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The residential sector accounts for 30% of the total green house gas emissions in Europe, which can be reduced either by switching to low-carbon technologies or reducing the amount of fossil fuel energy consumed. In this work, a new greenhouse gas emission (GHGE) reduction system at the house (nanogrid) level is investigated.

The originality of the proposed system and underlying algorithm lies in the fact that it acts in a proactive manner, by continuously controlling and optimizing energy flows between on-site local power production systems (photovoltaics -PV -array in our case), loads, and storage units (combining battery and thermal storage reservoirs). This system/algorithm is evaluated based on real-life input datasets from the United Kingdom (UK) and France, and compared with traditional house energy infrastructures, namely (i) a house not fitted with battery, and (ii) a house fitted with battery but without additional "smart" software layer.

Results show that it performs better in terms of CO 2 (capacity of the algorithm to reduce the amount of non carbon-free energy consumed from the grid), Power to Grid (capacity to maximize the use of local green energy), and financial cost (capacity to reduce the overall electricity bill), respectively improving performance by up to 8%, 10% and 37%.
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Buildings account for a significant proportion of global energy demand, GHGE, waste generation and 11 resource demands. According to the results of the 21 st Conference of the Parties on Climate Change (COP21), 12 held in Paris in 2015, the building sector is responsible for 40% of worldwide energy consumption and 30% 13 of GHGE [START_REF] Baek | Potential Effects of Vacuum Insulating Glazing Application for Reducing Greenhouse Gas Emission (GHGE) from Apartment Buildings in the Korean Capital Region[END_REF][START_REF] Wang | Reduction strategies for greenhouse gas emissions from high-speed railway station buildings in a cold climate zone of China[END_REF]. Reducing GHGE can be achieved by either switching 14 to low-carbon technologies or reducing the amount of fossil fuel energy consumed [START_REF] Holdren | The energy innovation imperative: Addressing oil dependence, climate change, and other 21st century energy challenges[END_REF]; Blackburn phases of the energy lifecycle, as depicted in Figure 1. At the generation phase, research usually focuses on the design of weather dependent power generators, along with high capacity energy storage systems [START_REF] Li | The capacity allocation method of photovoltaic and energy storage hybrid system considering the whole life cycle[END_REF][START_REF] Lai | A review on long-term electrical power system modeling with energy storage[END_REF]. At the transmission and distribution phases, "smart grid" is an omnipresent topic [START_REF] Dileep | A survey on smart grid technologies and applications[END_REF][START_REF] Rahim | A convex optimization based decentralized real-time energy management model with the optimal integration of microgrid in smart grid[END_REF], which is tightly coupled with the digital information flow allowing for both continuous monitoring of the demand, and control of the grid itself. Then, a large research community focuses on in-house solutions, spanning from the design of demand side management strategies [START_REF] Wen | Applications, evaluations and supportive strategies of distributed energy systems: A review[END_REF][START_REF] Mendes | An adaptive data compression mechanism for smart meters considering a demand side management scenario[END_REF] to advanced metering and/or nanogrid architectures [START_REF] Burmester | A review of nanogrid topologies and technologies[END_REF][START_REF] Kalair | Demand side management in hybrid rooftop photovoltaic integrated smart nano grid[END_REF]. The research work presented in this manuscript, which is developed as part of the RED WoLF project (standing for: Rethink Electricity Distribution Without Load Following) funded by the European Union (EU) programme Interreg North-West Europe (NWE), focuses on and contributes to the latter topic (i.e., nanogrid). Although definitions of what a nanogrid are discussed later in this paper, let us emphasize that the proposed system acts for a single home without gas connection, continuously controlling on-site local power production systems and loads, with the option of using green energy stored locally. The originality of the proposed RED WoLF system and underlying algorithm, compared with state-of-the-art solutions, is threefold: i. RED WoLF introduces an innovative CO 2 -based progressive threshold approach, based on an optimization algorithm which is developed to decide when non carbon-free energy (from the grid) should be drawn to supply/charge in-house equipment;

ii. RED WoLF includes battery and thermal storage reservoirs, including storage heaters and water cylinders;

iii. RED WoLF system/algorirthm is continuously executed, whose decisions are taken in real-time using on-site monitored data (via sensors) and predicted data (PV, CO 2 , home consumption).

Section 2 provides background information about the scope and focus of this research. Section 3 introduces the proposed RED WoLF's GHGE reduction system and underlying algorithm, which first and foremost focuses on CO 2 . Section 4 provides experimental evidence that the proposed system performs better than traditional ones in terms of CO 2 (capacity to reduce the amount of consumed non carbon-free energy), power to grid (capacity to maximize the use of local green energy), and financial (capacity to reduce the electricity bill). In this respect, real-life datasets from UK and France are considered for evaluation purposes (i.e. PV generation, house consumption). Conclusion and research perspectives are discussed in section 6.

Scope, Definition and Positionning

Section 2.1 provides the necessary background information to understand where our contribution stands in the energy field. Section 2.2 discusses the extent to which our research is different from the existing literature.

Scope and Definition

Figure 1 based on [START_REF] Saleem | Internet of things-aided smart grid: technologies, architectures, applications, prototypes, and future research directions[END_REF], provides a cartography of the power life cycle, which consists of: (i) power systems: corresponding to the physical infrastructure; (ii) Power flow: representing the power exchanges occurring from its generation to its consumption; (iii) Information flow: symbolizing the size of the underlying networks infrastructures, from wide area networks to home area networks. The research work presented in this work falls within the scope of Home Area Network (Consumption) phase, and more specifically in the scope of "Nanogrid". One may wonder why we talk about Nanogrid and not Microgird ?

