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Abstract

We consider the simple exclusion process on Z × {0, 1}, that is, an
“horizontal ladder” composed of 2 lanes. Particles can jump according
to a lane-dependent translation-invariant nearest neighbour jump kernel,
i.e. “horizontally” along each lane, and “vertically” along the scales of the
ladder. We prove that generically, the set of extremal invariant measures
consists of (i) translation-invariant product Bernoulli measures; and, mod-
ulo translations along Z: (ii) at most two shock measures (i.e. asymptotic
to Bernoulli measures at ±∞) with asymptotic densities 0 and 2; (iii) at
most three shock measures with a density jump of magnitude 1. We fully
determine this set for certain parameter values. In fact, outside degener-
ate cases, there is at most one shock measure of type (iii). The result can
be partially generalized to vertically cyclic ladders with arbitrarily many
lanes. For the latter, we answer an open question of [5] about rotational
invariance of stationary measures.

MSC 2010 subject classification: 60K35, 82C22.
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1 Introduction

The simple exclusion process, introduced in [11], is a fundamental model in
statistical mechanics. In this markovian process, particles hop on a countable
lattice following a certain random walk kernel subject to the exclusion rule, that
allows at most one particle per site. As usual for Markov processes, the char-
acterization of its invariant measures is one of the basic questions to address.
Still today, outside the case of a symmetric kernel ([10]), the problem is far from
being completely solved. In fact, it has been mostly studied for translation in-
variant kernels. We briefly recall known results in this situation.

For the exclusion process on Z
d, the set of extremal translation invariant sta-

tionary probability measures consists ([9]) of homogeneous Bernoulli product
measures. However, for a non-symmetric kernel, there may exist extremal in-
variant probability measures that are not translation invariant. These are fairly
well (though not completely) understood in one-space dimension ([8, 6, 4]): un-
der suitable assumptions, there is a unique (up to translations) such extremal
probability measure, called either a blocking or a profile measure (the latter
being a weakened version of the former); its main feature is that the asymptotic
particle density is 0 to the left and 1 to the right. In several space dimensions,
although blocking or profile measures can be exhibited ([5]), the complete char-
acterization of invariant probability measures remains an open question.

In this paper, we obtain more complete results for an intermediate model. We
consider the simple exclusion process on Z×{0, 1}, that is an “horizontal ladder”
composed of 2 lanes. Particles can jump “horizontally” along each lane accord-
ing to a lane-dependent translation-invariant jump kernel, and “vertically” along
the scales of the ladder according to another kernel. In the totally asymmetric
case, this can be interpreted as traffic-flow on a highway, with two lanes on
which cars have different speeds and different directions.

We next describe our results. Let γ0, γ1 denote mean drifts on each lane, p
the jump rate from lane 0 to lane 1 and q the jump rate from lane 1 to lane
0. The drifts may be of equal or opposite signs; one or both of them may also
vanish. We assume that p + q > 0, so that both lanes are indeed connected.
We prove that the set Ie of extremal invariant probability measures can be
decomposed as a disjoint union

Ie = I0 ∪ I1 ∪ I2
In this decomposition, I0 := {νρ, ρ ∈ [0, 2]} is the set of extremal invariant
probability measures that are translation invariant along lanes. The parameter
ρ represents the total density over the two lanes. Under νρ, the mean densities
ρ0, ρ1 on each lane are functions of ρ, and they are different when p 6= q. In
the sequel, we refer to these probability measures as “Bernoulli measures”. For
k ∈ {1, 2}, Ik denotes a (possibly empty) set of extremal invariant probability
measures that are shock measures of amplitude k. By a shock measure, we mean
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a probability measure that is asymptotic to two Bernoulli measures of different
densities ρ−, resp. ρ+, when viewed from faraway left, resp. right. The ampli-
tude of the shock is by definition k := |ρ+−ρ−|. The set I2 contains only shocks
such that (ρ−, ρ+) = (0, 2) or (ρ−, ρ+) = (2, 0). These measures are the ana-
logue in our context of blocking measures or profile measures. In some cases, I1
may contain partial blocking measures, i.e., measures whose restriction to one
lane is a blocking measure, and whose restriction to the other lane is either full
or empty.

We show that the following generic picture holds outside some degenerate cases:
up to translations along Z, (i) the set I1 contains at most three probability mea-
sures; (ii) the set I2 contains at most two probability measures. In particular,
these sets are at most countable. In fact, outside degenerate cases, I1 contains
at most one measure. For a subset of parameter values, we can fully determine
I1 and I2, and thus obtain a complete characterization of invariant probabil-
ity measures. This includes the following situations: when γ0 and γ1 are close
enough and the ratio q/p small enough or large enough; when p or q vanishes
and γ0 6= γ1; or when γ0 = γ1 = 0 and p, q are arbitrary. The following ques-
tions are left open. First, we can only show that I1 is indeed nonempty in
cases where it contains only partial blocking measures, and that it is empty on
a set of parameter values for which γ0 and γ1 are close enough, and the ratio
between p and q small enough (or large enough). We do not know if for certain
parameter values it is possible to have I1 nonempty with a shock of amplitude
1 that is not a partial blocking measure. In the case p = q (and more generally
for the vertically cyclic ladder process, see below), it is believed in [5] that this
probably does not occur. Next, we only know that I2 is nonempty if

d0/l0 = d1/l1 6= 1

where di, resp. li, denotes the jump rate to the right, resp. left, on lane
i ∈ {0, 1}. We also show that I2 is empty when pq = 0, even if the drifts
are both strictly positive (or both strictly negative), which is in sharp contrast
with the one-dimensional case. However, we conjecture that when pq > 0 and
both drifts are stricly positive, I2 is nonempty, also without the assumption
(1). We believe that this could be proved in the spirit of [6] by means of the
hydrodynamic limit. We shall investigate the hydrodynamic behaviour of our
model and extensions thereof (see below) in [1].

Our model and approach extend to more general multi-lane exclusion processes
with an arbitrary (finite) number of lanes. The two-lane model can be gen-
eralized in two different ways. When p = q, a natural extension is to view
the vertical direction as a torus, and define a multi-lane model with a vertical
(inter-lane) jump kernel that is invariant with respect to rotations of this torus.
This corresponds to the so-called ladder process mentioned in [5] as a possible
direction towards Z

2. A byproduct of our results is a positive answer to one of
the open questions formulated in [5] for this model: namely, that all invariant
measures are rotationally invariant. Another way to extend to the two-lane
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model, including the case p 6= q, is to consider vertical kernels satisfying certain
reversibility conditions; see e.g. [12], which studies a tagged particle in such
models. Our methods and results could also be extended to this situation.

One of the difficulties of our model is that available approaches ([8, 4]) to clas-
sify invariant measures for the one-dimensional single-lane asymmetric simple
exclusion process rely heavily on the fact the at most one particle is allowed
on each site. A common idea in these proofs is to exhibit an ordered coupling
of a supposed invariant measure ν with its translate. When the inequality is
strict, the difference of mean densities at ±∞ for ν can be related to the num-
ber of discrepancies between ν and its translate. Since this must be at least
1, there is no choice but 0 and 1 as extreme densities. Because these are the
lowest and highest possible densities, this automatically implies that the mea-
sure is asymptotic to Bernoulli measures with densities 0 and 1. Since we dot
have this simplifying feature, an important ingredient of our analysis is an a
priori proof that any invariant measure is asymptotic to Bernoulli measures at
±∞. Another difficulty that occurs when interlane jumps are possible only in
one direction is the lack of irreducibility for the jump kernel. Usual arguments
based on attractiveness and irreducibility, showing that discrepancies between
two coupled processes eventually disappear, are not sufficient in this case.

This paper is organized as follows. In Section 2, we introduce our models, after
a detailed reminder for general simple exclusion processes; we then state our re-
sults on invariant measures for the two-lane simple exclusion process: Theorem
2.1 for the invariant and translation invariant probability measures, Theorems
2.2 and 2.3 for the invariant probability measures; finally Theorem 2.4 deals
with the multi-lane simple exclusion process, and in particular with the ladder
process from [5]. Section 3 is devoted to the proof of Theorem 2.1, and Section 4
to the proofs of Theorems 2.2, 2.3 and 2.4. In order to make the general schemes
of proofs more visible, most intermediate results used to establish Theorems 2.2
and 2.3 are proved in the separate Section 5. Some additional details of proofs
are given in the Appendix.

