 𝐹 ′⊥ `𝐺 ′⊥
mcut(𝜄,⊥⊥)

⊢ Σ

−→
𝑟

C ⊢ Δ, 𝐹 ⊢ Γ,𝐺 ⊢ Θ, 𝐹 ′⊥,𝐺 ′⊥
mcut(𝜄,⊥⊥′)

⊢ Σ

where 𝐹 ⊗ 𝐺 |= 𝐺 ′⊥ `𝐺 ′⊥ and |= ′ coincides with |= except for 𝐹 |= ′ 𝐹 ′⊥ and 𝐺 |= ′ 𝐺 ′⊥

C
⊢ Δ, 𝐹 ′[𝜇𝑋 .𝐹 ′/𝑋]

(𝜇)
⊢ Δ, 𝜇𝑋 .𝐹 ′

⊢ Γ, 𝐹⊥ [𝜈𝑋 .𝐹⊥/𝑋]
(𝜈)

⊢ Γ, 𝜈𝑋 .𝐹⊥
mcut(𝜄,⊥⊥)

⊢ Σ

−→
𝑟

C ⊢ Δ, 𝐹 ′[𝜇𝑋 .𝐹 ′/𝑋] ⊢ Γ, 𝐹⊥ [𝜈𝑋 .𝐹⊥/𝑋]
mcut(𝜄,⊥⊥′)

⊢ Σ

where 𝜇𝑋 .𝐹 ′ |= 𝜈𝑋 .𝐹⊥ and |= ′ coincides with |= except for 𝐹 ′[𝜇𝑋 .𝐹 ′/𝑋] |= ′ 𝐹⊥ [𝜈𝑋 .𝐹⊥/𝑋]

Fig. 19. Principal reductions, where 𝑟 = (princ, {𝐹, 𝐹 ′⊥ }) with {𝐹, 𝐹 ′⊥ } the principal occurrences that have been reduced.

Definition 38. Internal reductions are the principal reductions given in fig. 19 together with the following two

reductions:

– the merge (mcut)/(Cut) reduction

C
⊢ Δ, 𝐹 ⊢ Γ, 𝐹⊥

(Cut)
⊢ Δ, Γ

mcut(𝜄,⊥⊥)
⊢ Σ

−→
𝑟

C ⊢ Δ, 𝐹 ⊢ Γ, 𝐹⊥
mcut(𝜄,⊥⊥′)

⊢ Σ
where |= ′ extends |= with 𝐹 |= ′ 𝐹⊥ and 𝑟 = (merge, {𝐹, 𝐹⊥}).

– the axiom reduction (mcut)/(Ax)

C
(Ax)

⊢ 𝐹, 𝐹 ′⊥ ⊢ 𝐹 ′′, Γ
mcut(𝜄,⊥⊥)

⊢ Σ

−→
𝑟

C ⊢ 𝐹 ′′, Γ
mcut(𝜄′,⊥⊥′)

⊢ Σ
where 𝑟 = (CutAx, {𝐹, 𝐹 ′⊥}), 𝐹 ′⊥ |= 𝐹 ′′ and 𝜄 ′, |= ′ are defined as follows:
– for all 𝐺 ∈ Σ, if 𝜄 (𝐺) = 𝐹 then 𝜄 ′(𝐺) = 𝐹 ′′, otherwise 𝜄 ′(𝐺) = 𝜄 (𝐺);
– |= ′ = |= \ {(𝐹 ′⊥, 𝐹 ′′)} ∪ {(𝐹 ′′,𝐺) | (𝐹,𝐺) ∈ |= } ∪ {(𝐺, 𝐹 ′′) | (𝐺, 𝐹) ∈ |= }.

Definition 39. A reduction sequence is a finite or infinite sequence 𝜎 = (𝜋𝑖 , 𝑟𝑖)𝑖∈1+𝜆 with 𝜆 ∈ 𝜔 + 1, where the 𝜋𝑖
are 𝜇MLL

∞
m

pre-proofs, the 𝑟𝑖 are labels identifying multicut reduction rules and, for all 𝑖 ∈ 𝜆, 𝜋𝑖 −→
𝑟𝑖

𝜋𝑖+1. The sequence is

fair if for all 𝑖 ∈ 𝜆 and 𝑟 such that 𝜋𝑖 −→
𝑟
𝜋 ′ there is some 𝑗 ∈ 𝜆 such that 𝑗 ≥ 𝑖 and 𝜋 𝑗 −→

𝑟
𝜋 𝑗+1.

