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Abstract7

The residential sector accounts for 30% of the total green house gas emissions in Europe, which can be reduced

either by switching to low-carbon technologies or reducing the amount of fossil fuel energy consumed. In this

work, a new greenhouse gas emission (GHGE) reduction system at the house (nanogrid) level is investigated.

The originality of the proposed system and underlying algorithm lies in the fact that it acts in a proactive

manner, by continuously controlling and optimizing energy flows between on-site local power production

systems (photovoltaics - PV - array in our case), loads, and storage units (combining battery and thermal

storage reservoirs). This system/algorithm is evaluated based on real-life input datasets from the United

Kingdom (UK) and France, and compared with traditional house energy infrastructures, namely (i) a house

not fitted with battery, and (ii) a house fitted with battery but without additional “smart" software layer.

Results show that it performs better in terms of CO2 (capacity of the algorithm to reduce the amount of

non carbon-free energy consumed from the grid), Power to Grid (capacity to maximize the use of local green

energy), and financial cost (capacity to reduce the overall electricity bill), respectively improving performance

by up to 8%, 10% and 37%.

Keywords: Greenhouse Gas Emission, Carbon footprint, Energy efficiency, Photovoltaics, Battery,8

Nanogrid9

1. Introduction10

Buildings account for a significant proportion of global energy demand, GHGE, waste generation and11

resource demands. According to the results of the 21st Conference of the Parties on Climate Change (COP21),12

held in Paris in 2015, the building sector is responsible for 40% of worldwide energy consumption and 30%13

of GHGE (Baek and Kim, 2020; Wang et al., 2020). Reducing GHGE can be achieved by either switching14

to low-carbon technologies or reducing the amount of fossil fuel energy consumed (Holdren, 2006; Blackburn15

et al., 2017; Lazarus and van Asselt, 2018).16

The scope and focus of this research is on the latter, namely the investigation of innovative solutions to17

reduce fossil fuel energy consumption at the house/building level. Such an objective can be achieved at several18
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phases of the energy lifecycle, as depicted in Figure 1. At the generation phase, research usually focuses on19

the design of weather dependent power generators, along with high capacity energy storage systems (Li et al.,20

2020; Lai et al., 2020). At the transmission and distribution phases, “smart grid" is an omnipresent topic21

(Dileep, 2020; Rahim et al., 2019), which is tightly coupled with the digital information flow allowing for22

both continuous monitoring of the demand, and control of the grid itself. Then, a large research community23

focuses on in-house solutions, spanning from the design of demand side management strategies (Wen et al.,24

2020; Mendes et al., 2020) to advanced metering and/or nanogrid architectures (Burmester et al., 2017;25

Kalair et al., 2020). The research work presented in this manuscript, which is developed as part of the26

RED WoLF project (standing for: Rethink Electricity Distribution Without Load Following) funded by the27

European Union (EU) programme Interreg North-West Europe (NWE), focuses on and contributes to the28

latter topic (i.e., nanogrid). Although definitions of what a nanogrid are discussed later in this paper, let us29

emphasize that the proposed system acts for a single home without gas connection, continuously controlling30

on-site local power production systems and loads, with the option of using green energy stored locally. The31

originality of the proposed RED WoLF system and underlying algorithm, compared with state-of-the-art32

solutions, is threefold:33

i. RED WoLF introduces an innovative CO2-based progressive threshold approach, based on an optimiza-34

tion algorithm which is developed to decide when non carbon-free energy (from the grid) should be35

drawn to supply/charge in-house equipment;36

ii. RED WoLF includes battery and thermal storage reservoirs, including storage heaters and water cylin-37

ders;38

iii. RED WoLF system/algorirthm is continuously executed, whose decisions are taken in real-time using39

on-site monitored data (via sensors) and predicted data (PV, CO2, home consumption).40

Section 2 provides background information about the scope and focus of this research. Section 3 introduces41

the proposed RED WoLF’s GHGE reduction system and underlying algorithm, which first and foremost42

focuses on CO2. Section 4 provides experimental evidence that the proposed system performs better than43

traditional ones in terms of CO2 (capacity to reduce the amount of consumed non carbon-free energy), power44

to grid (capacity to maximize the use of local green energy), and financial (capacity to reduce the electricity45

bill). In this respect, real-life datasets from UK and France are considered for evaluation purposes (i.e. PV46

generation, house consumption). Conclusion and research perspectives are discussed in section 6.47

2. Scope, Definition and Positionning48

Section 2.1 provides the necessary background information to understand where our contribution stands49

in the energy field. Section 2.2 discusses the extent to which our research is different from the existing50
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literature.51

2.1. Scope and Definition52

Figure 1 based on (Saleem et al., 2019), provides a cartography of the power life cycle, which consists53

of: (i) power systems: corresponding to the physical infrastructure; (ii) Power flow: representing the power54

exchanges occurring from its generation to its consumption; (iii) Information flow: symbolizing the size55

of the underlying networks infrastructures, from wide area networks to home area networks. The research56

work presented in this work falls within the scope of Home Area Network (Consumption) phase, and more57

specifically in the scope of “Nanogrid". One may wonder why we talk about Nanogrid and not Microgird ?58

Although there is nothing in the microgrid definition to say it cannot be confined to a single home/building,59

we adopt, as suggested by Burmester et al. (2017), that single home microgrids should adopt the term60

nanogrid for three reasons: (i) nanogrids play a different role to microgrids in the power hierarchy (e.g.,61

by connecting multiple nanogrids a microgrid can be formed); (ii) the potential markets for nanogrids are62

different to that of microgrids. A nanogrid allows a power structure to be obtained at a relatively low cost63

compared to microgrids, thus shifting the interest from large/multiple investors to small ones; (iii) as the64

nanogrid structure is confined to a single home, the technical goals, hardware and software often vary from65

that of a microgrid.66
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Figure 1: Power system overview (adapted from (Saleem et al., 2019))