2 Models and results

In this section, we present and state our results for our basic model, the two-lane
SEP (motivated by traffic-flow considerations), and for its generalization to a
multi-lane SEP. Before that, we first recall the definition of the simple exclusion
process on a countable set V . The two-lane and the multi-lane SEP indeed
belong to this class, but they have specific properties due to the structure of the
set V .
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2.1 Simple exclusion process

Throughout the paper, Z denotes the set of integers and N the set of nonnegative
integers. Let V be a nonempty countable set. The state space of the process is

X := {0, 1}V (1)

that is a compact polish space with respect to product topology. One can think
of η ∈ X as a configuration of particles on V , i.e. for which a site x ∈ V is
occupied by a particle if and only if η (x) =1.

We call kernel on V a function p : V × V → [0,+∞) such that

sup
x∈V




∑

y∈V
p(x, y) +

∑

y∈V
p(y, x)



 < +∞ (2)

The (V, p)-simple exclusion process (in short: SEP) is a Markov process (ηt)t≥0
on X (see Chapter VIII in [9]) with generator

Lf (η) =
∑

x,y∈V
p (x, y) η (x) (1− η (y)) (f (ηx,y)− f (η)) , (3)

where ηx,y, given by

ηx,y (w) =





η (w) w 6= x, y
η(x) − 1 w = x
η(y) + 1 w = y

,

is the new configuration after a particle has jumped from x to y, and f is a
cylinder (or local) function, that is, a function that depends only on the value
of η on a finite number of sites in V . We denote by (St)t≥0 the semigroup
generated by (3), and by Eµ, resp. Eη, the expectation for the process with ini-
tial distribution a probability measure µ on X , resp. with initial configuration
η ∈ X .

The (nearest-neighbour) SEP on Z is the particular case of (3) with (V, p) given
by

V = Z, p(x, y) = d1{y−x=1} + l1{y−x=−1}; d, l ≥ 0, d+ l > 0 (4)

Within this category we distinguish the symmetric, resp. asymmetric exclusion
process (SSEP, resp. ASEP), for which d = l, resp. d 6= l; and the totally
asymmetric simple exclusion process (TASEP) on Z, for which dl = 0 < d+ l.

A probability measure µ on X is said to be invariant for the Markov process
generated by (3) if it is invariant with respect to the semigroup (St)t≥0, which
is equivalent to ∫

Lf(η)dµ(η) = 0 (5)
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for every cylinder function f . The set of invariant probability measures is de-
noted by I. Since I is convex, by Choquet-Deny Theorem, in order to know I,
it is enough to determine the subset of its extremal elements, which we denote
by Ie.

2.2 The general setup

In the sequel, we shall focus on special choices of V and p(., .) for which the
model has an interesting structure. First, we consider a lattice V of the form

V = Z×W (6)

for some nonempy finite set W . An element x of V will be generically written in
the form x = (x(0), x(1)), with x(0) ∈ Z and x(1) ∈W . In traffic-flow modeling,
we may think of V as a highway, of Z as a lane, and of x as site x(0) on lane
x(1). For i ∈W ,

Li := {x ∈ V : x(0) ∈ Z, x(1) = i} (7)

denotes the i’th lane of V , and ηi the particle configuration on Z, defined by

ηi (z) = η (z, i) (8)

for z ∈ Z. We can view ηi as the configuration on lane i. Another interpretation
is that i ∈W represents a particle species, then η(z, i) = ηi(z) is the number of
particles of species i at site z ∈ Z. We also denote by

η(z) =
∑

i∈W
ηi(z) (9)

the total number of particles at z ∈ Z.

Next, we consider kernels p(., .) of the form

p(x, y) =





0 if x(0) 6= y(0) and x(1) 6= y(1)
qi(x(0), y(0)) =: Qi[y(0)− x(0)] if x(1) = y(1) = i
q(x(1), y(1)) if x(0) = y(0)

(10)

for x, y ∈ V , where q(., .) is a kernel on W , and for each i ∈ W , qi(., .) is a
translation invariant kernel on Z given by

qi(u, v) = di1{v−u=1} + li1{v−u=−1}, Qi(z) = di1{z=1} + li1{z=−1} (11)

for u, v ∈ Z, where di ≥ 0 and li ≥ 0 are such that di + li > 0.

We shall be interested in translations along Z, but the set W is in general
not endowed with a translation operator. We denote by (τk)k∈Z the group of
space shifts on Z. The shift operator τk acts on a particle configuration η ∈ X
through

(τkη)(z, w) := η(z + k, w), ∀(z, w) ∈ Z×W (12)
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It acts on a function f : X → R via

(τkf)(η) := f(τkη), ∀η ∈ X (13)

If µ is a probability measure on X , then τk acts on µ via

∫

X
f(η)d(τkµ)(η) :=

∫

X
(τkf)(η)dµ(η) (14)

for every bounded continuous function f : X → R. Last, if L is a linear operator
acting on functions f : X → R, then τk acts on L via

(τkL)f := L(τkf) (15)

By an abuse of notation, in what follows, we write τ instead of τ1. We define
S to be the set of all probability measures on X that are invariant under the
translations τk, k ∈ Z.

2.3 The two-lane SEP

In the sequel, we shall sometimes refer to SEP (resp. SSEP, ASEP, TASEP) as
single-lane or one-dimensional SEP (resp. SSEP, ASEP, TASEP). Our basic
model is the two-lane SEP, which corresponds to

W = {0, 1} (16)

We can view this model as a dynamics on an infinite horizontal ladder, with
vertical steps separating its two bars L0 and L1, namely:

L0 = {x ∈ V : x = (z, 0) , z ∈ Z}
L1 = {x ∈ V : x = (z, 1) , z ∈ Z} (17)

In the traffic interpretation, we call L0 and L1 the upper and lower lane, and
the steps between them the direction a car can follow to change lane.

Let p, q ≥ 0 and d0, l0, d1, l1 ≥ 0. The two-lane SEP is the dynamics on X
defined by the generator (3) with kernel (10)–(11), in which q(., .) is given by

q(0, 1) = p, q(1, 0) = q (18)

This means that, for x, y ∈ V ,

p (x, y) =





d0 if x, y ∈ L0, y(0)− x(0) = 1
l0 if x, y ∈ L0, y(0)− x(0) = −1
d1 if x, y ∈ L1, y(0)− x(0) = 1
l1 if x, y ∈ L1, y(0)− x(0) = −1
p if x ∈ L0, y ∈ L1, x(0) = y(0)
q if x ∈ L1, y ∈ L0, x(0) = y(0)
0 otherwise

(19)
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In other words, particles move one step to the right or to the left on each lane
at a rate depending on the lane, and we allow the rate p at which particles go
down to be different than the rate q of going up. We shall assume in the sequel
that (cf. (11))

(d0 + l0)(d1 + l1) > 0 (20)

so that particles can always move on both lanes. However they cannot go from
L0 to L1 if p = 0, nor from L1 to L0 if q = 0. If p = q = 0, the dynamic reduces
to two independent SEP’s on each lane. Thus, p+ q 6= 0 introduces interaction
between the two lanes. For i ∈W , we let

γi := di − li (21)

denote the mean drift on lane i. The following symmetry properties of the two-
lane SEP will be useful. Define the lane symmetry operator σ : X → X , the
lane exchange operator σ′ : X → X , and the particle-hole symmetry operator
σ′′ : X → X by

(ση)(z, i) = η(−z, i); (σ′η)(z, i) = η(z, 1− i); (σ′′η)(z, i) = 1− η(z, i) (22)

for η ∈ X and (z, i) ∈ V . Let us call the process defined by the generator (3) with
transition kernel (19) the (d0, l0); (d1, l1); (p, q)-two-lane SEP. The definition of
the two-lane SEP dynamics implies the following.