We can now state the multicut-elimination theorem for 𝜇MLL
∞
[6, 7, 25]:

Manuscript submitted to ACM

36 Abhishek De, Luc Pellissier, and Alexis Saurin

Theorem 4 (𝜇MLL
∞

(multi)cut-elimination). Fair reduction sequences on 𝜇MLL
∞
m

proofs produce cut-free 𝜇MLL
∞

proofs.

Cut-elimination reductions for 𝜇MLL
∞. We will detail the cut reduction rules and the cut-elimination theorem warts and

all for 𝜇MLL
∞

avoiding the use of multicut. Some of the rules were given in section 3. The following is the full system.

Definition 40 ((Cut)-(Cut) commutation).

𝜋1

Γ,𝐺⊥

𝜋2

⊢ Δ, 𝐹 ,𝐺
𝜋3

⊢ Σ, 𝐹⊥
(Cut)

⊢ Δ, Σ,𝐺
(Cut)

⊢ Γ,Δ, Σ

−→
𝑟

𝜋1

Γ,𝐺⊥
𝜋2

⊢ Δ, 𝐹 ,𝐺
(Cut)

⊢ Γ,Δ, 𝐹
𝜋3

⊢ Σ, 𝐹⊥
(Cut)

⊢ Γ,Δ, Σ
with 𝑟 = (cut − comm, ((𝐺⊥,𝐺), (𝐹, 𝐹⊥))), together with the other ways to associate the cuts, for instance:

𝜋1

⊢ Δ, 𝐹 ,𝐺
𝜋2

⊢ Σ, 𝐹⊥
(Cut)

⊢ Δ, Σ,𝐺
𝜋3

Γ,𝐺⊥
(Cut)

⊢ Γ,Δ, Σ

−→
𝑟

𝜋1

⊢ Δ, 𝐹 ,𝐺
𝜋3

Γ,𝐺⊥
(Cut)

⊢ Γ,Δ, 𝐹
𝜋2

⊢ Σ, 𝐹⊥
(Cut)

⊢ Γ,Δ, Σ
and the like.

Definition 41 (Principal logical cases for cut-reduction). The rules are depicted in fig. 20, together with the

symmetric rules, where 𝑟 = (principal, (𝐶,𝐶⊥)) with (𝐶,𝐶⊥) the principal formulas that have been reduced.

Definition 42 (Principal (Cut)/(Ax) case for cut-reduction).

(Ax)
⊢ 𝐹,𝐺⊥

𝜋

⊢ 𝐺, Γ
(Cut)

⊢ 𝐹, Γ
−→
𝑟

𝜋

⊢ 𝐺, Γ
(Loc(𝜄))

⊢ 𝐹, Γ

with 𝐹 ≡ 𝐺 and 𝜄 :

{
𝐹 ↦→ 𝐺

𝐻 ↦→ 𝐻 𝐻 ∈ Γ
and 𝑟 = (AXCut, (𝐹,𝐺)).

Definition 43 (Commutation of logical rules with (Cut)). Together with the symmetric cases, the above reductions

in fig. 21 define the cut commutation rules, where 𝑟 = (ext, 𝐹) and 𝐹 is the formula occurrence that is principal after the

rule application.

Manuscript submitted to ACM

Eliminating infinitely many cuts in non-wellfounded 𝜇MLL proof-nets 37

𝜋1

⊢ Γ, 𝐹
𝜋2

⊢ Δ,𝐺
(⊗)

⊢ Γ,Δ, 𝐹 ⊗ 𝐺

𝜋3

⊢ Θ,𝐺⊥, 𝐹⊥
(`)

⊢ Θ,𝐺⊥ ` 𝐹⊥
(Cut)

⊢ Γ,Δ,Θ

−→
𝑟

𝜋1

⊢ Γ, 𝐹

𝜋2

⊢ Δ,𝐺
𝜋3

⊢ Θ,𝐺⊥, 𝐹⊥
(Cut)

⊢ Δ,Θ, 𝐹⊥
(Cut)

⊢ Γ,Δ,Θ
𝜋1

⊢ Γ,𝐺⊥, 𝐹⊥
(`)

⊢ Γ,𝐺⊥ ` 𝐹⊥

𝜋2

⊢ Δ, 𝐹
𝜋3

⊢ Θ,𝐺
(⊗)