A wide range of scientific and technological challenges related to nanogrid are addressed in the literature,67

spanning from the design of new DC converters for nanogrid (Xie et al., 2020; Wu et al., 2016), new appliance68
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Figure 2: Nanogrid main technological constituents : figure adapted from (Ahmed et al., 2019)

task scheduling optimization and demand-side management strategies (Kalair et al., 2020; Sahin et al., 2019),69

to innovative plug-in electric vehicle optimization strategies (Wu et al., 2017; Shamshirband et al., 2018).70

Despite this wide scope of research, they all rely on a common set of technological constituents (or building71

blocks), which can be declined into three main categories, as illustrated in Figure 2:72

• Local energy generator(s): including both/either renewable generators (e.g., Solar PV arrays, wind) or73

non-renewable ones (e.g., diesel, gas, stirling):74

• Residential loads: referring to home equipment that consume energy (e.g., appliances, car);75

• Local energy storage units: referring to equipment able to store energy for later use, including batteries,76

storage heaters, water cylinders, or still electrical vehicles;77

In the next section state-of-the-art studies that focus on similar objectives as RED WoLF (i.e., reduction78

of GHGE in PV nanogrid) are discussed, along with the extent to which they differ from RED WoLF.79

2.2. Positionning of RED WoLF in the Literature80

Many scientific studies have addressed the subject of GHGE reduction and electricity consumption op-81

timization at the nanogrid level1. These studies span from the implementation of basic mechanisms based82

solely on temperature readings (TAŞTAN, 2019; Marinakis and Doukas, 2018) to the integration of predictive83

models considering meteorological information or still inhabitant behaviors (Ngarambe et al., 2020; Goudarzi84

et al., 2019). With the problems related to global warming, the optimization criterion is changing, increas-85

ingly focusing on the consumption of renewable energies for carbon dioxide emission reduction (Adams and86

Nsiah, 2019; Kahia et al., 2019).87

1Given the definition adopted earlier (cf., section 2.1), i.e. that single home micro-grids are referred to as nanogrid.
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In this respect, a comprehensive economic evaluation of a residential building with solar PV and battery88

energy storage systems is carried out by Akter et al. (2017) considering an Australian use case. The evaluation89

compares different scenarios, which can be divided into two categories: (1) savings/benefits resulting from90

the use of solar PV unit only; (2) savings/benefits resulting from the use of solar PV unit combined with91

a battery-based energy storage system. From a CO2 perspective, in both cases the reduction of emissions92

increases along with the size of the solar PV units, however PV units with smaller capacities are more93

viable options from a return on investment perspective. Although the results of this study are interesting94

to understand how a given PV and a battery design could impact on savings/benefits, the study remains at95

the evaluation stage and does not propose any new optimization layer (e.g., to reduce CO2, bills, etc.).96

Other research works do introduce such optimization models. Ban et al. (2019) formalize a capacity97

planning problem, along with an algorithm seeking to determine the optimal sizing of PV generation and98

batteries for nanogrid. This optimization minimizes the investment cost, while guaranteeing the desired level99

of reliability in the energy supply. This work is interesting as it allows system designers to select the best100

suited PV and battery sizes, however, such an analysis is carried out off-line (i.e. in the design phase of the101

systems), while, in RED-WoLF, the goal is to achieve continuous optimization in an on-line and continuous102

mode.103

Several studies have developed on-line (real-time) optimization solutions. Among others, Leonori et al.104

(2016) presented an approach to enhance energy trading tasks and maximize the prosumer gain from an105

electricity price viewpoint (by deciding when to charge/discharge the battery). Arun and Selvan (2017)106

propose an online algorithm to minimize the electricity bill by taking advantage of low electricity pricing107

intervals. Ock et al. (2016) introduce a conceptual framework that takes into account weather data changes in108

order to adjust the energy used for lighting or still HVAC (Heating, Ventilation, Air-Conditioning) operational109

scheduling. A weakness of these last three presented works is the non-consideration of the CO2 impact in110

the optimization function.111

Several studies have proposed multi-objective optimization models to balance the competing goals of112

minimizing electricity costs for the home owner as well as minimizing CO2 emissions. Huang et al. (2012)113

propose an algorithm maximizing the amount of energy produced locally (via PV) to the grid. However, in114

our opinion, selling energy is not always the best solution (or not allowed by energy provider), as it could be,115

in some cases, better to save this energy for future use when purchased energy price will increase. Olivieri116

and McConky (2020) present an innovative optimization model used to develop optimal battery charge and117

discharge schedules under three different objectives: minimize time dependent energy costs, minimize carbon118

emissions, and a multi-objective model that considers both energy costs and carbon emissions by including119

a social cost of carbon. In the same vein, Haidar et al. (2018) propose a real-time consumer-dependent120

energy management system for smart buildings, which is designed to find a trade-off between the energy cost121
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(either renewable or non-renewable) and its carbon impact. One limitation from these last two presented122

works is the non-consideration of forecasts, which somehow hinders the system’s ability to react to non-123

expected behaviors (e.g., in terms of CO2 emission, energy price, PV generation, home consumption) over124

the forthcoming hours or days. Such forecasting is being considered by Moradi et al. (2016), where a 24 hours125

ahead optimization of PV-Wind hybrid systems with battery storage is performed in order to meet the load126

requirements. Nonetheless, the authors do not take into account CO2 forecasts (only PV, wind and load127

forecasts being considered). Let us add that all the previously introduced research works do not consider128

thermal reservoirs as storage units in their model, which prevents to increase (i) the storage capacity of the129

overall system; and (ii) the flexibility in the optimization process. RED WoLF and the present study are130

committed to overcome these limitations.131

One may also point out studies considering both stationary and mobile batteries (e.g., electric vehicle)132

in the optimization process (Mahmud et al., 2018; Gomes and Suomalainen, 2020), with the possibility to133

add specific constraints (e.g., “allow for discharging the mobile battery but yet maintain a range of 25 km").134