Lemma 2.1. Let (ηt)t≥0 be a (d0, l0); (d1, l1); (p, q)-two-lane SEP. Then the im-
age of this process by σ, resp. σ′, σ′′, is a (l0, d0); (l1, d1); (p, q), resp. (d1, l1); (d0, l0); (q, p),
resp. (l0, d0); (l1, d1); (q, p)-two-lane SEP.

Thus, without loss of generality, we shall assume in the sequel that

γ0 ≥ 0, γ0 + γ1 ≥ 0, p ≥ q, p > 0 (23)

If we view i ∈ {0, 1} as a species rather than a lane, the interpretation is as
follows: the dynamics within each species is a SEP of Z, and a lane change
becomes a spin flip whereby a particle may change its species. The exclusion
rule within species implies that a particle cannot change its species if there is
already a particle of the other species sitting at the same site. This is the only
point where an interaction occurs between the two species.

2.4 Invariant measures for two-lane SEP

Let us first recall, in sections 2.4.1 and 2.4.2, the known picture ([10, 8, 9]) for
invariant measures of the single-lane SEP defined by (3) and (4), since it will be
the building block of the derivation of invariant measures for the two-lane SEP
(and for the multi-lane SEP later on). We start with a classical result (Theorem
2.1 in Chapter VIII of [9]) for reversible measures of the general SEP defined
by (3) for an arbitrary pair (V, p).
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2.4.1 Reversible measures for general SEP

Let S be a countable set and π(., .) a kernel on S. Assume that there exists
a [0, 1]-valued family ρ. = (ρi)i∈S such that, for every i, j ∈ S, the following
condition holds:

ρi(1− ρj)π(i, j) = ρj(1 − ρi)π(j, i) (24)

Then the product measure µρ. defined by

µρ. {η (i) = 1} = ρi (25)

for every i ∈ S, is reversible with respect to the (S, π) simple exclusion process.
If for every i, j ∈ S, ρi and ρj are different from 1, (24) is equivalent to the
detailed balance condition

λiπ(i, j) = λjπ(j, i) where λi :=
ρi

1− ρi
(26)

2.4.2 Invariant measures for single-lane SEP

The single-lane SEP with kernel (4) has two kinds of extremal invariant mea-
sures. We refer to [9, Chapter VIII] for details.

Translation invariant measures. First, we have the homogeneous product Bernoulli
probability measures, denoted by {µρ, ρ ∈ [0, 1]}, where ρ represents the average
particle density per site; there are two cases under which particles do not move:
when either ρ = 0 (there are no particles), or ρ = 1 (each site being occupied,
particles cannot move because of the exclusion rule).

Blocking measures for ASEP. Assume in addition that d 6= l. Then one has an
additional family of (non translation invariant) probability measures obtained
from the reversible measures in Section 2.4.1. When l > 0, we set

ρci :=
c
(
d
l

)i

1 + c
(
d
l

)i (27)

where c > 0. When l = 0 < d, that is for TASEP, we set

ρn,ci := 1{i>n} +
c

1 + c
1{i=n}, i ∈ Z (28)

where n ∈ Z and c ≥ 0. Then ρ. is a nonconstant [0, 1]-valued solution of (24) if
and only if it is of the form (27) in the case l > 0, or (28) in the case l = 0 < d
(the case d = 0 < l is deduced by symmetry).

For such solutions ρ., the measure µρ. defined by (25) is reversible. If l > 0,
µρ. with ρ. = ρc. given by (27) is not an extremal invariant probability measure.
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Extremal invariant probability measures are obtained as follows. The measure
µρ. is supported on the set



η ∈ {0, 1}Z :

∑

x>0

[1− η(x)] +
∑

x≤0
η(x) < +∞



 (29)

On this set, the function H defined by

H(η) :=
∑

x≤0
η(x) −

∑

x>0

[1− η(x)] (30)

is conserved by the SEP dynamics if it is initially finite, and the process re-
stricted to a level set of H is irreducible. The function H satisfies

H(τnη) = H(η) + n, ∀n ∈ Z (31)

Then, for c > 0 and n ∈ Z, the probability measure

µ̂n := µρc
. (. |H(η) = n ) (32)

does not depend on the choice of c > 0, and is an extremal invariant probability
measure. Because of (31), it satisfies

µ̂n = τnµ̂0 (33)

For l = 0, the measure µρ. with ρ. = ρn,c. given by (28) is an extremal invariant
measure if and only if c = 0; we again denote this measure by µ̂n. Note that
µ̂n is supported on the single configuration η∗n that is empty to the left up to
(including) site n and full to the right of site n:

η∗n(x) := 1{x>n}, µ̂n := δη∗
n

(34)

For convenience, by extension, we shall let η∗−∞ and η∗+∞ respectively denote
the configurations with all 1’s and all 0’s.
In both cases, the measures µ̂n are called blocking measures.

In [10] it is shown that in the symmetric case l = d, the set of extremal in-
variant measures consists of Bernoulli measures µρ for ρ ∈ [0, 1]. In [8] it is
shown that in the asymmetric case l 6= d, this set consists of Bernoulli measures
µρ for ρ ∈ [0, 1], plus blocking measures µ̂n for n ∈ Z.

For the two-lane SEP (and later generalizations thereof), we shall define similar
families of measures. Let us start with translation invariant measures.

2.4.3 Translation invariant stationary measures for two-lane SEP

The following two-parameter Bernoulli product probability measures will be
central. Let us define νρ0,ρ1 for (ρ0, ρ1) ∈ [0, 1]2, as the product probability

10



measure on X such that

νρ0,ρ1 (η (x) = 1) =

{
ρ0 x ∈ L0

ρ1 x ∈ L1
. (35)

In words, the two lanes are independent, and the projection of νρ0,ρ1 on the
upper lane L0 (respectively, the lower lane L1) is µρ0

(respectively µρ1
).

When p = q = 0, as mentioned above (after (19)), the two lanes evolve as inde-
pendent SEP’s, hence νρ0,ρ1 is an invariant measure for every (ρ0, ρ1) ∈ [0, 1]2.
We look for a relation between ρ0 and ρ1 under which we could have νρ0,ρ1 ∈ I
when p+ q 6= 0. To this end, we define the following subset F of [0, 1]2:

F :=
{
(ρ0, ρ1) ∈ [0, 1]2 : pρ0(1− ρ1)− qρ1(1− ρ0) = 0

}
(36)

The set F expresses an equilibrium relation for vertical jumps: it states that
under νρ0,ρ1 , the mean algebraic “creation rate” on each lane (i.e. resulting from
jumps from/to the other lane) has to be 0. Similarly to the single lane SEP, we
have the following theorem, proved in Section 3.

Theorem 2.1. We have that

(I ∩ S)e = {νρ0,ρ1 : (ρ0, ρ1) ∈ F} (37)

= {νρ : ρ ∈ [0, 2]} (38)

for a one-parameter family {νρ : 0 ≤ ρ ≤ 2} of probability measures on X , where
the parameter ρ represents the total mean density over the two lanes:

Eνρ

{
η0(0) + η1(0)

}
= ρ (39)

Remark 2.1. When q = 0, the invariant measures νρ can be guessed naturally.
Indeed in this case, particles cannot move upwards. Thus if lane 0 is empty, it
remains empty and lane 1 behaves as an autonomous SEP. Hence, for ρ ∈ [0, 1],
the measure ν0,ρ (which has global density ρ over the two lanes) is invariant for
the two-lane SEP, because its restriction to lane 1 is invariant for the SEP on
this lane. Similarly, if lane 1 is full, it remains full and lane 0 evolves as an
autonomous SEP. Hence, for ρ ∈ [1, 2], the measure νρ−1,1 (which has global
density ρ over the two lanes) is invariant for the two-lane SEP. This is consistent
with the fact that for q = 0, (36) yields (see (70) later on)

F = {(0, ρ) : ρ ∈ [0, 1]} ∪ {(ρ− 1, 1) : ρ ∈ [1, 2]}

2.4.4 Structure of invariant measures for two-lane SEP

We define the following subset of X (analogous to (29)):