Although there is nothing in the microgrid definition to say it cannot be confined to a single home/building, we adopt, as suggested by [START_REF] Burmester | A review of nanogrid topologies and technologies[END_REF], that single home microgrids should adopt the term nanogrid for three reasons: (i) nanogrids play a different role to microgrids in the power hierarchy (e.g., by connecting multiple nanogrids a microgrid can be formed); (ii) the potential markets for nanogrids are different to that of microgrids. A nanogrid allows a power structure to be obtained at a relatively low cost compared to microgrids, thus shifting the interest from large/multiple investors to small ones; (iii) as the nanogrid structure is confined to a single home, the technical goals, hardware and software often vary from that of a microgrid.
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Figure 2: Nanogrid main technological constituents : figure adapted from [START_REF] Ahmed | Decentralized Power Control Strategy in Microgrid for Smart Homes[END_REF] task scheduling optimization and demand-side management strategies [START_REF] Kalair | Demand side management in hybrid rooftop photovoltaic integrated smart nano grid[END_REF][START_REF] Sahin | Demand side management opportunities, framework, and implications for sustainable development in resource-rich countries: Case study Qatar[END_REF], to innovative plug-in electric vehicle optimization strategies [START_REF] Wu | Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle[END_REF][START_REF] Shamshirband | Decentralized trading of plug-in electric vehicle aggregation agents for optimal energy management of smart renewable penetrated microgrids with the aim of CO 2 emission reduction[END_REF].

Despite this wide scope of research, they all rely on a common set of technological constituents (or building blocks), which can be declined into three main categories, as illustrated in Figure 2:

• Local energy generator(s): including both/either renewable generators (e.g., Solar PV arrays, wind) or non-renewable ones (e.g., diesel, gas, stirling):

• Residential loads: referring to home equipment that consume energy (e.g., appliances, car);

• Local energy storage units: referring to equipment able to store energy for later use, including batteries, storage heaters, water cylinders, or still electrical vehicles;

In the next section state-of-the-art studies that focus on similar objectives as RED WoLF (i.e., reduction of GHGE in PV nanogrid) are discussed, along with the extent to which they differ from RED WoLF.

Positionning of RED WoLF in the Literature

Many scientific studies have addressed the subject of GHGE reduction and electricity consumption optimization at the nanogrid level1 . These studies span from the implementation of basic mechanisms based solely on temperature readings (TAŞTAN, 2019;[START_REF] Marinakis | An advanced IoT-based system for intelligent energy management in buildings[END_REF] to the integration of predictive models considering meteorological information or still inhabitant behaviors [START_REF] Ngarambe | The use of artificial intelligence (AI) methods in the prediction of thermal comfort in buildings: energy implications of AI-based thermal comfort controls[END_REF][START_REF] Goudarzi | Predictive modelling of building energy consumption based on a hybrid nature-inspired optimization algorithm[END_REF]. With the problems related to global warming, the optimization criterion is changing, increasingly focusing on the consumption of renewable energies for carbon dioxide emission reduction [START_REF] Adams | Reducing carbon dioxide emissions; Does renewable energy matter?[END_REF][START_REF] Kahia | Analysis of the impact of renewable energy consumption and economic growth on carbon dioxide emissions in 12 MENA countries[END_REF].

energy storage systems is carried out by [START_REF] Akter | Comprehensive economic evaluations of a residential building with solar photovoltaic and battery energy storage systems: An Australian case study[END_REF] considering an Australian use case. The evaluation compares different scenarios, which can be divided into two categories: (1) savings/benefits resulting from the use of solar PV unit only;

(2) savings/benefits resulting from the use of solar PV unit combined with a battery-based energy storage system. From a CO 2 perspective, in both cases the reduction of emissions increases along with the size of the solar PV units, however PV units with smaller capacities are more viable options from a return on investment perspective. Although the results of this study are interesting to understand how a given PV and a battery design could impact on savings/benefits, the study remains at the evaluation stage and does not propose any new optimization layer (e.g., to reduce CO 2 , bills, etc.).

Other research works do introduce such optimization models. [START_REF] Ban | Optimal sizing of PV and battery-based energy storage in an off-grid nanogrid supplying batteries to a battery swapping station[END_REF] formalize a capacity planning problem, along with an algorithm seeking to determine the optimal sizing of PV generation and batteries for nanogrid. This optimization minimizes the investment cost, while guaranteeing the desired level of reliability in the energy supply. This work is interesting as it allows system designers to select the best suited PV and battery sizes, however, such an analysis is carried out off-line (i.e. in the design phase of the systems), while, in RED-WoLF, the goal is to achieve continuous optimization in an on-line and continuous mode.

Several studies have developed on-line (real-time) optimization solutions. Among others, [START_REF] Leonori | Optimization of a microgrid energy management system based on a fuzzy logic controller[END_REF] presented an approach to enhance energy trading tasks and maximize the prosumer gain from an electricity price viewpoint (by deciding when to charge/discharge the battery). [START_REF] Arun | Intelligent residential energy management system for dynamic demand response in smart buildings[END_REF] propose an online algorithm to minimize the electricity bill by taking advantage of low electricity pricing intervals. [START_REF] Ock | Smart building energy management systems (BEMS) simulation conceptual framework[END_REF] introduce a conceptual framework that takes into account weather data changes in order to adjust the energy used for lighting or still HVAC (Heating, Ventilation, Air-Conditioning) operational scheduling. A weakness of these last three presented works is the non-consideration of the CO 2 impact in the optimization function.