However, the use of mobile battery systems is out of scope of RED WoLF.135

3. RED WoLF’s GHGE Reduction System136

The RED WoLF’s GHGE reduction system consists of three steps. First, the necessary input data sources137

to run the proposed optimization algorithm are collected/accessed. Second, a CO2 threshold used for later138

optimization stages is computed. Third, a GHGE reduction logic is specified based on the computed CO2139

threshold. These three steps are respectively detailed in sections 3.1, 3.2 and 3.3. Note that a primary140

version of the threshold computation was formalized in (Shukhobodskiy and Colantuono, 2020).141

3.1. Input data sources142

Several input data sources must be accessed/monitored in order run the proposed GHGE reduction logic.143

These data sources can be divided into three categories, as depicted in Figure 3, namely:144

i. Pre-defined parameter values: this category corresponds to fixed parameters such as manufacturers’ data145

(e.g., maximum battery capacity and power intake);146

ii. Real-time monitored values: this category corresponds to data monitored on-site, which includes smart147

meter-, heater-, cylinder- (water tank-), PV- and home appliance-related data;148

iii. Predicted dataset values: this category corresponds to predicted dataset patterns, and particularly the149

predicted CO2 generated by the grid for a given forthcoming period of time, as well as the predicted PV150

and home consumption.151
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Figure 3: RED WoLF’s GHGE reduction system overview

Table 1 provides the list of data sources that need to be accessed/monitored for each of the above152

categories, as well as the algorithm outputs and internal algorithm variables. In the next section, the notion153

of “CO2 threshold" is introduced and formalized, which is key to the proposed GHGE reduction logic.154

3.2. CO2 Threshold identification155

To compute what is referred to as CO2 threshold, denoted by CO2thr, several computational steps must156

be conducted.157

First, the predicted average remaining power drawable from the grid (denoted by GPU ) and the predicted

energy consumed by appliances and thermal reservoirs until the end of the day (denoted by DED) must be

estimated. The former (GPU ), which can be understood as the available amount of instantaneous power

to charge home storage reservoirs (i.e., storage heaters and cylinder), is computed based on Eq. (1), where

DImax, Apre andBImax respectively refer to the maximum house power intake allowed by the energy provider,

the estimated forthcoming power consumed by appliances, and the maximum battery’s intake limitation.

The latter (DED), which represents the remaining amount of energy required to reach the setpoint for the

next day, is computed based on Eq. (2), where Hdem and Cdem respectively refer to heater and cylinder

current power demands (which are computed based on Eq. (3) and (4)), and Hlev and Clev to the current

level of energy still available in the heater and cylinder. The “Heavi" (Heaviside step function) function
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Table 1: Variable definitions

Type Variable Units Description

Input

Acur kW Current power injected to appliances

Apre kW Predicted power to be injected to the appliances

CO2cur gCO2/kWh Current grid CO2 load

CO2pre gCO2/kWh Predicted grid CO2 load

PVcur kW Current PV production

PVpre kW Predicted PV production

Output

Bcon kW Power drawn from the battery

Binj kW Power stored in the battery

Ccur kW Power stored in the water cylinder

Gcon kW Power drawn from the grid

Ginj kW Power injected to the grid

Hcur kW Power stored in the storage heater

Internal

BC kWh Charging capacity of the battery

Bdem kW Current battery’s power demand

BImax kW Maximum battery intake power

Blev kWh State/Level of charge of the battery

Cdem kW Current water cylinder’s power demand

CImax kW Maximum water cylinder’s power intake

Clev kWh State/Level of charge of the watercylinder

Cset kWh Setpoint of cylinder

DED kWh Predicted energy consumed by appliances until the end of the day

DImax kW Maximum equipment usable power set by the electricity provider

DImaxAPV kW Maximum equipment usable power including PV and appliances

GPU kW Predicted average remaining power drawable from the grid

Hdem kW Current storage heater’s power demand

HImax kW Maximum storage heater’s power intake

Hlev kWh State/Level of charge of the storage heater

Hset kWh Setpoint of storage heater

Pbal kW Power balance after powering appliances and equipment supply

CO2thr gCO2/kWh CO2 threshold over which grid drawing is not allowed

TI min Minimum time to supply equipment and appliances

8



represents is defined as “1" if the input parameter is positive, “0" otherwise.

GPU = DImax −
∫ T

t

Apre(t)

(T − t)
dt−BImax (1)

DED =

∫ T

t

Apre(t)

60
dt+

∑
i=H,C

(idem − ilev) (2)

Hdem = HImax ×Heavi(Hset −Hlev) (3)

Cdem = CImax ×Heavi(Cset − Clev) (4)

Based on GPU and DED, the minimum time length to charge equipment in parallel of supplying home

appliances, is computed based on Eq. (5) (denoted by TI).

TI = max

(
DED

GPU
,
Hdem −Hlev

HImax
,
Cdem − Clev

CImax

)
(5)

Finally, the CO2 threshold (CO2thr), which identifies when it is optimal to draw energy from the grid,

is computed based on Eq. (7), where CO2preSort corresponds to CO2 prediction vector sorted in descending

order as given in Eq. (6). Note that the ceil function is required here in order to obtain an integer, which

refers to the drawing time (in minutes) that represents the index of the CO2 threshold in the sorted CO2

vector.