⊢ Δ,Θ, 𝐹 ⊗ 𝐺
(Cut)

⊢ Γ,Δ,Θ

−→
𝑟

𝜋1

⊢ Γ,𝐺⊥, 𝐹⊥
𝜋2

⊢ Δ, 𝐹
(Cut)

⊢ Γ,Δ,𝐺⊥
𝜋2

⊢ Θ,𝐺
(Cut)

⊢ Γ,Δ,Θ
𝜋1

⊢ Γ, 𝐹 [𝜇𝑋 .𝐹/𝑋]
(𝜇)

⊢ Γ, 𝜇𝑋 .𝐹

𝜋2

⊢ Δ, 𝐹⊥ [𝜈𝑋 .𝐹⊥/𝑋]
(𝜈)

⊢ Δ, 𝜈𝑋 .𝐹⊥
(Cut)

⊢ Γ,Δ

−→
𝑟

𝜋1

⊢ Γ, 𝐹 [𝜇𝑋 .𝐹/𝑋]
𝜋2

⊢ Δ, 𝐹⊥ [𝜈𝑋 .𝐹⊥/𝑋]
(Cut)

⊢ Γ,Δ
𝜋1

⊢ Γ, 𝐹 [𝜈𝑋 .𝐹/𝑋]
(𝜈)

⊢ Γ, 𝜈𝑋 .𝐹

𝜋2

⊢ Δ, 𝐹⊥ [𝜇𝑋 .𝐹⊥/𝑋]
(𝜇)

⊢ Δ, 𝜇𝑋 .𝐹⊥
(Cut)

⊢ Γ,Δ

−→
𝑟

𝜋1

⊢ Γ, 𝐹 [𝜈𝑋 .𝐹/𝑋]
𝜋2

⊢ Δ, 𝐹⊥ [𝜇𝑋 .𝐹⊥/𝑋]
(Cut)

⊢ Γ,Δ

Fig. 20. Principal logical cases for cut-elimination

⊢ Γ, 𝐹 [𝜇𝑋 .𝐹/𝑋],𝐺
(𝜇)

⊢ Γ, 𝜇𝑋 .𝐹,𝐺 ⊢ 𝐺⊥,Δ
(Cut)

⊢ Γ, 𝜇𝑋 .𝐹,Δ
−→
𝑟

⊢ Γ, 𝐹 [𝜇𝑋 .𝐹/𝑋],𝐺 ⊢ 𝐺⊥,Δ
(Cut)

⊢ Γ, 𝐹 [𝜇𝑋 .𝐹/𝑋],Δ
(𝜇)

⊢ Γ, 𝜇𝑋 .𝐹,Δ
⊢ Γ, 𝐹 [𝜈𝑋 .𝐹/𝑋],𝐺

(𝜈)
⊢ Γ, 𝜈𝑋 .𝐹,𝐺 ⊢ 𝐺⊥,Δ

(Cut)
⊢ Γ, 𝜈𝑋 .𝐹,Δ

−→
𝑟

⊢ Γ, 𝐹 [𝜈𝑋 .𝐹/𝑋],𝐺 ⊢ 𝐺⊥,Δ
(Cut)

⊢ Γ, 𝐹 [𝜈𝑋 .𝐹/𝑋],Δ
(𝜈)

⊢ Γ, 𝜈𝑋 .𝐹,Δ
𝜋1

⊢ Γ, 𝐹
𝜋2

⊢ Δ, 𝐻,𝐺
(⊗)

⊢ Γ,Δ, 𝐻, 𝐹 ⊗ 𝐺
𝜋3

⊢ Σ, 𝐻⊥
(Cut)

⊢ Γ,Δ, Σ, 𝐹 ⊗ 𝐺

−→
𝑟

𝜋1

⊢ Γ, 𝐹

𝜋2

⊢ Δ, 𝐻,𝐺
𝜋3

⊢ Σ, 𝐻⊥
(Cut)

⊢ Δ, Σ,𝐺
(⊗)

⊢ Γ,Δ, Σ, 𝐹 ⊗ 𝐺

𝜋1

⊢ Γ, 𝐻⊥

𝜋2

⊢ Δ, 𝐹 ,𝐺, 𝐻
(`)

⊢ Δ, 𝐹 `𝐺,𝐻
(Cut)

⊢ Γ,Δ, 𝐹 `𝐺

−→
𝑟

𝜋1

⊢ Γ, 𝐻⊥
𝜋2

⊢ Δ, 𝐹 ,𝐺, 𝐻
(Cut)

⊢ Γ,Δ, 𝐹 ,𝐺
(`)

⊢ Γ,Δ, 𝐹 `𝐺

Fig. 21. Commutations of cuts and logical rules

Definition 44 ((Loc)-commutation rules). Together with the symmetric cases, the reductions in fig. 22 define the

(Loc)-commutation rules.