Several studies have proposed multi-objective optimization models to balance the competing goals of minimizing electricity costs for the home owner as well as minimizing CO 2 emissions. [START_REF] Huang | Optimal demand response with energy storage management[END_REF] propose an algorithm maximizing the amount of energy produced locally (via PV) to the grid. However, in our opinion, selling energy is not always the best solution (or not allowed by energy provider), as it could be, in some cases, better to save this energy for future use when purchased energy price will increase. [START_REF] Olivieri | Optimization of residential battery energy storage system scheduling for cost and emissions reductions[END_REF] present an innovative optimization model used to develop optimal battery charge and discharge schedules under three different objectives: minimize time dependent energy costs, minimize carbon emissions, and a multi-objective model that considers both energy costs and carbon emissions by including a social cost of carbon. In the same vein, [START_REF] Haidar | New consumerdependent energy management system to reduce cost and carbon impact in smart buildings[END_REF] propose a real-time consumer-dependent energy management system for smart buildings, which is designed to find a trade-off between the energy cost (either renewable or non-renewable) and its carbon impact. One limitation from these last two presented works is the non-consideration of forecasts, which somehow hinders the system's ability to react to nonexpected behaviors (e.g., in terms of CO 2 emission, energy price, PV generation, home consumption) over the forthcoming hours or days. Such forecasting is being considered by [START_REF] Moradi | Optimal operation of a multi-source microgrid to achieve cost and emission targets[END_REF], where a 24 hours ahead optimization of PV-Wind hybrid systems with battery storage is performed in order to meet the load requirements. Nonetheless, the authors do not take into account CO 2 forecasts (only PV, wind and load forecasts being considered). Let us add that all the previously introduced research works do not consider thermal reservoirs as storage units in their model, which prevents to increase (i) the storage capacity of the overall system; and (ii) the flexibility in the optimization process. RED WoLF and the present study are committed to overcome these limitations.

One may also point out studies considering both stationary and mobile batteries (e.g., electric vehicle) in the optimization process [START_REF] Mahmud | Peak-load reduction by coordinated response of photovoltaics, battery storage, and electric vehicles[END_REF][START_REF] Gomes | Coupling small batteries and PV generation: a review[END_REF], with the possibility to add specific constraints (e.g., "allow for discharging the mobile battery but yet maintain a range of 25 km").

However, the use of mobile battery systems is out of scope of RED WoLF.

RED WoLF's GHGE Reduction System

The RED WoLF's GHGE reduction system consists of three steps. First, the necessary input data sources to run the proposed optimization algorithm are collected/accessed. Second, a CO 2 threshold used for later optimization stages is computed. Third, a GHGE reduction logic is specified based on the computed CO 2 threshold. These three steps are respectively detailed in sections 3.1, 3.2 and 3.3. Note that a primary version of the threshold computation was formalized in [START_REF] Shukhobodskiy | RED WoLF: Combining a battery and thermal energy reservoirs as a hybrid storage system[END_REF].

Input data sources

Several input data sources must be accessed/monitored in order run the proposed GHGE reduction logic.

These data sources can be divided into three categories, as depicted in Figure 3, namely:

i. Pre-defined parameter values: this category corresponds to fixed parameters such as manufacturers' data (e.g., maximum battery capacity and power intake);

ii. Real-time monitored values: this category corresponds to data monitored on-site, which includes smart meter-, heater-, cylinder-(water tank-), PV-and home appliance-related data;

iii. Predicted dataset values: this category corresponds to predicted dataset patterns, and particularly the predicted CO 2 generated by the grid for a given forthcoming period of time, as well as the predicted PV and home consumption. Table 1 provides the list of data sources that need to be accessed/monitored for each of the above categories, as well as the algorithm outputs and internal algorithm variables. In the next section, the notion of "CO 2 threshold" is introduced and formalized, which is key to the proposed GHGE reduction logic.

CO 2 Threshold identification

To compute what is referred to as CO 2 threshold, denoted by CO 2thr , several computational steps must be conducted.

First, the predicted average remaining power drawable from the grid (denoted by G P U ) and the predicted energy consumed by appliances and thermal reservoirs until the end of the day (denoted by D ED ) must be estimated. The former (G P U ), which can be understood as the available amount of instantaneous power to charge home storage reservoirs (i.e., storage heaters and cylinder), is computed based on Eq. ( 1), where D Imax , A pre and B Imax respectively refer to the maximum house power intake allowed by the energy provider, the estimated forthcoming power consumed by appliances, and the maximum battery's intake limitation.

The latter (D ED ), which represents the remaining amount of energy required to reach the setpoint for the next day, is computed based on Eq. ( 2), where H dem and C dem respectively refer to heater and cylinder current power demands (which are computed based on Eq. ( 3) and ( 4)), and H lev and C lev to the current level of energy still available in the heater and cylinder. The "Heavi" (Heaviside step function) function represents is defined as "1" if the input parameter is positive, "0" otherwise.

G P U = D Imax - T t A pre (t) (T -t) dt -B Imax (1) D ED = T t A pre (t) 60 dt + i=H,C (i dem -i lev ) (2) 
H dem = H Imax × Heavi(H set -H lev ) (3) 
C dem = C Imax × Heavi(C set -C lev ) (4) 
Based on G P U and D ED , the minimum time length to charge equipment in parallel of supplying home appliances, is computed based on Eq. ( 5) (denoted by T I ).