X2 :=



η ∈ X :

∑

x∈V :x(0)>0

[1− η(x)] +
∑

x∈V :x(0)≤0
η(x) < +∞



 (40)
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Let

B1 := {(0, 1), (1, 0), (1, 2), (2, 1)}, B2 := {(0, 2)}
B := B1 ∪ B2, D := {(ρ, ρ) : ρ ∈ [0, 2]} (41)

Let (ρ−, ρ+) ∈ [0, 2]2 \ D, that we call a shock. A probability measure µ on X
is called a (ρ−, ρ+)-shock measure if

lim
n→−∞

τnµ = νρ− , lim
n→+∞

τnµ = νρ+ (42)

in the sense of weak convergence. The amplitude of the shock (or of the shock
measure) is by definition |ρ+ − ρ−|. We define

Bl1 = {ν ∈ Ie : ∃(ρ−, ρ+) ∈ B1, ν is a (ρ−, ρ+)-shock measure} (43)

Bl2 = {ν ∈ Ie : ∃(ρ−, ρ+) ∈ B2, ν is a (ρ−, ρ+)-shock measure} (44)

Bl = Bl1 ∪Bl2 (45)

The following theorem is proved in Section 4.

Theorem 2.2. (i) There exist a (possibly empty) subset R of [0, 2]2 \ (D ∪ B)
containing only shocks of amplitude 1, a (possibly empty) subset R′ of B1, and
for each (ρ−, ρ+) ∈ R∪R′, a (ρ−, ρ+)-shock measure denoted νρ−,ρ+ , such that

Ie = {νρ : 0 ≤ ρ ≤ 2} ∪Bl ∪
{
τzνρ−,ρ+ : z ∈ Z, (ρ−, ρ+) ∈ R

}
(46)

Bl1 = {τzνρ−,ρ+ : (ρ−, ρ+) ∈ R′, z ∈ Z} (47)

(ii) The sets R, R′ and Bl2 enjoy the following properties:

(a) The set Bl2 is stable by translations, and outside the case

l0 = l1 = q = 0, (48)

it contains at most (up to translations) two elements.

(b) Outside the cases

p = q and γ0 + γ1 = 0, (49)

γ0 = γ1 = 0, (50)

q = 0 = γ0γ1, (51)

the set R contains at most one element and R′ at most two elements.

(c) Outside (49)–(51), the following holds. Unless q = 0 and γ0 = γ1 > 0,
the set R∪R′ contains at most two elements. If q > 0 and γ0 + γ1 6= 0, the set
R′ is empty. If q > 0, q 6= p and γ0 + γ1 = 0 6= γ0γ1, the set R is empty.

Theorem 2.2 yields the following information. The decomposition (46) and
statement (47) say that every element of Ie that is a not a product Bernoulli

12



measure is a shock measure of amplitude 1 or 2, and that for a given shock of
amplitude 1, an associated shock measure is unique up to translations. Outside
the case (48) (which will be further studied in the next theorem), up to trans-
lations, we can have at most two shock measures of amplitude 2. This case is
special because the kernel (19) lacks standard irreducibility assumptions (see
Definition 3.1), so usual ordering properties must be weakened (see Definitions
3.2 and 4.1). The only possible shock of amplitude 2 is (0, 2). The (0, 2)-shock
measures are analogues of blocking or profile measures in [4]. We shall see below
that when both drifts are positive, shocks of amplitude 2 are blocking measures,
and under additional assumptions, there are exactly two of them modulo trans-
lations. Shock measures of amplitude 1 can be divided into two classes with a
different meaning. The set Bl1 contains measures associated to shocks in B1;
these are zero-flux measures. Among elements of Bl1 are partial blocking mea-
sures: we shall see below (in Theorem 2.3) that these may only (and do indeed)
arise if q = 0. Under such measures, one lane carries a (0, 1)-shock and the
other is either empty or full. The set R is associated to other shock measures
of amplitude 1. We believe that R is empty and prove that it contains at most
one element outside the case (49). This conjecture comes from the belief that
the variance of the shock is of order t with a positive diffusion coefficient, which
is incompatible with a stationary state. In contrast, we expect the diffusion
coefficient to vanish in the last case of Theorem 2.2, (c); we have no clear con-
jecture whether R′ is empty in this case. Under (49), the model is diffusive and
nongradient, and we conjecture that the only invariant measures are Bernoulli.
We leave the above conjectures for future investigation, as the methods involved
to prove them are presumably quite different from those used here.

Next, we provide more information on the sets R, R′, Bl1 and Bl2, and obtain a
full description of Ie for a set of parameter values including (48) and (50)–(51).
This is the content of Theorem 2.3 below. Its statement will be completed in
Section 2.4.5 by the explicit description of the sets Bl1 and Bl2 referred to in
the following statements. Recall (23). We define the reduced parameters

r :=
q

p
, d :=

γ0
γ0 + γ1

if γ0 + γ1 6= 0 (52)

and set

r0 :=
1− 2

√
−7 +

√
52

1 + 2
√
−7 +

√
52

= 0, 042 · · · (53)

Due to (23), we have (d, r) ∈ [0, 1]× [0, 1].

Theorem 2.3. (o) If γ0 > 0 and γ1 > 0, elements of Bl2 are supported on the
set X2.

(i) Assume (50). Then R = R′ = Bl2 = ∅, hence

Ie = {νρ : ρ ∈ [0, 2]} (54)

13



• Assume q > 0. Then:

(ii) Assume either: (a) d0/l0 = d1/l1 > 1; or (b) l0 = l1 = 0 and d0, d1 > 0.
Then Bl2 is nonempty and given by (58).

(iii) There exists an open subset Z of [0, 1]× [0, 1], containing {1/2} × (0, r0),
such that R = R′ = ∅ for every (d, r) ∈ Z. In particular, if r ∈ (0, r0), d1 = λd0
and l1 = λl0 with λ close enough to 1, then (46) holds with Bl2 as in (ii); this
yields a complete description of Ie.

• Assume now q = 0 < p. Then a complete description of Ie can be obtained
whenever γ0 6= γ1. More precisely:

(iv) (a). If γ0 > 0 and γ1 > 0, then R′ = {(0, 1); (1, 2)}; R is empty if γ0 6= γ1,
or contained in {(3/2, 1/2)} if γ0 = γ1. The set Bl1 is given by (59). The set
Bl2 is empty unless l0 = l1 = 0. (b) If l0 = l1 = 0, Bl2 is given by (61).

(v) If γ1 < 0 < γ0, then R′ = {(1, 0), (1, 2)}, R = Bl2 = ∅. The set Bl1
is given by (62).

(vi) If γ0 = 0 < γ1, then R′ = {(0, 1)}, R = Bl2 = ∅. The set Bl1 is given by
(63).

Remark 2.2. In case (i), when p = q, the kernel defined by (19) is symmetric.
The result is then a particular case of the general picture ([10, 9]) for symmetric
exclusion processes, although our method of proof is different. However when in
case (i) we have p 6= q, the two-lane SEP is not a symmetric exclusion process,
and our result is new.

2.4.5 Explicit blocking measures in Theorem 2.3

We here complete the statement of Theorem 2.3 by giving the explicit descrip-
tion of Bl1 and Bl2 in each case.

Case (ii), (a). Let θ = d0/l0 = d1/l1. Then the reversibility equation (24)
with the kernel (19) has the following (0, 1)-valued solutions similar to (27):

ρcz,i :=
cθz
(

p
q

)i

1 + cθz
(

p
q

)i , (z, i) ∈ Z×W, c > 0 (55)

The product measure µρc
. , cf. (25), is thus reversible for the two-lane SEP. It is

supported on the set X2 defined by (40). As in (32)–(33), we fix c > 0 and define
the conditioned measures (independent of the choice of c > 0, see Appendix A.1,
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where the equalities below are also proved).