Notation 1. We use the following notations:

– −→m for the multicut reduction;

– −→c for the cut reduction (together with the Loc rules);

– −→merge for the (mcut) merge reduction.

Manuscript submitted to ACM

38 Abhishek De, Luc Pellissier, and Alexis Saurin

𝜋

⊢ Γ′, 𝐹 ′[𝜇𝑋 .𝐹 ′/𝑋]
(𝜇)

⊢ Γ′, 𝜇𝑋 .𝐹 ′
(Loc(𝜄))

⊢ Γ, 𝜇𝑋 .𝐹

−→
𝑟

𝜋

⊢ Γ′, 𝐹 ′[𝜇𝑋 .𝐹 ′/𝑋]
(Loc(𝜅))

⊢ Γ, 𝐹 [𝜇𝑋 .𝐹/𝑋]
(𝜇)

⊢ Γ, 𝜇𝑋 .𝐹

with 𝜄 such that 𝜄 (𝜇𝑋 .𝐹) = 𝜇𝑋 .𝐹 ′ and 𝜄 (Γ) = Γ′ and 𝜅 =

{
𝐺 ↦→ 𝜄 (𝐺) if 𝐺 ∈ Γ

𝐹 [𝜇𝑋 .𝐹/𝑋] ↦→ 𝐹 ′[𝜇𝑋 .𝐹 ′/𝑋]

𝜋

⊢ Γ′, 𝐹 ′[𝜈𝑋 .𝐹 ′/𝑋]
(𝜈)

⊢ Γ′, 𝜈𝑋 .𝐹 ′
(Loc(𝜄))

⊢ Γ, 𝜈𝑋 .𝐹

−→
𝑟

𝜋

⊢ Γ′, 𝐹 ′[𝜈𝑋 .𝐹 ′/𝑋]
(Loc(𝜅))

⊢ Γ, 𝐹 [𝜈𝑋 .𝐹/𝑋]
(𝜈)

⊢ Γ, 𝜈𝑋 .𝐹

with 𝜄 such that 𝜄 (𝜈𝑋 .𝐹) = 𝜈𝑋 .𝐹 ′ and 𝜄 (Γ) = Γ′ and 𝜅 =

{
𝐺 ↦→ 𝜄 (𝐺) if 𝐺 ∈ Γ

𝐹 [𝜈𝑋 .𝐹/𝑋] ↦→ 𝐹 ′[𝜈𝑋 .𝐹 ′/𝑋]

𝜋1

⊢ Γ′, 𝐹 ′
𝜋2

⊢ Δ′,𝐺 ′
(⊗)

⊢ Γ′,Δ′, 𝐹 ′ ⊗ 𝐺 ′
(Loc(𝜄))

⊢ Γ,Δ, 𝐹 ⊗ 𝐺

−→
𝑟

𝜋1

⊢ Γ′, 𝐹 ′
(Loc(𝜅))

⊢ Γ, 𝐹

𝜋2

⊢ Δ′,𝐺 ′
(Loc(𝜆))

⊢ Δ,𝐺
(⊗)

⊢ Γ,Δ, 𝐹 ⊗ 𝐺

with 𝜅 =

{
𝐻 ↦→ 𝜄 (𝐻) if 𝐻 ∈ Γ
𝐹 ↦→ 𝐹 ′

and 𝜆 =

{
𝐻 ↦→ 𝜄 (𝐻) if 𝐻 ∈ Δ
𝐺 ↦→ 𝐺 ′

𝜋

⊢ Γ′, 𝐹 ′,𝐺 ′
(`)

⊢ Γ′, 𝐹 ′ `𝐺 ′
(Loc(𝜄))

⊢ Γ, 𝐹 `𝐺

−→
𝑟

𝜋

⊢ Γ′, 𝐹 ′,𝐺 ′
(Loc(𝜅))

⊢ Γ, 𝐹 ,𝐺
(`)