T I = max D ED G P U , H dem -H lev H Imax , C dem -C lev C Imax (5)
Finally, the CO 2 threshold (CO 2thr ), which identifies when it is optimal to draw energy from the grid, is computed based on Eq. ( 7), where CO 2preSort corresponds to CO 2 prediction vector sorted in descending order as given in Eq. ( 6). Note that the ceil function is required here in order to obtain an integer, which refers to the drawing time (in minutes) that represents the index of the CO 2 threshold in the sorted CO 2 vector.

CO 2preSort = sort(CO 2pre ) (6) CO 2thr = CO 2preSort ( T I ) (7) 
Figure 4 provides a graphical representation of what the above-introduced equations result in. Overall, once T I is obtained/computed (which is equal to 7h in this example), a threshold that meets this charging duration is identified. In our example, the first threshold (denoted by CO a 2 in Figure 4) does not meet this requirement, while the second threshold (CO b 2 ) does, resulting in two "low CO 2 periods": [8am; 10am] and 

[2pm; 6pm]. ➠ T I = 7h
if β < C dem then Ccur ← β × Heavi(Cset -C lev ) else if β ≥ C dem & β < C dem + H dem then Ccur ← C dem Hcur ← (β -C dem ) × Heavi(Hset -H lev ) else if β ≥ C dem + H dem & β < C dem + H dem + B dem then Ccur ← C dem Hcur ← H dem B inj ← min ((β -C dem -H dem ), B Imax ) × Heavi(B C -B lev ) else Ccur ← C dem Hcur ← H dem B inj ← B dem G inj ← β -(Ccur + Hcur + Bcon) else D ImaxAP V ← D Imax + (P Vcur -Acur) B inj ← min(B dem , D ImaxAP V × Heavi(B C -B lev )) Hcur ← min(H dem , (D ImaxAP V -B inj ) × Heavi(Hset -H lev )) Ccur ← min(C dem , (D ImaxAP V -(B inj + Hcur)) × Heavi(Cset -C lev )) P bal ← Acur -P Vcur + Ccur + Hcur + B inj if P bal ≥ 0 then Gcon ← P bal else G inj ← -P bal

GHGE reduction logic

Based on the computed threshold, a logic is applied to decide which equipment need to be charged (or not) depending on the threshold value, but not only, it also depends on current PV production, the current demands of the storage heater, cylinder, battery, and so forth. Algorithm 1 provides the applied logic, which is run based on a two time intervals (see rows 2 and 3 in Algorithm 1), namely: (i) every t pred (every hour in our case), the CO 2thr is computed based on A pre and P V pre ; (ii) every t (every minute in our case), the program monitors the current input values in order to perform the following logic:

• Case 1 (row 9 to 11 in Algorithm 1): when the current grid CO 2 level (CO 2cur ) is higher than the CO 2 threshold (CO 2thr ), and that the PV production is not sufficient to supply the home appliances, energy from the battery (if any) is consumed, and then (if not sufficient) from the grid;

• Case 2 (row 12 to 27): if the PV production is sufficient to supply the appliance power demand, the extra power (if any) is used to charge the thermal storage reservoirs (cylinder, then heaters), and then (if extra power still available) the battery. If some extra power is still available, it is then re-injected to the grid;

• Case 3 (row 28 to 36): if CO 2 is lower than CO 2thr , everything is charged (to the extent possible) by drawing power from the grid if PV is not sufficient to cover the demand.

In the next section, the proposed RED WoLF's GHGE reduction system is evaluated based on real-life datasets.

Experiments

In order to evaluate the benefits from implementing our proposal, three distinct scenarios have been analyzed and compared, as summarized in Figure 5 1. CO 2 Emission (gCO 2 /kWh): corresponds to the amount of grams of CO 2 (per kWh) emitted to produce the electrical energy consumed by the house (i.e., energy from the grid);

2. Financial cost (euros): corresponds to the electricity bill related to the energy consumed from the grid;

The experimental setup (incl., datasets used as inputs of the carried out experiments) is detailed in section 4.1. Experimental results are presented and discussed in section 4.2. Finally, a sensitivity analysis of the impact of the battery size on the overall system performance is carried out in section 4.3.

Experimental Setup

In the following, the four input data sources briefly mentioned previously -i.e. (a), (b), (c), (d) in

Figure 5 -are further detailed in this section.

Home consumption (a): several scientific datasets can be found in the literature, as reported in [START_REF] Monacchi | GREEND: An energy consumption dataset of households in Italy and Austria[END_REF]. In this study, two of them, namely the UKDALE (UK Domestic Appliance-Level Electricity)

for UK-related experiments and IHEPCDS (Individual Household Electric Power Consumption Data Set)

for French-related ones, are considered (Table 2 provides further details about those datasets). These two datasets have been selected and are of interest for us because (i) these are popular benchmark datasets in the housing sector; and (ii) as part of the RED WoLF project, pilots located in these two countries are currently being set up. Furthermore, choosing these two countries is interesting from an experimental viewpoint, as they have different ways of generating electricity (mostly nuclear-based in France, while UK mostly uses natural gas), which makes it possible to evaluate the performance of the proposed algorithm under different grid conditions. The October month is considered in this study. Figure 6(a) gives insight into the energy consumption patterns over a day from these two datasets, showing that a similar trend is observed, corresponding to period of times where inhabitants are at home. APIs (Réseau de Transport d'électricité) for France and the carbon intensity website for UK (cf., Table 2).