CO2preSort = sort(CO2pre) (6)

CO2thr = CO2preSort (dTIe) (7)

Figure 4 provides a graphical representation of what the above-introduced equations result in. Overall,158

once TI is obtained/computed (which is equal to 7h in this example), a threshold that meets this charging159

duration is identified. In our example, the first threshold (denoted by COa
2 in Figure 4) does not meet this160

requirement, while the second threshold (COb
2) does, resulting in two “low CO2 periods": [8am; 10am] and161

[2pm; 6pm].162

➠

TI = 7h

Minimum
Charging Time

➠ ➠

See Section 3.3

Predicted
values

Real-time
values

Pre-defined
values

3h 6= TI

8h 10h 12h 14h 16h 18h 20h

COa
2

3h

2h+5h = TI

8h 10h 12h 14h 16h 18h 20h

COb
2

5h2h

Figure 4: Illustration of the CO2 threshold computation used in the RED WoLF’s GHGE reduction system
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10
Algorithm 1: GHGE Reduction Logic

input : Acur, Apre, CO2cur, CO2pre, PVcur, PVpre

output: Bcon, Binj , Ccur, Gcon, Ginj , Hcur

1 begin

2 for each t do

3 read Blev , Hlev , Clev

4 compute Bdem, Hdem, Cdem // See Eq. (3),(4)

5 for each tpred do

6 read CO2pre, Apre, PVpre

7 compute CO2thr // See Eq. (7)

8 read CO2cur, Acur, PVcur

9 if CO2cur ≥ CO2thr & Acur ≥ PVcur then

10 α← Acur − PVcur // Missing PV power to cover appliances’ demand

11 Bcon ← min(Blev , α,BImax)

12 Gcon ← min(α−Bcon, DImax)

13 else if CO2cur ≥ CO2thr & Acur < PVcur then

14 β ← PVcur −Acur // Remaining PV power after covering appliances’ demand

15 if β < Cdem then

16 Ccur ← β ×Heavi(Cset − Clev)

17 else if β ≥ Cdem & β < Cdem +Hdem then

18 Ccur ← Cdem

19 Hcur ← (β − Cdem)×Heavi(Hset −Hlev)

20 else if β ≥ Cdem +Hdem & β < Cdem +Hdem +Bdem then

21 Ccur ← Cdem

22 Hcur ← Hdem

23 Binj ← min ((β − Cdem −Hdem), BImax)×Heavi(BC −Blev)

24 else

25 Ccur ← Cdem

26 Hcur ← Hdem

27 Binj ← Bdem

28 Ginj ← β − (Ccur +Hcur +Bcon)

29 else

30 DImaxAPV ← DImax + (PVcur −Acur)

31 Binj ← min(Bdem, DImaxAPV ×Heavi(BC −Blev))

32 Hcur ← min(Hdem, (DImaxAPV −Binj)×Heavi(Hset −Hlev))

33 Ccur ← min(Cdem, (DImaxAPV − (Binj +Hcur))×Heavi(Cset − Clev))

34 Pbal ← Acur − PVcur + Ccur +Hcur +Binj

35 if Pbal ≥ 0 then

36 Gcon ← Pbal

37 else

38 Ginj ← −Pbal



3.3. GHGE reduction logic163

Based on the computed threshold, a logic is applied to decide which equipment need to be charged (or164

not) depending on the threshold value, but not only, it also depends on current PV production, the current165

demands of the storage heater, cylinder, battery, and so forth. Algorithm 1 provides the applied logic, which166

is run based on a two time intervals (see rows 2 and 3 in Algorithm 1), namely: (i) every tpred (every hour167

in our case), the CO2thr is computed based on Apre and PVpre; (ii) every t (every minute in our case), the168

program monitors the current input values in order to perform the following logic:169

• Case 1 (row 9 to 11 in Algorithm 1): when the current grid CO2 level (CO2cur) is higher than the170

CO2 threshold (CO2thr), and that the PV production is not sufficient to supply the home appliances,171

energy from the battery (if any) is consumed, and then (if not sufficient) from the grid;172

• Case 2 (row 12 to 27): if the PV production is sufficient to supply the appliance power demand, the173

extra power (if any) is used to charge the thermal storage reservoirs (cylinder, then heaters), and then174

(if extra power still available) the battery. If some extra power is still available, it is then re-injected175

to the grid;176

• Case 3 (row 28 to 36): if CO2 is lower than CO2thr, everything is charged (to the extent possible) by177

drawing power from the grid if PV is not sufficient to cover the demand.178

In the next section, the proposed RED WoLF’s GHGE reduction system is evaluated based on real-life179

datasets.180

4. Experiments181

In order to evaluate the benefits from implementing our proposal, three distinct scenarios have been182

analyzed and compared, as summarized in Figure 5:183

A. PV: it consists of a single home fitted with PV array. Energy is consumed, first and foremost, from184

PV (when possible), otherwise from the grid. Note that the storage heaters and the water cylinder185

are considered as loads and storage units without optimization (i.e., charging at a given point in time,186

regardless of the CO2 level or energy price);187

B. PV & battery: it consists of a single home fitted with PV system and a battery. Energy is consumed,188

first and foremost, from PV array (when possible), then from the battery (when possible), otherwise from189

the grid. As before, storage heaters and a water cylinder are considered as loads and storage without190

optimization yet;191
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C. PV & battery & RED WoLF: it consists of a single home fitted with PV arrays, a battery and thermal192

storage reservoirs (heaters and water cylinders). Unlike the previous two scenarios, thermal storage193

reservoirs are taken into account, along with the battery, into the optimization process. Energy is194

consumed, first and foremost, from PV arrays (when possible), then from the battery (when possible),195

otherwise from the grid.196

(c)

(d)

(a)

(b)