ν̌n := µρc
. (. |H2(η) = 2n) = τnν̌0, n ∈ Z

ν̂n := µρc
. (. |H2(η) = 2n+ 1) = τnν̂0, n ∈ Z (56)

where now
H2(η) :=

∑

x∈V :x(0)≤0
η(x)−

∑

x∈V :x(0)>0

[1− η(x)] (57)

Case (ii), (b). Let, for x ∈ V ,

η̆ (x) = 1{x(0)>0}

η̂0 (x) = 1{x(0)>0} + 1{x=(0,0)}

η̂1 (x) = 1{x(0)>0} + 1{x=(0,1)}.

We define the measures ν̆0 and ν̂0 through

ν̆0 = δη̆

ν̂0 =
q

p+ q
δη̂0 +

p

p+ q
δη̂1

We define also ν̆z = τ−z ν̆0 and ν̂z = τ−z ν̂0 for every z ∈ Z.

In cases (ii), (a)–(b) above, we set

Bl2 := {ν̆z : z ∈ Z} ∪ {ν̂z : z ∈ Z} (58)

In cases (iv)–(vi) below, for n ∈ Z, we denote by ν⊥,+∞,n and ν⊥,n,−∞ the
probability measures on X defined as follows. Under ν⊥,+∞,n, η0 = η∗+∞ (i.e.
lane 0 is empty, cf. (34)) and η1 ∼ µ̂n, where µ̂n is given by (32) with l = l1
and d = d1 if l1 > 0, or by (34) if l1 = 0. Under ν⊥,n,−∞, η1 = η∗−∞ (i.e. lane 1
is full) and η0 ∼ µ̂n, where µ̂n is given by (32) with l = l0 and d = d0 if l0 > 0,
or by (34) if l0 = 0.

Case (iv), (a). We set

Bl1 :=
{
ν⊥,+∞,n : n ∈ Z

}
∪
{
ν⊥,n,−∞ : n ∈ Z

}
(59)

Case (iv), (b). Let B denote the set of (i, j) ∈ Z
2 such that i ≥ j, and set

B := B∪ {(+∞, n), (n,−∞) : n ∈ Z}. For (i, j) ∈ B, let ν⊥,i,j denote the Dirac
measure supported on the configuration η⊥,i,j defined by (recalling (34))

η⊥,i,j(z, 0) = η∗i (z), η⊥,i,j(z, 1) = η∗j (z) (60)

for every z ∈ Z. The set Bl2 is given by

Bl2 :=
{
ν⊥,i,j : (i, j) ∈ B

}
(61)
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Case (v). For n ∈ Z, we denote by ν⊥,+∞,n← the probability measure on X
defined as follows. Recall the lane symmetry operator σ defined by (22). Under
ν⊥,+∞,n←, η0 = η∗+∞ and ση1 ∼ µ̂n, where µ̂n is given by (32) with l = l1 and
d = d1 if l1 > 0, or by (34) if l1 = 0. The set Bl1 is then given by

Bl1 :=
{
ν⊥,+∞,n← : n ∈ Z

}
∪
{
ν⊥,n,−∞ : n ∈ Z

}
(62)

Case (vi). The set Bl1 is given by

Bl1 :=
{
ν⊥,+∞,n : n ∈ Z

}
(63)

2.5 Multilane SEP and rotational invariance

In this section, we consider the general model defined by (3) with (6), (10) and
(11). Without loss of generality, we may consider W = {0, . . . , n− 1}. We are
interested in a generalization of the two-lane model with p = q (cf. (18)). To
this end, we introduce the following assumption.

Assumption 2.1. W = Tn is a torus, and q(., .) is an irreducible translation-
invariant kernel, that is q(i, j) = Q(j − i) for some function Q : Tn → [0,+∞).

For ρ ∈ [0, n], we denote by νρ the product measure on X such that

νρ {η(z, i) = 1} =
ρ

n
(64)

for every (z, i) ∈ Z×W . For Theorems 2.1, 2.2 and 2.3, the scheme of proof laid
out in Sections 3 to 5 carries over to the multi-lane model. Here, since W = Tn,
in addition to the shift operator τ along Z already considered, we can consider
the translation operator τ ′ along W . Following [5, page 2309], we shall call a
probability measure on X rotationally invariant if it is invariant by τ ′. The
open question 1. for the ladder process raised in [5] is whether, when di and li
are independent of i (i.e. the horizontal dynamics is the same on each lane), all
invariant measures are rotationally invariant. We give a positive answer to this
question in item (3) of the following theorem.

Theorem 2.4. Under Assumption 2.1, the following hold:

(0) We have (I ∩ S)e = {νρ, ρ ∈ [0, n]}.

(1) For k = 1, . . . , n, let (ρ−k , ρ
+
k ) =

(
n−k
2 , n+k

2 = n− ρ−k
)
. Then: (a)

Ie = {νρ : ρ ∈ [0, n]} ∪
n⋃

k=1

Ik (65)

where Ik is a (possibly empty) set of (ρ−k , ρ
+
k )-shock measures of amplitude k,

which contains at most (up to horizontal translations) k measures. (b) If γi > 0
for all i, In is suppported on the set Xn defined by the right-hand side of (40).
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(c) If di/li does not depend on i, In consists (up to horizontal translations) of
n explicit blocking measures νi defined below for i = 0, . . . , n− 1.

(2) If γi := di − li = 0 for all i ∈W , then Ie = {νρ : ρ ∈ [0, n]}.

(3) If di and li do not depend on i, any invariant measure is rotationally in-
variant.

The blocking measures in (1), (c) are defined as in cases (ii), (a) and (ii),
(b) of Theorem 2.3:

First case. If li > 0 for all i, we define ρcz,i as in (55), with θ = di/li and
p/q replaced by 1. For i = 0, . . . , n − 1, we define the conditioned measures
(independent of the choice of c > 0 as in (56))

νi := µρc
. (. |Hn(η) = i ) (66)

where Hn is defined as the right-hand side of (57).

Second case. If li = 0 < di for all i, we define the configurations

ηA := 1{x(0)≥0} + 1{x(0)=−1, x(1)∈A}, A ⊂ {0, . . . , n− 1}

Then νi is the law of a random configuration ηA, where A is a uniformly chosen
random subset of {0, . . . , n− 1} such that |A| = i.

3 Proof of Theorem 2.1

The proof of Theorem 2.1 mainly adapts the scheme of [8, Theorem 1.1] to
our model. However when q = l0 = l1 = 0, additional arguments are required
because the kernel (19) does not satisfy usual irreducibility assumptions.
First, in Subsection 3.1, we show how to parametrize the set F in (36) by
the global density over the two lanes and establish invariance of the associated
product measures given in (37). Next, we introduce coupling prerequisites in
Subsection 3.2, and complete the proof of characterization in Subsection 3.4.

3.1 Parametrization and proof of invariance

The following lemma will lead to the parametrization (38).

Lemma 3.1. (i) The mapping ψ : F → [0, 2]; (ρ0, ρ1) 7→ ψ(ρ0, ρ1) := ρ0 + ρ1,
is a bijection.

(ii) Its inverse is of the form ψ−1(ρ) = (ρ̃0(ρ), ρ̃1(ρ)), where ρ̃1(ρ) := ρ− ρ̃0(ρ),
and the function ρ 7→ ρ̃0(ρ) is given by the following formulae:
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Case 1a. pq 6= 0, p 6= q. Then, for r = q/p,

ρ̃0 (ρ) :=
ρ

2
+
r + 1−

√
(r + 1)2 + ρ(r − 1)2(ρ− 2)

2(r − 1)
, (67)

Case 1b. p = q 6= 0. Then

ρ̃0(ρ) :=
ρ

2
(68)

Case 2. p = 0 < q. Then
ρ̃0(ρ) := min(ρ, 1) (69)

Case 3. q = 0 < p. Then

ρ̃0(ρ) := max(ρ− 1, 0) (70)

Remark 3.1. In Lemma 3.1, the formulae in (ii) imply that for pq > 0, ρ̃i(ρ)
strictly increases from 0 to 1 as ρ increases from 0 to 2, and ρ̃i ∈ C1([0, 2]).