Figure 6(c) gives insight into the carbon intensity variation patterns over a day for the two considered countries. It can be observed that the energy is much less greener in UK than in France (3 to 5 times less green), adding that UK is subject to significant CO 2 variations compared with France. This can be explained by the fact that, in France, most electricity is produced by nuclear power plants. Obviously, such political factors have a direct impact on the proposed solutions, and subsequently on the decisions taken, whether at the grid, microgrid, or nanogrid levels.

Energy price (d): even though prices could vary during the day, a fixed average electricity price obtained from Eurostat2 is considered, namely 0.2122 and 0.1765 euros per kWh in UK and France respectively.

Finally, let us note that a battery of capacity (B C ) 7 kWh and of maximum power intake (B Imax ) of 14 kW is considered for the experiments, which corresponds to a mid-range battery product on the market.

However, a more in-depth analysis of the impact of the battery size impact on the overall system performance is carried out in section 4.3.

Experimental Results

The presentation of the experimental results is divided into two parts. In section 4.2.1, results for a 1-day timeframe are presented, while results for a 1-month timeframe are analyzed in section 4.2.2.

1-day analysis

Figures 7(a) and 7(c) give insight into the power exchanges occurring at a given day between the grid, the home appliances, the battery and thermal storage reservoirs, and the PV units, with regard to the three considered scenarios. For the conducted experiments, let us note that the sum of the power supplied to indoor equipment (incl., appliances, battery and thermal storage reservoirs), minus the power generated by PV must not exceed the limit fixed by the electricity provider, which is set to 9 kW. Looking at results in Figures 7(a) and 7(c), an interesting observation is that, for this specific day, less power is re-injected to the grid when using our system (scenario C) compared with scenarios A and B (see curve denoted by -Power to grid ). Indeed, when looking at the first scenario, almost all the energy generated by PV is re-injected (see period 9h to 16h), while in our system, it only starts around 12:30. Although this observation is only valid for this specific day, it is worth noting it as the following consideration is made: the higher the amount of energy re-injected to the grid, the less this energy source is valued at the local level. This has a twofold consequence: (1) the inhabitant does not take advantage of her/his own energy, which goes against one of the ecological principles (namely "shop locally" [START_REF] Benyus | Biomimicry: Innovation inspired by nature[END_REF]), adding that she/he remains grid-dependent 2) energy losses will likely occur during energy transmission phases on the grid. Having said that, it cannot be concluded at this stage (i.e., based on a single day) whether our approach leads to better results on long term runs. As a result, a longer period of time is studied in the next section.

1-month analysis

In the following, a full month (October) is analyzed with respect to the three performance indicators introduced in Figure 5. is re-injected to the grid (in the UK and French cases), or locally consumed. Let us note that the sum of the re-injected and locally consumed energies is equal to the total amount of energy produced by PV. For example, considering scenario B in Figures 8(a), 53% refers to the part of the energy generated by PV that is locally consumed, while the remaining 47% is re-injected to the grid. Having in mind that the objective of RED WoLF is to maximize local energy consumption (as discussed in the section 4.2.1), it can be noted, as a first comment of Figures 8(a) and 8(b), that more than half of the energy produced locally is re-injected to the grid in scenario A ("Without battery"), while this effect is significantly reduced when adding a battery and/or thermal storage reservoirs to the infrastructure (scenarios B and C). Indeed, the implementation of storage units enables to mitigate the re-injection of energy produced locally to the grid up to 23% in France, against 47% in the UK. When using the RED WoLF's GHGE reduction system, this reduction goes down to 12% and 35% respectively in France and UK. This difference between both countries is mainly due to the energy consumption patterns, as in the French house, the consumption is higher than in the UK's house (821 kWh against 269 kWh), adding that the solar energy can be almost fully used locally with the proposed system/algorithm (i.e., scenario C). Furthermore, by examining the house energy consumption patterns (see which is why a smart procedure for optimizing the use of the storage units based on inhabitant needs and habits is relevant.

CO 2 Emission: Let remind ourselves that this metric is the most important from a RED WoLF project perspective, as the main goal of the project is to increase renewables' usage and reduce CO 2 emission.

Figure 9 gives insight into the experimental results related to the three considered scenarios (A, B, C). It can be observed that a similar trend is obtained, with a decrease of around 9% between scenarios A and B (i.e., without battery vs. with battery), and around 7% between scenarios B and C (i.e., with battery vs.

RED WoLF). These results

show to what extent it could be beneficial to add some "smart" (software) logic to battery products available on the market. Indeed, up to 16% of gCO 2 /kWh could be saved using the proposed solution compared with a basic installation integrating only PV. However, it should be noted that such a reduction could be more or less significant according to the country. In our case (see Figure 9), the monthly gain for the UK house is almost four times higher than for the French one (29000 gCO 2 /kWh vs.

≈ 5500 gCO 2 /kWh). This somehow proves that the actions to be taken to in-house GHGE not only required smart solutions at the house level, but also appropriate political decisions and measures, which is obviously out of scope of this study.