C - RED WoLF
See

Section 3

A - Without Battery

B - With Battery

Comparison Analysis

Sc. A Sc. B Sc. C

Financial cost

day 1 day 2 . . . day n

Emitted Co2

day 1 day 2 . . . day n

Power to Grid

day 1 day 2 . . . day n

Figure 5: Benchmarking study to evaluate the benefits of the RED WoLF system/algorithm

Figure 5 provides a graphical overview of both the inputs and outputs of our study. In this respect, a197

distinction has to be drawn between inputs needed to feed the proposed system/algorithm, namely inputs198

(a) house electricity consumption, (b) electricity produced by PV arrays, (c) grid-related CO2, and an input199

not needed to run the algorithm but used for comparison purposes, namely (d) electricity price. Regarding200

the performance indicators considered, three indicators are defined:201

1. CO2 Emission (gCO2/kWh): corresponds to the amount of grams of CO2 (per kWh) emitted to202

produce the electrical energy consumed by the house (i.e., energy from the grid);203

2. Financial cost (euros): corresponds to the electricity bill related to the energy consumed from the grid;204
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3. Power to Grid (kW): corresponds to the algorithm’s ability to maximize PV self-consumption.205

The experimental setup (incl., datasets used as inputs of the carried out experiments) is detailed in206

section 4.1. Experimental results are presented and discussed in section 4.2. Finally, a sensitivity analysis207

of the impact of the battery size on the overall system performance is carried out in section 4.3.208

4.1. Experimental Setup209

In the following, the four input data sources briefly mentioned previously – i.e. (a), (b), (c), (d) in210

Figure 5 – are further detailed in this section.211

Home consumption (a): several scientific datasets can be found in the literature, as reported in (Monacchi212

et al., 2014). In this study, two of them, namely the UKDALE (UK Domestic Appliance-Level Electricity)213

for UK-related experiments and IHEPCDS (Individual Household Electric Power Consumption Data Set)214

for French-related ones, are considered (Table 2 provides further details about those datasets). These two215

datasets have been selected and are of interest for us because (i) these are popular benchmark datasets216

in the housing sector; and (ii) as part of the RED WoLF project, pilots located in these two countries217

are currently being set up. Furthermore, choosing these two countries is interesting from an experimental218

viewpoint, as they have different ways of generating electricity (mostly nuclear-based in France, while UK219

mostly uses natural gas), which makes it possible to evaluate the performance of the proposed algorithm220

under different grid conditions. The October month is considered in this study. Figure 6(a) gives insight221

into the energy consumption patterns over a day from these two datasets, showing that a similar trend is222

observed, corresponding to period of times where inhabitants are at home.223

Table 2: Input dataset-related information

Input dataset Location Name Period URL

(a) Home consumption
UK UKDALE October

(NSD, 2021)
France IHEPCDS October

(b) PV production
UK N/A October (NRE, 2020)

France N/A October (PVG, 2020)

(c) Grid-related CO2

UK N/A October (NGE, 2021)

France N/A October (RTE, 2021)

(d) Energy price
UK N/A N/A

(STA, 2021)
France N/A N/A

PV production (b): No platform providing real-time PV production data in France exists, to the best224

of our knowledge, while in UK the NREL (National Renewable Energy Laboratory) web platform provides225
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access to both historical and predicted PV datasets. Noentheless, a simulator developed by the European226

Commission (cf., Table 2) shows that there is a difference of 15.4% between UK and France (in favour of227

France). As a result, the PV production dataset obtained for UK via the NREL web platform was increased228

of 15.4% for the French experiments (see Figure 6(b)).229
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(c) Input: CO2 load emitted by the grid

Figure 6: Input datasets

Grid-related CO2 (c): two distinct web platforms providing APIs (standing for: Application Program-230

ming Interface) to access carbon intensity variation of the FR and UK grids were used, namely the RTE231
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APIs (Réseau de Transport d’électricité) for France and the carbon intensity website for UK (cf., Table 2).232

Figure 6(c) gives insight into the carbon intensity variation patterns over a day for the two considered coun-233

tries. It can be observed that the energy is much less greener in UK than in France (3 to 5 times less green),234

adding that UK is subject to significant CO2 variations compared with France. This can be explained by the235

fact that, in France, most electricity is produced by nuclear power plants. Obviously, such political factors236

have a direct impact on the proposed solutions, and subsequently on the decisions taken, whether at the237

grid, microgrid, or nanogrid levels.238

Energy price (d): even though prices could vary during the day, a fixed average electricity price obtained239

from Eurostat2 is considered, namely 0.2122 and 0.1765 euros per kWh in UK and France respectively.240

Finally, let us note that a battery of capacity (BC) 7 kWh and of maximum power intake (BImax) of241

14 kW is considered for the experiments, which corresponds to a mid-range battery product on the market.242

However, a more in-depth analysis of the impact of the battery size impact on the overall system performance243

is carried out in section 4.3.244

4.2. Experimental Results245

The presentation of the experimental results is divided into two parts. In section 4.2.1, results for a 1-day246

timeframe are presented, while results for a 1-month timeframe are analyzed in section 4.2.2.247

4.2.1. 1-day analysis248

Figures 7(a) and 7(c) give insight into the power exchanges occurring at a given day between the grid,249

the home appliances, the battery and thermal storage reservoirs, and the PV units, with regard to the three250

considered scenarios. For the conducted experiments, let us note that the sum of the power supplied to251

indoor equipment (incl., appliances, battery and thermal storage reservoirs), minus the power generated by252

PV must not exceed the limit fixed by the electricity provider, which is set to 9 kW. Looking at results in253