⊢ Γ, 𝐹 `𝐺

with 𝜄 =


𝐻 ↦→ 𝜄 (𝐻) if 𝐻 ∈ Γ
𝐹 ↦→ 𝐹 ′

𝐺 ↦→ 𝐺 ′

𝜋1

⊢ Γ′,𝐶
𝜋2

⊢ Δ′,𝐶⊥
(Cut)

⊢ Γ′,Δ′
(Loc(𝜄))

⊢ Γ,Δ

−→
𝑟

𝜋1

⊢ Γ′,𝐶
(Loc(𝜅))

⊢ Γ,𝐶

𝜋2

⊢ Δ′,𝐶⊥
(Loc(𝜆))

⊢ Δ,𝐶⊥
(Cut)

⊢ Γ,Δ

with 𝜅 =

{
𝐻 ↦→ 𝜄 (𝐻) if 𝐻 ∈ Γ
𝐶 ↦→ 𝐶

and 𝜆 =

{
𝐻 ↦→ 𝜄 (𝐻) if 𝐻 ∈ Δ
𝐶⊥ ↦→ 𝐶⊥

𝜋

⊢ Γ′′
(Loc(𝜅))

⊢ Γ′
(Loc(𝜄))

⊢ Γ

−→
𝑟

𝜋

⊢ Γ′′
(Loc(𝜅 ◦ 𝜄))

⊢ Γ

(Ax)
⊢ 𝐹 ′,𝐺 ′

(Loc(𝜄))
⊢ 𝐹,𝐺

−→
𝑟

(Ax)
⊢ 𝐹,𝐺

Fig. 22. Commutation of logical rules with relocations

Manuscript submitted to ACM

Eliminating infinitely many cuts in non-wellfounded 𝜇MLL proof-nets 39

– −→comm for the (Cut) commutation reduction.

Definition 45 ([𝜋]). If 𝜋 ∈ 𝜇MLL
∞
m
, [𝜋] is the proof where each unary (resp. binary) (mcut) has been replaced with a

(Loc) (resp. a (Cut) and possibly a (Loc)) rule as follows:

–
𝑠 ′ (mcut) (𝜄, ∅)
𝑠

is replaced by
𝑠 ′
(Loc(𝜄))

𝑠

–

𝑠1 𝑠2 (mcut) (𝜄,⊥)
𝑠

is replaced by

𝑠1 𝑠2
(Cut)

𝑠
if 𝜄 = id and by

𝑠1 𝑠2
(Cut)

𝑠 ′
(Loc(𝜄))

𝑠

otherwise, with 𝑠 ′ = 𝜄 (𝑠).

Definition 46 (CSeq(𝜋m)). Given a 𝜇MLL
∞
m
proof 𝜋m, we define CSeq(𝜋m) = {[𝜋 ′m] | 𝜋m ←−★merge

𝜋 ′
m
↚−★

merge
}

Remark 5. While [𝜋] ∈ 𝜇MLL
∞
m
in general, elements of CSeq(𝜋m) are actually all proofs in 𝜇MLL

∞
(ie without any

multicut).

Lemma 4. Let 𝜋m be a 𝜇MLL
∞
m
proof. If 𝜋 ∈ CSeq(𝜋m), then every occurrence of a sequent in 𝜋m also occurs in 𝜋 .

Proof. This is trivial as any merge antireduction does not change the premises nor the conclusion of the multicut

involved in the merge rule and as 𝜇MLL
∞
proofs having no antecedent by merge have only binary and unary (mcut)

inferences. □

Lemma 5. Let 𝜋m be a 𝜇MLL
∞
m
proof and let 𝑟 be an occurrence of (mcut) and 𝑠1, 𝑠2 be two sequents premises of 𝑟 such

that 𝑠1 |= 𝑠2, then there exists some 𝜋 ∈ CSeq(𝜋m) containing an occurrence of (Cut) of the form:

𝑠1 𝑠2
(Cut)

𝑠

Proof. Consider some 𝜋0 ∈ CSeq(𝜋m) such that the number 𝑛𝑐 of (Cut) on a path from 𝑠1 to 𝑠2 is minimal. If 𝑛𝑐 is

equal to 1 we are done and if it is greater than one, we see by case analysis that a (Cut)-commutation case can reduce

𝜋0 to some 𝜋1 which is also in CSeq(𝜋m) and distance between 𝑠1 and 𝑠2 less than 𝑛𝑐 contradicting minimality from

which we conclude.