Financial Cost: If the use of "smart" storage system is interesting from an environmental viewpoint, its societal impact should not be neglected by analyzing the cost of the implemented solution. Figure 10 gives insight into the electricity bill resulting from each solution/scenario. It can be observed that the bill is reduced by around 10% percent in the UK case and 7% in the French one when the RED WoLF system is used (i.e., scenario A vs. C). When comparing scenarios B and C, RED WoLF makes it possible to reduce the monthly bill by 12 euros for the UK case, and 3 euros for the French one. A simple explanation is that the optimization of local energy usage results in price-free energy. Compared to the current literature studies (cf., section 2) that consider both CO 2 and energy price in their optimization process, the proposed algorithm allows to implicitly optimize both criteria (CO 2 and price). Given that the home energy consumption over the October month is of 821 kWh and 269 kWh respectively in France and UK, and that the electricity price in each country is different, it results in a saving of 0.38 euros per 100 kWh consumed in France, while in UK it reaches 1.46 euros per 100 kWh consumed. This is a non-negligible saving from a UK family viewpoint, while in France it is less significant, which confirms that it not that easy to come up with a "universal" GHGE reduction system proposal, as many external factors at the national level (incl., political, technological and societal ones) have direct impact on the efficiency of the proposed system. For example, in our case, just looking at Figure 6(c), it can quickly be noted that the RED WoLF algorithm will be less effective in France than in UK, as the CO 2 signal in France is both lower (average of 30 in France against 200 in UK) and subject to less variations (variation of 5 gCO 2 /kWh in France against 100 gCO 2 /kWh in UK).

Battery Capacity Analysis

The previous section pointed out the fact that an optimized storage system makes it possible the reduction of GHGE, while reducing the electricity bill (even if the saving is more subtle in France than in UK). This analysis was done considering a battery capacity (B C ) of 7 kWh and a maximum power intake (B Imax ) of 14 kW. In this section, the goal is now to analyze the impact of these two parameters on the overall system performance when using the RED WoLF's GHGE reduction system. To this end, four types of batteries available on the market are considered, as synthesized in Table 3. In what follows the results of this analysis are discussed, but, unlike the previous section, results are now presented as an "improvement ratio" between storage-based solutions (i.e., scenarios B and C) with a reference scenario that corresponds to a infrastructure without battery (i.e., scenario A).

Figure 11 shows the improvement ratio related to the energy consumed locally. For clarification purposes, and to make sure that the "improvement ratio" has been correctly understood, let us consider the example of the LG6.5 battery in Figure 11(a): the result tells that scenario B is 23% more efficient than scenario A (which is considered as the reference), while scenario C is 43% more efficient than scenario A. Overall, when French one, which is due to the fact that the house electricity consumption is lower in UK. Given this, higher 335 battery capacities are more beneficial in the French case. Furthermore, it can also be seen that, in France,

336

RED WoLF provides the best results with the LG3.3 battery, which can be explained by the fact that the 337 larger the battery capacity (e.g., LG6.5), the longer the charging times, which make the battery unusable Figure 12 presents the improvement ratio, referring in this case to the extent to which GHGE are reduced.

343

In the UK case, the following observation can be made: (i) RED WoLF makes it possible the reduction of 344 emissions of around 8%, and (ii) there is no much difference in results when using different battery sizes.

345

The reasons are the same as before, i.e. a lower house energy consumption than in the French house. Thus, 346 above a certain battery size, the quantity of energy stored day by day in the battery will not be consumed.

347

To better understand this effect, let us have a look at the battery levels over the whole October month, 348 respectively in the UK case (see Figure 13 batteries. The reason for this is that, since there is no smart software layer, the battery charging is done over a single period of time and is not broken down into optimal charging periods (i.e., when the electricity is low carbon), as is the case with the RED WoLF algorithm. This may result in charging the battery during high carbon electricity periods, which will have the following consequence: the larger the battery size, the higher the amount of dirty electricity stored in the battery.

The impact of different battery sizes on the family budget is shown in Figure 14. This impact is tightly coupled with the the power to grid metric, as the higher the amount of PV-generated energy consumed locally, the lower the electricity bill. In UK, the proposed system makes it possible the reduction of the bill of about 10% compared with the reference scenario (i.e., without battery), while in France this reduction is about 8%.

As a concluding remark, these results prove that there is a benefit of combining batteries, thermal storagelike units, with additional software solutions, and this in three respects: (i) it contributes to increase the consumption of energy produced locally, thus making the house increasingly autonomous and self-sufficient energetically speaking; (ii) it contributes to reduce GHGE; and (iii) it contributes to reduce the electricity bill. This study also shows that the LG3.3 battery is sufficient in the UK case, while this is not the case in the French one. Indeed, the Tesla battery provides better results in terms of GHGE, but its high purchase price (due to its high storage capacity) has a non negligible impact oon the total budget.

Discussion

This work is part of the global effort that each sector of activity is asked to reduce GHGE by 20% by 2025, and by 40% to 50% by 2030 in order to comply with the Paris Climate Agreements. The political objective is clearly focused on GHGE without specifying constraints on adaptation costs. For example, in France, the economic impacts inherent to the new "Réglementation Environnementale 2020" standard (RE2, 2020) on decarbonisation applied to french dwellings are yet difficult to quantify. In our opinion, this is a bold but necessary gamble to move the lines in the construction, use and deconstruction of housing units. This study, and more generally the Interreg NWE RED WoLF project within which the research presented in this paper is developed, aligned with this move and does not yet take into account economical aspects, whether in terms of costs incurred by the system installation, or the dynamics in electricity prices. For the latter economical aspect (i.e., dynamics in prices), it can nonetheless be noted that the electricity CO 2 evolution is often correlated to the price evolution, so looking for low-carbon periods usually leads to lower the overall electricity bill, as was the case in the experiments carried out in section 4. Regarding the former aspect (i.e., system installation cost), the RED WoLF system can be approximately estimated at 6k (±3k ) depending on the region, size of PV arrays, and the quality of the selected products/vendors, the main constituents , one may wonder whether RED WoLF-like systems will not be "obsolete" in a couple of years, as electricity decarbonisation will de facto lead to house decarbonisation. However, the figures given for 2030 are much higher for French production at present and globally equivalent to that of the UK. The execution of the RED WoLF-like algorithms show that electricity with less carbon than that produced worldwide brings a notable reduction and would be more interesting to apply outside Europe or in countries like Poland where coal is still widely used for electricity production.