Figures 7(a) and 7(c), an interesting observation is that, for this specific day, less power is re-injected to the254

grid when using our system (scenario C) compared with scenarios A and B (see curve denoted by -Power to255

grid). Indeed, when looking at the first scenario, almost all the energy generated by PV is re-injected (see256

period 9h to 16h), while in our system, it only starts around 12:30. Although this observation is only valid257

for this specific day, it is worth noting it as the following consideration is made: the higher the amount of258

energy re-injected to the grid, the less this energy source is valued at the local level. This has a twofold259

consequence: (1) the inhabitant does not take advantage of her/his own energy, which goes against one of the260

ecological principles (namely “shop locally" (Benyus, 1997)), adding that she/he remains grid-dependent3,261

2https://fr.statista.com/infographie/11825/comparaison-cout- electricite-en-europe/
3Grid independency is a sustainability measure which is usually used to see how the house will perform if there will be no

energy supply from the main grid (Akter et al., 2017).
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(b) Scenario B - With Battery
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(c) Scenario C - Red WoLF

Figure 7: 1-day analysis regarding the three scenarios compared in our experiments
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Figure 8: Power to Grid

and (2) energy losses will likely occur during energy transmission phases on the grid. Having said that, it262

cannot be concluded at this stage (i.e., based on a single day) whether our approach leads to better results263

on long term runs. As a result, a longer period of time is studied in the next section.264

4.2.2. 1-month analysis265

In the following, a full month (October) is analyzed with respect to the three performance indicators266

introduced in Figure 5.267

Power to Grid: Figures 8(a) and 8(b) provide insight into how much local energy (i.e., produced by PV)268

is re-injected to the grid (in the UK and French cases), or locally consumed. Let us note that the sum of269

the re-injected and locally consumed energies is equal to the total amount of energy produced by PV. For270

example, considering scenario B in Figures 8(a), 53% refers to the part of the energy generated by PV that271

is locally consumed, while the remaining 47% is re-injected to the grid. Having in mind that the objective of272

RED WoLF is to maximize local energy consumption (as discussed in the section 4.2.1), it can be noted, as273

a first comment of Figures 8(a) and 8(b), that more than half of the energy produced locally is re-injected to274

the grid in scenario A (“Without battery"), while this effect is significantly reduced when adding a battery275

and/or thermal storage reservoirs to the infrastructure (scenarios B and C). Indeed, the implementation of276

storage units enables to mitigate the re-injection of energy produced locally to the grid up to 23% in France,277

against 47% in the UK. When using the RED WoLF’s GHGE reduction system, this reduction goes down278

to 12% and 35% respectively in France and UK. This difference between both countries is mainly due to279

the energy consumption patterns, as in the French house, the consumption is higher than in the UK’s house280

(821 kWh against 269 kWh), adding that the solar energy can be almost fully used locally with the proposed281

system/algorithm (i.e., scenario C). Furthermore, by examining the house energy consumption patterns (see282

Figure 6(a)), it can be seen that the energy produced by PV takes mainly place outside daylight periods,283
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Figure 9: Emitted CO2

which is why a smart procedure for optimizing the use of the storage units based on inhabitant needs and284

habits is relevant.285

CO2 Emission: Let remind ourselves that this metric is the most important from a RED WoLF project286

perspective, as the main goal of the project is to increase renewables’ usage and reduce CO2 emission.287

Figure 9 gives insight into the experimental results related to the three considered scenarios (A, B, C). It288

can be observed that a similar trend is obtained, with a decrease of around 9% between scenarios A and B289

(i.e., without battery vs. with battery), and around 7% between scenarios B and C (i.e., with battery vs.290

RED WoLF). These results show to what extent it could be beneficial to add some “smart" (software) logic291

to battery products available on the market. Indeed, up to 16% of gCO2/kWh could be saved using the292

proposed solution compared with a basic installation integrating only PV. However, it should be noted that293

such a reduction could be more or less significant according to the country. In our case (see Figure 9), the294

monthly gain for the UK house is almost four times higher than for the French one (29000 gCO2/kWh vs.295

≈ 5500 gCO2/kWh). This somehow proves that the actions to be taken to in-house GHGE not only required296

smart solutions at the house level, but also appropriate political decisions and measures, which is obviously297

out of scope of this study.298

Financial Cost: If the use of “smart" storage system is interesting from an environmental viewpoint,299

its societal impact should not be neglected by analyzing the cost of the implemented solution. Figure 10300

gives insight into the electricity bill resulting from each solution/scenario. It can be observed that the bill is301

reduced by around 10% percent in the UK case and 7% in the French one when the RED WoLF system is302

used (i.e., scenario A vs. C). When comparing scenarios B and C, RED WoLF makes it possible to reduce303

the monthly bill by 12 euros for the UK case, and 3 euros for the French one. A simple explanation is that304

the optimization of local energy usage results in price-free energy. Compared to the current literature studies305

(cf., section 2) that consider both CO2 and energy price in their optimization process, the proposed algorithm306

allows to implicitly optimize both criteria (CO2 and price). Given that the home energy consumption over307
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Figure 10: Electricity bill

the October month is of 821 kWh and 269 kWh respectively in France and UK, and that the electricity price308

in each country is different, it results in a saving of 0.38 euros per 100 kWh consumed in France, while in UK309

it reaches 1.46 euros per 100 kWh consumed. This is a non-negligible saving from a UK family viewpoint,310

while in France it is less significant, which confirms that it not that easy to come up with a “universal" GHGE311

reduction system proposal, as many external factors at the national level (incl., political, technological and312

societal ones) have direct impact on the efficiency of the proposed system. For example, in our case, just313

looking at Figure 6(c), it can quickly be noted that the RED WoLF algorithm will be less effective in France314

than in UK, as the CO2 signal in France is both lower (average of 30 in France against 200 in UK) and315

subject to less variations (variation of 5 gCO2/kWh in France against 100 gCO2/kWh in UK).316