Next we define
νρ := νρ̃0(ρ),ρ̃1(ρ) (71)

By (71) and (35), we have (recalling definition (8)), for every i ∈ {0, 1},

Eνρ [η
i(0)] = ρ̃i(ρ) (72)

which implies (39).

Remark 3.2. It follows from (ii) of Lemma 3.1 that the measure νρ is weakly
continuous and stochastically nondecreasing with respect to ρ. Namely, if ρ < ρ′

then νρ ≤ νρ′ .

Proof of Lemma 3.1. We have to prove that, for ρ ∈ [0, 2], the equation ρ0+ρ1 =
ρ has a unique solution (ρ0, ρ1) ∈ F ; by definition ρi = ρ̃i(ρ) for i ∈ {0, 1}. For
r > 0, we define a mapping φr from [0, 1] to [0, 1] by

φr(ρ0) :=
rρ0

1− ρ0 + rρ0
, ∀ρ0 ∈ [0, 1] (73)

One can then distinguish the following cases for F :

Case 1. pq 6= 0. Then

F :=
{
(ρ0, ρ1) ∈ [0, 1]2 : ρ1 = φs(ρ0)

}
, s =

q

p
(74)

Case 2. p = 0 < q. Then

F := ([0, 1]× {0}) ∪ ({1} × [0, 1]) (75)

Case 3. q = 0 < p. Then

F := ([0, 1]× {1}) ∪ ({0} × [0, 1]) (76)
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Equalities (69)–(70) follow from (75)–(76). For (67)–(68), using (74), we equiv-
alently show that, for ρ ∈ [0, 2], the equation

ρ0 + φs(ρ0) = ρ (77)

has a unique solution ρ0 =: ρ̃0(ρ) ∈ [0, 1] and deduce ρ̃1(ρ). If p = q > 0, (74)
with s = 1 yields φ1(ρ0) = ρ0, whence (68). If p 6= q, p > 0 and q > 0, (74)
and (77) yield a quadratic equation for ρ0, and (67) is its unique solution in
[0, 1].

The following lemma shows that the measures in (37) of Theorem 2.1 are
indeed extremal translation invariant and invariant probability measures. Sta-
tionarity can be derived from [5, Theorem 1], but we give an independent proof
based on prior knowledge of invariance along horizontal and vertical layers.

Lemma 3.2. Let (ρ0, ρ1) ∈ F . Then νρ0,ρ1 ∈ (I ∩ S)e.

Proof of Lemma 3.2. Let f be a cylinder function on X . Note that the generator
(3) has the following structure,

L =
∑

i∈W
Li
h +

∑

z∈Z
Lz
v (78)

where, for i ∈W and z ∈ Z,

Li
hf (η) =

∑

z∈Z
p ((z, i), (z + 1, i)) η ((z, i)) (1− η ((z + 1, i)))

(
f
(
η(z,i),(z+1,i)

)
− f (η)

)

Lz
vf (η) =

∑

i,j∈W
p ((z, i), (z, j)) η ((z, i)) (1− η ((z, j)))

(
f
(
η(z,i),(z,j)

)
− f (η)

)

In other words, Li
h, acting only on ηi, and being translation invariant along the

Z direction, describes the evolution of the process on Li, which is the one of a
(single-lane) SEP; while Lz

v, acting only on {z} ×W , describes the motion of
particles along {z}×W , that is, the displacements from one lane to another at
a fixed spatial location z.
The statement νρ0,ρ1 ∈ S holds because νρ0,ρ1 is a product Bernoulli measure
whose parameters are uniform in the Z-direction. Considering (78), to prove
that νρ0,ρ1 belongs to I, it is enough to show that, for i ∈W and z ∈ Z,

∫
Li
hf (η) ν

ρ0,ρ1 (dη) = 0 (79)

and ∫
Lz
vf (η) ν

ρ0,ρ1 (dη) = 0. (80)

Let us write, for a fixed i ∈W ,

η = (ηi, η′), νρ0,ρ1(dη) = νi(dηi)⊗ ν′(dη′) (81)
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where η′ denotes the restriction of η to lanes other than i. Note that νi is
invariant for Li

h because Li
h is the generator of a single-lane SEP on Li and νi

is a homogeneous product Bernoulli measure. Since Li
h acts only on ηi, we have

∫
Li
hf (η) ν

ρ0,ρ1 (dη) =

∫ (∫
Li
h[f(., η

′)](ηi, η′)dνi(ηi)

)
dν′(η′) = 0

This establishes (79). We can similarly write, for a fixed z ∈ Z,

η = (zη, η′′), νρ(dη) =
zν(d zη)⊗ ν′′(dη′′) (82)

where zη is the restriction of η to {z} ×W , and η′′ its restriction to the com-
plement of {z} × W . So, to prove (80), it is enough to prove that zν is in-
variant for Lz

v. The latter is the generator of a simple exclusion process on
{z}×W . The invariance of zν follows from (24)–(25) applied to S = {z}×W ,
π((z, 0), (z, 1)) = p, π((z, 1), (z, 0)) = q, and definition (36) of F . Finally, since
νρ0,ρ1 ∈ S is a homogeneous product measure, it is spatially ergodic, that is
extremal in S, and thus also in I ∩ S.

3.2 Coupling, attractiveness and discrepancies

Let us first recall these properties for a general SEP; we refer to [9, chapter
VIII, Section 2] for details.

Coupling. We recall the so-called Harris graphical representation ([7]). Suppose
(Ω,F ,P) is a probability space that supports a family N =

{
N(x,y) : (x, y) ∈ V × V

}

of independent Poisson processes N(x,y) with respective intensities p (x, y). For
a given ω ∈ Ω, we let the process evolve according to the following rule: if there
is a particle at site x ∈ V at time t− where t ∈ N(x,y), it shall attempt to jump
to site y. The attempt is suppressed if at time t− site y is occupied.
The graphical construction allows to couple the evolutions from different initial
configurations through basic coupling, that is, by using the same Poisson pro-
cesses for them. In particular, if (ηt)t≥0 and (ξt)t≥0 are two processes coupled

in this way, (ηt, ξt)t≥0 is a Markov process on X ×X whose generator L̃ is given
by

L̃f(η, ξ) :=
∑

x,y∈V
p(x, y)[η(x)(1 − η(y)) ∧ ξ(x)(1 − ξ(y))] [f(ηx,y, ξx,y)− f(η, ξ)]

+
∑

x,y∈V
p(x, y)[η(x)(1 − η(y)) − ξ(x)(1 − ξ(y))]+ [f(ηx,y, ξ)− f(η, ξ)]

+
∑

x,y∈V
p(x, y)[η(x)(1 − η(y)) − ξ(x)(1 − ξ(y))]− [f(η, ξx,y)− f(η, ξ)]

(83)

We shall denote by (S̃t)t≥0 the semigroup generated by L̃, by Ĩ the set of invari-

ant probability measures for L̃, by S̃ the set of probability measures on X × X
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that are invariant with respect to translations along Z, and by Ẽµ̃ the expecta-
tion for the coupled process with initial distribution a probability measure µ̃ on
X × X .

Attractiveness. There is a natural partial order on X , namely, for η, ξ ∈ X ,

η ≤ ξ if and only if ∀x ∈ V, η (x) ≤ ξ (x) (84)

We shall write η < ξ if η ≤ ξ and η 6= ξ.
If η ≤ ξ or η ≥ ξ, we say that η and ξ are ordered configurations.

The order (84) endows an order on the set M1 in the following way. A function
f on X is said to be increasing if and only if η ≤ ξ implies f (η) ≤ f (ξ). For
two probability measures µ0, µ1 on X , we write µ0 ≤ µ1 if and only if for every
increasing function f on X we have

∫
fdµ0 (η) ≤

∫
fdµ1 (η). We shall write

µ1 < µ2 if µ1 ≤ µ2 and µ1 6= µ2. We say µ1 and µ2 are ordered if µ1 ≤ µ2

or µ2 ≤ µ1. In particular, µ1 ≤ µ2 if there exists a measure µ̃(dη, dξ) with
marginals µ1(dη) and µ2(dξ) (that is a coupling of µ1 and µ2) supported on
{(η, ξ) ∈ X × X : η ≤ ξ}; such a coupling is called an ordered coupling.