In terms of next steps, our research aims at comparing the RED WoLF algorithm with other state-of-theart algorithms, even though it is never a straightforward process to carry out such a comparison analysis, as the inputs and objectives functions underlying existing optimization algorithms often differ from one another (cf., section 2.2). For example, very few optimization functions from the literature do consider thermal storage equipment as storage units in their objective functions [START_REF] Mckenna | The role of seasonal thermal energy storage in increasing renewable heating shares: A techno-economic analysis for a typical residential district[END_REF]). It is therefore needed to carry out some adaptation steps to be able to compare our approache with existing ones. In this respect, a research collaboration with Dr. Katie McConky (Rochester Institute of Technology Industrial and Systems Engineering), who has proposed the optimization function presented in [START_REF] Olivieri | Optimization of residential battery energy storage system scheduling for cost and emissions reductions[END_REF], has been initiated, whose results will be presented in a forthcoming paper.

Conclusion, Limitations & Perspectives

Conclusion

The residential sector accounts for a further 1/4 of EU final energy consumption, and for 30% of the total green house gas emissions. Within this context, the development of green energies in Europe comes with technological advances, cost decreases, process industrialisation, and efficiency improvement. Having said that, there is still work left to optimise the use of technologies such as PV, storage units (e.g., batteries) and so forth. This is the objective of the onging Interreg NWE RED WoLD project, which aims to increase renewables' usage and reduce CO 2 emission for homes with PV.

This research work presents a version of the RED WoLF system and the underlying GHGE reduction algorithm. Before developing technical solutions to achieve such a reduction, it is necessary to understand the benefit of such optimized energy systems. In this respect, first experimental studies carried out in this article, which rely on real-life input datasets, tend to show potential benefits that can be achieved. Overall, the conducted experiments, which rely on real-life datasets from UK and France, show that a "smart" (optimized) storage system makes it possible the reduction of about 5% (in France) of the GHGE compared with a off-the-shelf battery solution. To put the potential of this benefit into perspective, let us highlight the fact that the rehabilitation effort made by Paris over the last 6 years for the residential sector has led to a reduction of the GHGE of 25%4 . These rehabilitation costs, yet necessary, are very high compared to the integration of RED WoLF-like solutions that lead to immediate gain (more than 5% in our case). Let us point out the fact that several real-life pilots are currently being setting up through the RED WoLF project, in France, UK and Ireland. Furthermore, the initial version of the RED WoLF algorithm (presented in this paper) is going to be improved in both iterative and recursive manner, both based on possible difficulties faced in real-life pilot settings and on innovative ideas, as discussed in the next section.

Research Limitations & Perspectives

As previously stated, the RED WoLF algorithm presented could be enhanced in several respects:

• first, one may wonder to what extent the implemented ICT (Information and Communication Technology) architecture impacts on the overall GHGE, and this would be a fair question (may be running a smart logic on the Cloud could result in high GHGE). In this respect, research will be carried out to estimate such impact and take it into account in future versions of the algorithm;

• second, it can be envisioned to combine several storage units (e.g., several batteries) into a single house in order to both (i) further optimize the storage and re-use of energy, as a battery in charging mode cannot be used to power appliances; (ii) propose innovative local electricity markets for the prosumer era (e.g., using blockchain), which could benefit from the proposed optimization system in the future;

• third, as previously discussed, other works in the field are multiplying in the literature, which could serve as benchmark studies for comparing RED WoLF with. The main challenge lies in the fact that the goals to be optimized often vary from one study to another (e.g., costs, energy mix, carbon emissions, electricity consumption), without speaking about the high heterogeneity in the input data sources. It could therefore be worth investigating a kind of generic (online) comparison framework to allow researchers to select various types of input data sources and performance indicators In this respect, collaborative work is underway with Rochester Institute of Technology Industrial and Systems

Engineering, which could lead to a series of benchmarking studies and frameworks to be made available to the scientific community.
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 3 Figure 3: RED WoLF's GHGE reduction system overview
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 4 Figure 4: Illustration of the CO 2 threshold computation used in the RED WoLF's GHGE reduction system
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 5 Figure 5: Benchmarking study to evaluate the benefits of the RED WoLF system/algorithm

  Figure 6: Input datasets
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  Figure 7: 1-day analysis regarding the three scenarios compared in our experiments
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 8 Figure 8: Power to Grid

  Power to Grid: Figures 8(a) and 8(b) provide insight into how much local energy (i.e., produced by PV)
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 69 Figure6(a)), it can be seen that the energy produced by PV takes mainly place outside daylight periods,

  Figure 10: Electricity bill
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 12 Figure 11: Improvement of local energy consumption
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 13 Figure 13: Battery Level in scenario C (RED WoLF)

  Figure 14: Financial cost improvement

Table 1 :