4.3. Battery Capacity Analysis317

The previous section pointed out the fact that an optimized storage system makes it possible the reduction318

of GHGE, while reducing the electricity bill (even if the saving is more subtle in France than in UK). This319

analysis was done considering a battery capacity (BC) of 7 kWh and a maximum power intake (BImax) of320

14 kW. In this section, the goal is now to analyze the impact of these two parameters on the overall system321

performance when using the RED WoLF’s GHGE reduction system. To this end, four types of batteries322

available on the market are considered, as synthesized in Table 3. In what follows the results of this analysis323

are discussed, but, unlike the previous section, results are now presented as an “improvement ratio" between324

storage-based solutions (i.e., scenarios B and C) with a reference scenario that corresponds to a infrastructure325

without battery (i.e., scenario A).326

Figure 11 shows the improvement ratio related to the energy consumed locally. For clarification purposes,327

and to make sure that the “improvement ratio" has been correctly understood, let us consider the example328

of the LG6.5 battery in Figure 11(a): the result tells that scenario B is 23% more efficient than scenario A329

(which is considered as the reference), while scenario C is 43% more efficient than scenario A. Overall, when330
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Figure 11: Improvement of local energy consumption
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Figure 12: Improvement of footprint impact (reduction of CO2)

Table 3: Battery products (from the market) analyzed

Bluetti LG3.3 LG6.5 Tesla

BImax (kW) 1 3.3 4.2 7

BC (kWh) 1.5 3.3 6.5 13.5

looking at all results in Figures 11(a) and 11(b), it can be concluded that, regardless of the battery size and331

whether a smart software layer is or not added, the use of storage units with a PV infrastructure is always332

beneficial (in the UK and France), reaching up to 75% of improvement in the French case with LG3.3. It333

can also be observed that the size of the battery has a lower impact in the UK case compared with the334

French one, which is due to the fact that the house electricity consumption is lower in UK. Given this, higher335

battery capacities are more beneficial in the French case. Furthermore, it can also be seen that, in France,336

RED WoLF provides the best results with the LG3.3 battery, which can be explained by the fact that the337

larger the battery capacity (e.g., LG6.5), the longer the charging times, which make the battery unusable338
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during those periods, therefore impacting on the optimization performance. All in all, Figures 11(a) and339

11(b) show that RED WoLF makes it possible to optimize the use of local energy sources with around 20%340

of improvement in UK between scenarios B and C, while this improvement ranges between 7% and 20% in341

France.342
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Figure 13: Battery Level in scenario C (RED WoLF)

Figure 12 presents the improvement ratio, referring in this case to the extent to which GHGE are reduced.343

In the UK case, the following observation can be made: (i) RED WoLF makes it possible the reduction of344

emissions of around 8%, and (ii) there is no much difference in results when using different battery sizes.345

The reasons are the same as before, i.e. a lower house energy consumption than in the French house. Thus,346

above a certain battery size, the quantity of energy stored day by day in the battery will not be consumed.347

To better understand this effect, let us have a look at the battery levels over the whole October month,348

respectively in the UK case (see Figure 13(a)) and in the French one (see Figure 13(b)). It can be seen that349

the Tesla battery in the UK case remains almost full (it does not discharge much), while in the French case all350

batteries are fully discharged at the end of the day. This is why using high capacity batteries leads to better351

results in France (5% of improvement between scenarios C and B). One more comment about Figure 12(a) is352

that, when looking at scenario B, it can be observed a gradual increase in carbon emission for the two largest353
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Figure 14: Financial cost improvement

batteries. The reason for this is that, since there is no smart software layer, the battery charging is done354

over a single period of time and is not broken down into optimal charging periods (i.e., when the electricity355

is low carbon), as is the case with the RED WoLF algorithm. This may result in charging the battery during356

high carbon electricity periods, which will have the following consequence: the larger the battery size, the357

higher the amount of dirty electricity stored in the battery.358

The impact of different battery sizes on the family budget is shown in Figure 14. This impact is tightly359

coupled with the the power to grid metric, as the higher the amount of PV-generated energy consumed360

locally, the lower the electricity bill. In UK, the proposed system makes it possible the reduction of the bill361

of about 10% compared with the reference scenario (i.e., without battery), while in France this reduction is362

about 8%.363

As a concluding remark, these results prove that there is a benefit of combining batteries, thermal storage-364

like units, with additional software solutions, and this in three respects: (i) it contributes to increase the365

consumption of energy produced locally, thus making the house increasingly autonomous and self-sufficient366

energetically speaking; (ii) it contributes to reduce GHGE; and (iii) it contributes to reduce the electricity367

bill. This study also shows that the LG3.3 battery is sufficient in the UK case, while this is not the case in368

the French one. Indeed, the Tesla battery provides better results in terms of GHGE, but its high purchase369

price (due to its high storage capacity) has a non negligible impact oon the total budget.370

5. Discussion371

This work is part of the global effort that each sector of activity is asked to reduce GHGE by 20% by 2025,372

and by 40% to 50% by 2030 in order to comply with the Paris Climate Agreements. The political objective373

is clearly focused on GHGE without specifying constraints on adaptation costs. For example, in France,374

the economic impacts inherent to the new “Réglementation Environnementale 2020" standard (RE2, 2020)375
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on decarbonisation applied to french dwellings are yet difficult to quantify. In our opinion, this is a bold376

but necessary gamble to move the lines in the construction, use and deconstruction of housing units. This377

study, and more generally the Interreg NWE RED WoLF project within which the research presented in this378

paper is developed, aligned with this move and does not yet take into account economical aspects, whether379

in terms of costs incurred by the system installation, or the dynamics in electricity prices. For the latter380

economical aspect (i.e., dynamics in prices), it can nonetheless be noted that the electricity CO2 evolution381

is often correlated to the price evolution, so looking for low-carbon periods usually leads to lower the overall382