The basic coupling shows that the simple exclusion process is attractive, that
is, the partial order (84) is conserved by the dynamics. In other words,

∀η0, ξ0 ∈ X , η0 ≤ ξ0 ⇒ ∀t ≥ 0, ηt ≤ ξt a.s. (85)

This implies, for two probability measures µ, ν on X ,

µ ≤ ν ⇒ µSt ≤ νSt (86)

Discrepancies. If (η, ξ) ∈ X × X , we say that at x ∈ V there is an η dis-
crepancy if η(x) > ξ(x), a ξ discrepancy if η(x) < ξ(x), a coupled particle if
η(x) = ξ(x) = 1, a hole if η(x) = ξ(x) = 0. An η and a ξ discrepancy are
called opposite discrepancies, or discrepancies of opposite type. The evolution
of the coupled process can be formulated as follows. At a time t ∈ N(x,y), a
discrepancy or a coupled particle at x exchanges with a hole at y; a coupled
particle at x exchanges with a discrepancy at y; if there is a pair of opposite
discrepancies at x and y, they are replaced by a hole at x and a coupled particle
at y. We call this a coalescence. This shows that no new discrepancy can ever
be created.

Given an initial tagged discrepancy, we may follow its motion over time. We
state in this context a classical finite propagation property for discrepancies.
Single-lane versions of this statement can be found e.g. in [4, Lemma 3.1] or [2,
Lemma 3.1, Lemma 3.2]. Proofs are similar for the two-lane model.

Proposition 3.1. There exist constants σ,C,C′ > 0 such that the following
holds. Assume (ηt)t≥0 and (ξt)t≥0 are two coupled two-lane SEP’s with at least
one discrepancy at time 0. Let Xt = (Xt(0), Xt(1)) ∈ Z×W denote the position
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of a tagged discrepancy at time t. Then:
(i) outside probability e−Ct, it holds that |Xt(0)−X0(0)| ≤ (1 + σ)t.
(ii) Similarly, if we assume η0(z, i) = ξ0(z, i) for all z ∈ [a, b] and i ∈ {0, 1},
where a, b ∈ Z and a < b, then outside probability e−C

′t, ηt(z, i) = ξt(z, i) for
all z ∈ [a+ σt, b− σt] and i ∈ {0, 1}.

3.3 Irreducibility and discrepancies

As for general SEP, a crucial tool to prove Theorem 2.1 is an irreducibility
property. We thus begin with the following definitions and properties.
For x, y ∈ V such that x 6= y, and n ∈ N, we write x

n→p y if there exists a path
(x = x0, . . . , xn−1 = y) of length n such that p(xk, xk+1) > 0 for k = 0, . . . , n−1.

We write x→p y if there exists n ∈ N such that x
n→p y. We omit mention of p

whenever there is no ambiguity on the kernel. We say x and y are p-connected
if x →p y or y →p x. We say two configurations η, ξ in X are p-ordered if
there exists no (x, y) ∈ V × V such that x and y are p-connected and (η, ξ) has
discrepancies of opposite types at x and y.

Definition 3.1. We say the kernel p(., .) is weakly irreducible if, for every
(x, y) ∈ V × V such that x 6= y, x and y are p-connected.

The above notion is weaker than the usual irreducibility property, for which
a stronger notion of p-connection is required, namely x →p y and y →p x. For
instance, the kernel (4) is irreducible if and only if dl > 0; if dl = 0, it is weakly
irreducible but not irreducible. For our two-lane and multi-lane models, we need
the following lemma.

Lemma 3.3. (i) The two-lane kernel p(., .) given by (19) is weakly irreducible
except when q = 0 and both lanes are totally asymmetric in the same direction,
that is d0l0 + d1l1 = 0 < d0d1 + l0l1.
(ii) The multi-lane kernel p(., .) given by (10) is weakly irreducible under as-
sumption 2.1.

Proof of Lemma 3.3.

Proof of (i). Let x, y ∈ Z such that x 6= y. We need to go either from (x, 0) to
(y, 1), or from (y, 1) to (x, 0), with the kernel p(., .).
(a) Assume first q > 0. Since the kernel (4) is weakly irreducible, the horizontal
kernel on lane 0 can either go from (x, 0) to (y, 0) or from (y, 0) to (x, 0). In the
former case, since p > 0, we go from (y, 0) to (y, 1) with the vertical kernel. In
the latter, since q > 0, we can go from (y, 1) to (y, 0) vertically and then from
(y, 0) to (x, 0) horizontally.
(b) Assume now q = 0. If the two lanes are totally asymmetric in the same di-
rection, say e.g. l0 = l1 = 0 < d0d1, and x > y, we can neither go from (x, 0) to
(y, 1) (because l0 + l1 = 0), nor from (y, 1) to (x, 0) (because q = 0); otherwise,
we have either d0l1 > 0 or d1l0 > 0, say for instance the former. Then we can
go from (x, 0) to (y, 1) via (y, 0) if x < y, or via (x, 1) if x > y.
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Proof of (ii). Let x, y ∈ Z such that x 6= y and i, j ∈ W such that i 6= j.
Since the vertical kernel q(., .) is irreducible, the same argument as in case (a)
of (i) shows that we can either go from (x, i) to (y, j) or from (y, j) to (x, i).

The next lemma gives a characterization of p-ordered configurations. This
requires the following definition.

Definition 3.2. For (η, ξ) ∈ X ×X , we write η >< ξ if and only if there exist
x, y ∈ Z such that x < y and the following hold: (a) there are discrepancies of
opposite type at (x, 1) and (y, 0); (b) η0 ≤ ξ0 and η1 ≥ ξ1 if the discrepancy
at (x, 1) is an η discrepancy; or η0 ≥ ξ0 and η1 ≤ ξ1 if the discrepancy at
(x, 1) is a ξ discrepancy; (c) There is no discrepancy at (z, 1) if z > x, nor any
discrepancy at (z, 0) if z < y.
We define

E>< := {(η, ξ) ∈ X × X : η >< ξ} (87)

Lemma 3.4. For the kernel p(., .) in (19), under (23), we have the following:
(i) Unless q = 0 and l0 = l1 = 0, two configurations η and ξ are p-ordered if
and only if they are ordered, i.e. η ≤ ξ or ξ ≤ η.
(ii) If q = 0 and l0 = l1 = 0, two configurations η and ξ are p-ordered if and
only if either they are ordered, or η >< ξ.

Proof of Lemma 3.4. Let η and ξ be two p-ordered configurations. Note that
two configurations are ordered (see (84)) if and only if they have no pair of
opposite discrepancies. If pq 6= 0 or l0+ l1 > 0, because of (23), any two distinct
points of V are p-connected, hence η and ξ are ordered. Assume q = 0 < p.
First we note that for all x, y ∈ Z, (x, 0) and (y, 0) are p-connected, and so are
(x, 1) and (y, 1). Thus ηi and ξi are ordered. If the ordering is the same, then η
and ξ are ordered. Otherwise, there exists a pair of opposite discrepancies, one
at (x, 1) and one at (y, 0) for x,y ∈ Z. We must have x < y, otherwise (x, 1)
and (y, 0) are p-connected. The ordering on each lane is imposed by the nature
of the discrepancies at (x, 1) and (y, 0). Assume for instance that there is an η
discrepancy at (x, 1) and a ξ discrepancy at (y, 0). Then η0 ≤ ξ0 and η1 ≥ ξ1.
For every z > y, since η1 ≥ ξ1, we have η1(z) = ξ1(z) or an η discrepancy at
(z, 1). The latter is ruled out because (y, 0) and (z, 1) are p-connected. Similarly
there can be no discrepancy at (z, 0) if z < x. We can then redefine x as the
location of the rightmost η discrepancy on lane 1, and y denote the location of
the leftmost ξ discrepancy on lane 0.

3.4 Proof of characterization

The next two results will enable us to deal with discrepancies in the proof of
Theorem 2.1.