 1 Variable definitions

	Type	Variable	Units	Description
		A cur	kW	Current power injected to appliances
	Input	A pre	kW	Predicted power to be injected to the appliances
		CO 2cur	gCO 2 /kWh Current grid CO 2 load
		CO 2pre	gCO 2 /kWh Predicted grid CO 2 load
		P V cur	kW	Current PV production
		P V pre	kW	Predicted PV production
		B con	kW	Power drawn from the battery
	Output	B inj	kW	Power stored in the battery
		C cur	kW	Power stored in the water cylinder
		G con	kW	Power drawn from the grid
		G inj	kW	Power injected to the grid
		H cur	kW	Power stored in the storage heater
		B C	kWh	Charging capacity of the battery
		B dem	kW	Current battery's power demand
		B Imax	kW	Maximum battery intake power
		B lev	kWh	State/Level of charge of the battery
		C dem	kW	Current water cylinder's power demand
	Internal	C Imax C lev	kW kWh	Maximum water cylinder's power intake State/Level of charge of the watercylinder
		C set	kWh	Setpoint of cylinder
		D G P U	kW	Predicted average remaining power drawable from the grid
		H dem	kW	Current storage heater's power demand
		H Imax	kW	Maximum storage heater's power intake
		H lev	kWh	State/Level of charge of the storage heater
		H set	kWh	Setpoint of storage heater
		P bal	kW	Power balance after powering appliances and equipment supply
		CO 2thr	gCO 2 /kWh CO 2 threshold over which grid drawing is not allowed
		T I	min	Minimum time to supply equipment and appliances

ED kWh Predicted energy consumed by appliances until the end of the day D Imax kW Maximum equipment usable power set by the electricity provider D ImaxAP V kW Maximum equipment usable power including PV and appliances
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  Algorithm 1: GHGE Reduction Logic input : Acur, Apre, CO 2cur , CO 2pre , P Vcur, P Vpre output: Bcon, B inj , Ccur, Gcon, G inj , Hcur

	begin	
	for each t do	
	read B lev , H lev , C lev	
	compute B dem , H dem , C dem	// See Eq. (3),(4)
	for each t pred do	
	read CO 2pre , Apre, P Vpre	
	compute CO 2thr	// See Eq. (7)
	read CO 2cur , Acur, P Vcur	
	if CO 2cur ≥ CO 2thr & Acur ≥ P Vcur then	
	α ← Acur -P Vcur	// Missing PV power to cover appliances' demand

Bcon ← min(B lev , α, B Imax ) Gcon ← min(α -Bcon, D Imax ) else if CO 2cur ≥ CO 2thr & Acur < P Vcur then β ← P Vcur -Acur // Remaining PV power after covering appliances' demand

Table 2 :

 2 Input dataset-related information No platform providing real-time PV production data in France exists, to the best of our knowledge, while in UK the NREL (National Renewable Energy Laboratory) web platform provides France). As a result, the PV production dataset obtained for UK via the NREL web platform was increased 228 of 15.4% for the French experiments (see Figure 6(b)).

	Input dataset	Location Name	Period	URL
		UK	UKDALE October
	(a) Home consumption				(NSD, 2021)
		France	IHEPCDS October
		UK	N/A	October (NRE, 2020)
	(b) PV production			
		France	N/A	October (PVG, 2020)
		UK	N/A	October (NGE, 2021)
	(c) Grid-related CO 2	France	N/A	October (RTE, 2021)
		UK	N/A	N/A
	(d) Energy price				(STA, 2021)
		France	N/A	N/A
	PV production (b):			

Table 3 :

 3 Battery products (from the market) analyzed

			Bluetti LG3.3 LG6.5 Tesla
		B Imax (kW)	1	3.3	4.2	7
		B C (kWh)	1.5	3.3	6.5	13.5
	331	looking at all results in Figures 11(a) and 11(b), it can be concluded that, regardless of the battery size and
	332	whether a smart software layer is or not added, the use of storage units with a PV infrastructure is always
	333	beneficial (in the UK and France), reaching up to 75% of improvement in the French case with LG3.3. It
	334	can also be observed that the size of the battery has a lower impact in the UK case compared with the

  : about one hundred euros (e.g., arduino). All this to say that it should not be neglected that costly solutions can hamper the adoption of GHGE reduction systems by inhabitants, but this is not yet part of the research work presented this paper. To pursue the previous discussion about forthcoming moves and agreements envisioning the decarbonisation of electricity (e.g., Paris agreement plans to decarbonise it from 0.63 kg eC0 2 /kWh in 2015 to 0.200 kg eC0 2 /kWh by 2030)

	and installation costs being (i) solar panels: about 800 /kW; (ii) battery: from 500-2000 /kWh; (iii)
	water boiler: between 500-1500 ; (iv) storage heaters: between 200 and 1000 for around 15 kWh, and (v)

microcontroller

Given the definition adopted earlier (cf., section

2.1), i.e. that single home micro-grids are referred to as nanogrid.

Commission (cf., Table2) shows that there is a difference of 15.4% between UK and France (in favour of

https://fr.statista.com/infographie/11825/comparaison-cout-electricite-en-europe/

Grid independency is a sustainability measure which is usually used to see how the house will perform if there will be no energy supply from the main grid[START_REF] Akter | Comprehensive economic evaluations of a residential building with solar photovoltaic and battery energy storage systems: An Australian case study[END_REF].

https://www.apc-paris.com/actualite/bilan-carbone-2018-paris -est-sur-bon-chemin
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