electricity bill, as was the case in the experiments carried out in section 4. Regarding the former aspect (i.e.,383

system installation cost), the RED WoLF system can be approximately estimated at 6k¤(±3k¤) depending384

on the region, size of PV arrays, and the quality of the selected products/vendors, the main constituents385

and installation costs being (i) solar panels: about 800¤/kW; (ii) battery: from 500-2000¤/kWh; (iii)386

water boiler: between 500-1500¤; (iv) storage heaters: between 200 and 1000¤for around 15 kWh, and (v)387

microcontroller: about one hundred euros (e.g., arduino). All this to say that it should not be neglected that388

costly solutions can hamper the adoption of GHGE reduction systems by inhabitants, but this is not yet389

part of the research work presented this paper. To pursue the previous discussion about forthcoming moves390

and agreements envisioning the decarbonisation of electricity (e.g., Paris agreement plans to decarbonise it391

from 0.63 kg eC02/kWh in 2015 to 0.200 kg eC02/kWh by 2030), one may wonder whether RED WoLF-like392

systems will not be “obsolete" in a couple of years, as electricity decarbonisation will de facto lead to house393

decarbonisation. However, the figures given for 2030 are much higher for French production at present and394

globally equivalent to that of the UK. The execution of the RED WoLF-like algorithms show that electricity395

with less carbon than that produced worldwide brings a notable reduction and would be more interesting to396

apply outside Europe or in countries like Poland where coal is still widely used for electricity production.397

In terms of next steps, our research aims at comparing the RED WoLF algorithm with other state-of-the-398

art algorithms, even though it is never a straightforward process to carry out such a comparison analysis, as399

the inputs and objectives functions underlying existing optimization algorithms often differ from one another400

(cf., section 2.2). For example, very few optimization functions from the literature do consider thermal storage401

equipment as storage units in their objective functions (McKenna et al. (2019)). It is therefore needed to402

carry out some adaptation steps to be able to compare our approache with existing ones. In this respect, a403

research collaboration with Dr. Katie McConky (Rochester Institute of Technology Industrial and Systems404

Engineering), who has proposed the optimization function presented in (Olivieri and McConky, 2020), has405

been initiated, whose results will be presented in a forthcoming paper.406
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6. Conclusion, Limitations & Perspectives407

6.1. Conclusion408

The residential sector accounts for a further 1/4 of EU final energy consumption, and for 30% of the409

total green house gas emissions. Within this context, the development of green energies in Europe comes410

with technological advances, cost decreases, process industrialisation, and efficiency improvement. Having411

said that, there is still work left to optimise the use of technologies such as PV, storage units (e.g., batteries)412

and so forth. This is the objective of the onging Interreg NWE RED WoLD project, which aims to increase413

renewables’ usage and reduce CO2 emission for homes with PV.414

This research work presents a version of the RED WoLF system and the underlying GHGE reduction415

algorithm. Before developing technical solutions to achieve such a reduction, it is necessary to understand416

the benefit of such optimized energy systems. In this respect, first experimental studies carried out in this417

article, which rely on real-life input datasets, tend to show potential benefits that can be achieved. Overall,418

the conducted experiments, which rely on real-life datasets from UK and France, show that a “smart"419

(optimized) storage system makes it possible the reduction of about 5% (in France) of the GHGE compared420

with a off-the-shelf battery solution. To put the potential of this benefit into perspective, let us highlight421

the fact that the rehabilitation effort made by Paris over the last 6 years for the residential sector has led422

to a reduction of the GHGE of 25%4. These rehabilitation costs, yet necessary, are very high compared to423

the integration of RED WoLF-like solutions that lead to immediate gain (more than 5% in our case). Let us424

point out the fact that several real-life pilots are currently being setting up through the RED WoLF project,425

in France, UK and Ireland. Furthermore, the initial version of the RED WoLF algorithm (presented in this426

paper) is going to be improved in both iterative and recursive manner, both based on possible difficulties427

faced in real-life pilot settings and on innovative ideas, as discussed in the next section.428

6.2. Research Limitations & Perspectives429

As previously stated, the RED WoLF algorithm presented could be enhanced in several respects:430

• first, one may wonder to what extent the implemented ICT (Information and Communication Tech-431

nology) architecture impacts on the overall GHGE, and this would be a fair question (may be running432

a smart logic on the Cloud could result in high GHGE). In this respect, research will be carried out to433

estimate such impact and take it into account in future versions of the algorithm;434

• second, it can be envisioned to combine several storage units (e.g., several batteries) into a single house435

in order to both (i) further optimize the storage and re-use of energy, as a battery in charging mode436

4https://www.apc-paris.com/actualite/bilan-carbone-2018-paris -est-sur-bon-chemin

24

https://www.apc-paris.com/actualite/bilan-carbone-2018-paris-est-sur-bon-chemin
https://www.apc-paris.com/actualite/bilan-carbone-2018-paris-est-sur-bon-chemin


cannot be used to power appliances; (ii) propose innovative local electricity markets for the prosumer437

era (e.g., using blockchain), which could benefit from the proposed optimization system in the future;438

• third, as previously discussed, other works in the field are multiplying in the literature, which could439

serve as benchmark studies for comparing RED WoLF with. The main challenge lies in the fact440

that the goals to be optimized often vary from one study to another (e.g., costs, energy mix, carbon441

emissions, electricity consumption), without speaking about the high heterogeneity in the input data442

sources. It could therefore be worth investigating a kind of generic (online) comparison framework443

to allow researchers to select various types of input data sources and performance indicators In this444

respect, collaborative work is underway with Rochester Institute of Technology Industrial and Systems445

Engineering, which could lead to a series of benchmarking studies and frameworks to be made available446

to the scientific community.447
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