The same proof method works by taking any element fromCSeq(𝜋m) and performing−→comm reduction diminishing

the distance between 𝑠1 and 𝑠2. □

Lemma 6. Let 𝜋m ∈ 𝜇MLL
∞
m
and 𝜋, 𝜋 ′ ∈ CSeq(𝜋m), then 𝜋 −→comm 𝜋 ′.

Proof. This is a simple induction on the size of the (Cut)-tree (ie subtree of (Cut) inferences) resulting from themerge

antireduction, which depends only on the multicut and not on the choice of an element in CSeq(𝜋m): one can use

−→comm to move any cut to the root and reduce from 𝜋 to 𝜋 ′. □

Proposition 13. If 𝜋 ∈ 𝜇MLL
∞

and 𝜋m ∈ 𝜇MLL
∞
m

containing at most one mcut per branch such that 𝜋 ∈ CSeq(𝜋m),
if there exists 𝜋 ′

m
such that 𝜋m −→m 𝜋 ′

m
, then there exists 𝜋 ′ ∈ 𝜇MLL

∞
such that 𝜋 −→0/1

c
𝜋 ′ and 𝜋 ′ ∈ CSeq(𝜋 ′

m
).

Proof. Simple case analysis: simply take 𝜋 ′ = 𝜋 in case of a merge rule and otherwise, perform the corresponding

cut-reduction, possibly beginning with (Cut) commutation rules to expose the redex and possibly followed with (Loc𝜄) for

preserving the structure of the resulting proof. □

The following lemma is trivial by analyzing all cases of (mcut)-reduction which all preserve this property of having at

most one (mcut) per branch.

Lemma 7. If 𝜋m ∈ 𝜇MLL
∞
m

has at most one (mcut) per branch and 𝜋m −→m 𝜋 ′
m
, then 𝜋 ′

m
has at most one (mcut) per

branch.

Manuscript submitted to ACM

40 Abhishek De, Luc Pellissier, and Alexis Saurin

𝜋 −→
𝑟

(ax)⊢ (𝜈𝑋 .𝑋)𝛼𝑖𝑖 , (𝜇𝑌 .𝑌)𝛽𝑖 (𝜇)⊢ (𝜈𝑋 .𝑋)𝛼𝑖𝑖 , (𝜇𝑌 .𝑌)𝛽 (𝜈2)⊢ (𝜈𝑋 .𝑋)𝛼 , (𝜇𝑌 .𝑌)𝛽

(ax)⊢ (𝜈𝑋 .𝑋)𝛽⊥𝑖𝑖 , (𝜇𝑌 .𝑌)𝛾𝑖 (𝜇)⊢ (𝜈𝑋 .𝑋)𝛽⊥𝑖𝑖 , (𝜇𝑌 .𝑌)𝛾 (𝜈2)⊢ (𝜈𝑋 .𝑋)𝛽⊥ , (𝜇𝑌 .𝑌)𝛾 (cut)⊢ (𝜈𝑋 .𝑋)𝛼 , (𝜇𝑌 .𝑌)𝛾
𝜋

⊢ (𝜈𝑌 .𝑌)𝛾⊥ (cut)⊢ (𝜈𝑋 .𝑋)𝛼

−→
𝑟

(ax)⊢ (𝜈𝑋 .𝑋)𝛼𝑖𝑖 , (𝜇𝑌 .𝑌)𝛽𝑖 (𝜇)⊢ (𝜈𝑋 .𝑋)𝛼𝑖𝑖 , (𝜇𝑌 .𝑌)𝛽

(ax)⊢ (𝜈𝑋 .𝑋)𝛽⊥𝑖𝑖 , (𝜇𝑌 .𝑌)𝛾𝑖 (𝜇)⊢ (𝜈𝑋 .𝑋)𝛽⊥𝑖𝑖 , (𝜇𝑌 .𝑌)𝛾 (𝜈2)⊢ (𝜈𝑋 .𝑋)𝛽⊥ , (𝜇𝑌 .𝑌)𝛾 (cut)⊢ (𝜈𝑋 .𝑋)𝛼𝑖𝑖 , (𝜇𝑌 .𝑌)𝛾 (𝜈)⊢ (𝜈𝑋 .𝑋)𝛼𝑖 , (𝜇𝑌 .𝑌)𝛾
𝜋

⊢ (𝜈𝑌 .𝑌)𝛾⊥ (cut)⊢ (𝜈𝑋 .𝑋)𝛼𝑖 (𝜈)⊢ (𝜈𝑋 .𝑋)𝛼

−→
𝑟

(ax)⊢ (𝜈𝑋 .𝑋)𝛽⊥𝑖𝑖 , (𝜇𝑌 .𝑌)𝛾𝑖 (𝜇)⊢ (𝜈𝑋 .𝑋)𝛽⊥𝑖𝑖 , (𝜇𝑌 .𝑌)𝛾 (Loc)⊢ (𝜈𝑋 .𝑋)𝛼𝑖𝑖𝑖 , (𝜇𝑌 .𝑌)𝛾 (𝜈2)⊢ (𝜈𝑋 .𝑋)𝛼𝑖 , (𝜇𝑌 .𝑌)𝛾
𝜋

⊢ (𝜈𝑌 .𝑌)𝛾⊥ (cut)⊢ (𝜈𝑌 .𝑌)𝛼𝑖 (𝜈)⊢ (𝜈𝑋 .𝑋)𝛼

Fig. 23. A productive sequence of cut-elimination

Proposition 14. If (𝜋𝑖
m
)𝑖∈N is a (strongly) converging −→m-sequence of 𝜇MLL

∞
m
proofs (with at most one (mcut) per

branch), of limit 𝜋m which is mcut-free, then there exists a (strongly) converging sequence (𝜋𝑖)𝑖∈N of 𝜇MLL
∞

proofs with

an extraction (𝜋𝜎 (𝑖))𝑖∈N such that ∀𝑖 ∈ N, 𝜋𝜎 (𝑖) ∈ CSeq(𝜋𝑖
m
).

Proof. The proposition is easily proved as the two previous statement ensures one can map a (finite) mcut-reduction

sequence onto (finite) a cut-reduction sequence and infinite sequence is obtained as the union of the ascending sequences.

The existence of the limit is obtained trivially by noting that if 𝜋 ∈ CSeq(𝜋m), then 𝜋 and 𝜋m coincide till the height of

the bottommost mcut in 𝜋m and therefore strong convergence allows to conclude. □

Corollary 1. The sequence given by the previous lemma strongly converges to 𝜋m.

Definition 47. In infinitary rewriting, a binary relation→ on a set 𝐸 is said to be𝑊𝑁∞ when it is such that for every

𝑒 ∈ 𝐸, there is a reduction sequence (𝑒𝑖)𝑖∈N from 𝑒 strongly converging to a normal form 𝑓 (∀𝑔 ∈ 𝐸, 𝑓 ↛𝑔).

The following theorem is an immediate corollary of the previous propositions:

Theorem 5. −→c isWN
∞
.

The previous theorem can be restated with implicit substitutions instead of explicit (Loc)-rule:

Theorem 6. −→Loc−𝑓 𝑟𝑒𝑒
c

isWN
∞
.

Remark 6. The very same approach extends straightforwardly to a cut-elimination proof for 𝜇MALL
∞
.

Manuscript submitted to ACM

Eliminating infinitely many cuts in non-wellfounded 𝜇MLL proof-nets 41

Contents

Abstract 1

1 Introduction 1

2 Background 7

3 Cut-elimination in 𝜇MLL
∞
sequent calculus 8

4 Trips 9

5 Non-wellfounded Proof Structures 12

5.1 Treating non-simple proofs 15

5.2 An illustration of desequentialisation 17

5.3 Non-wellfounded substructures 17

5.4 Treating NWFPS with locs 18

6 Correctness Criterion 19

6.1 Details on sequentialisation 22

6.2 Correctness of non-simple proofs 24

7 Cut-elimination for valid infinets 24

8 Conclusion and Future Work 31

References 32

A Details on Cut-elimination for 𝜇MLL
∞
sequent calculus 34

Contents 41

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 Background
	3 Cut-elimination in MLL sequent calculus
	4 Trips
	5 Non-wellfounded Proof Structures
	5.1 Treating non-simple proofs
	5.2 An illustration of desequentialisation
	5.3 Non-wellfounded substructures
	5.4 Treating NWFPS with locs

	6 Correctness Criterion
	6.1 Details on sequentialisation
	6.2 Correctness of non-simple proofs

	7 Cut-elimination for valid infinets
	8 Conclusion and Future Work
	References
	A Details on Cut-elimination for MLL sequent calculus
	Contents