Lemma 3.5. Let ν̃ ∈ (Ĩ ∩ S̃). If l0 = l1 = q = 0, then ν̃(E><) = 0.
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Proof of Lemma 3.5. We define the following random variables taking values in
Z ∪ {±∞}:

X = X(η, ξ) := sup{x ∈ Z : η1(x) 6= ξ1(x)} (88)

Y = Y (η, ξ) := inf{x ∈ Z : η0(x) 6= ξ0(x)} (89)

with the convention sup ∅ = −∞ = − inf ∅. That is, X is the location (if
it exists) of the rightmost discrepancy on lane 1. Indeed on E><, we have
X(η, ξ) ∈ Z by Lemma 3.4. Hence

ν̃(E><) ≤
∑

k∈Z
ν̃(X = k) ≤ 1 (90)

Since ν̃ ∈ S̃, ν̃(X = k) does not depend on k ∈ Z. This quantity must vanish
by the second inequality in (90), hence the result follows from the first one.

For m,n ∈ Z ∪ {±∞}, where m ≤ n, let

Dm,n(η, ξ) :=
∑

x∈V :m≤x(0)≤n
|η(x) − ξ(x)| (91)

denote the number of discrepancies in the space interval [m,n] ∩ Z. We simply
write D(η, ξ) when (m,n) = (−∞,+∞).

Proposition 3.2. Let λ̃ ∈ Ĩ. Assume either λ̃ ∈ S̃, or
∫

X×X
D(η, ξ)λ̃(dη, dξ) < +∞ (92)

Then, for every (x, y) ∈ V × V such that x and y ar p-connected,

λ̃ (Ex,y) = 0 (93)

where

Ex,y := {(η, ξ) ∈ X × X : there are discrepancies of opposite types at x and y}
(94)

An equivalent formulation of Proposition 3.2 is

λ̃ {(η, ξ) ∈ X × X : η and ξ are p-ordered} = 1 (95)

In [8, Theorem 1.1] it is proved that if λ̃ is a translation invariant and invariant
probability measure for a one-dimensional translation invariant SEP (coupled
via basic coupling), then (93) holds whenever x and y are p-connected. The
argument carries over to our setting by using only translation invariance in the
Z direction. For the sake of completeness, details of the proof of Proposition
3.2 are given in Appendix A.2.

We are now in a position to complete the proof of Theorem 2.1.
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Proof of Theorem 2.1. Let µ ∈ (I ∩ S)e and ρ ∈ [0, 2]. Since νρ ∈ (I ∩ S)e (cf.
Lemma 3.2), using [9, Proposition 2.14 in Chapter VIII], we obtain a measure

λ̃ on X ×X , which belongs to (Ĩ ∩ S̃)e and whose marginals are µ and νρ. The
events

E− := {(η, ξ) ∈ X × X : η ≤ ξ} and (96)

E+ := {(η, ξ) ∈ X × X : η ≥ ξ} (97)

are invariant with respect to spatial translations, and (by attractiveness) they

are conserved by the coupled dynamics. Since λ̃ ∈ (Ĩ ∩ S̃)e, E+ and E− both

have λ̃-probability 0 or 1. The main step is to prove that

λ̃(E+ ∪ E−) = λ̃ {(η, ξ) ∈ X × X : η ≤ ξ or ξ ≤ η} = 1 (98)

implying that one of the events E+ and E− has probability 1. It follows that for
every 0 < ρ < 2 we either have µ ≤ νρ or µ ≥ νρ. By Remark 3.2 we conclude
that there exists some r ∈ [0, 2] such that µ = νr.

We now turn to the proof of (98). Outside the case q = 0 = l0 = l1 < p,
the kernel p(., .) in (19) is weakly irreducible; thus (98) follows from (95) and
(i) o f Lemma 3.4. Now assume q = 0 = l0 = l1 < p. By (ii) of Lemma 3.4, we
obtain

λ̃(E− ∪ E+ ∪E><) = 1 (99)

and the conclusion follows from Lemma 3.5.

4 Proofs of Theorems 2.2, 2.3 and 2.4

The proofs of Theorems 2.2 and 2.3 are developed respectively in Subsections 4.1
and 4.3. They rely on a series of intermediate results, all established in Section
5, except Proposition 4.6, established in Subsection 4.2. Indeed this proposition
is necessary for Theorem 2.2, but its proof introduces material (namely current
and flux function) also used for Theorem 2.3. Finally, Theorem 2.4 is proved in
Subsection 4.4.

4.1 Proof of Theorem 2.2

We have to distinguish the case (48), where the kernel p(., .) in (19) is not weakly
irreducible, cf. Lemma 3.3. In this case, we introduce the following definition.

Definition 4.1. For (η, ξ) ∈ X ×X , we write η ⊲⊳ ξ if and only if the following
hold: (i) η >< ξ (cf. Definition 3.2); (ii) the number of locations z ∈ Z

+ on
lane 1 that are not occupied by a coupled particle is finite; (iii) the number of
locations z ∈ Z

− on lane 0 that are not occupied by a hole is finite.
We define

E⊲⊳ := {(η, ξ) ∈ X × X : η ⊲⊳ ξ} (100)
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The main steps for the proof of Theorem 2.2 are Propositions 4.1–4.6 and
Corollary 4.1, stated below and proved in Subsection 5.1.

Step one. Let µ ∈ Ie. We prove the following proposition.

Proposition 4.1. (i) There exists a measure λ̃(dη, dξ) on X×X with marginals
µ(dη) and τ1µ(dξ), satisfying one of (101)–(103) below (if q > 0), or one of
(101)–(104) below (if l0 = l1 = q = 0 < p):

λ̃ (E1) = 1 where E1 := ((η, ξ) ∈ X × X : η < ξ) (101)

λ̃ (E2) = 1 where E2 := ((η, ξ) ∈ X × X : ξ < η) (102)

λ̃ (E3) = 1 where E3 := ((η, ξ) ∈ X × X : η = ξ) (103)

λ̃ (E⊲⊳) = 1 (104)

(ii) For any measure λ̃(dη, dξ) with marginals µ(dη) and τ1µ(dξ) satisfying (101)
or (102), there exists k ∈ {1, 2} such that (cf. definition of D(η, ξ) below (91))

λ̃ ((η, ξ) ∈ X × X : D(η, ξ) = k) = 1 (105)

This has the following consequences.

Corollary 4.1. (i) In cases (101)–(103), the family (τnµ)n∈Z is stochastically
monotone.

(ii) If a probability measure µ̂ on X is such that µ̂ ∈ I and (τnµ̂)n∈Z is stochas-
tically monotone, then there exist probability measures γ−(dρ) and γ+(dρ) on
[0, 2] such that the limits

µ̂± := lim
n→±∞

τnµ̂ =

∫

[0,2]

νργ
±(dρ) (106)

hold in the sense of weak convergence.

Step two. We conclude in case (104) of Proposition 4.1.

Proposition 4.2. In case (104), we have µ ∈ Bl.

Step three. We show that the measures γ± of Corollary 4.1 are Dirac measures.

Proposition 4.3. In cases (101)–(102), there exists (ρ−, ρ+) ∈ [0, 2]2 \D such
that (i) γ± = δρ± , thus µ is a (ρ−, ρ+)-shock measure, cf. (42); (ii) |ρ+−ρ−| =
k, where k is defined in (ii) of Proposition 4.1.

Step four. In Proposition 4.5 below, we study the relation between extremal
invariant measures that are (ρ−, ρ+)-shock measures for a common pair (ρ−, ρ+).
The proof of Proposition 4.5 requires the following variant of Proposition 4.1.
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Proposition 4.4. Let (ρ−, ρ+) ∈ [0, 2]2 \ D, and assume ν, ν′ ∈ Ie are two
(ρ−, ρ+)-shock measures. Then: (i) there exists a coupling of ν and ν′ that
satisfies one of the properties (101)–(104), property (104) being possible only
under assumption (48); (ii) in case (104), ν and ν′ lie in Bl; (iii) in cases
(101)–(102), (105) holds for some k ∈ (N \ {0}) ∪ {+∞}.
Proposition 4.5. Let ν, ν′ ∈ Ie be two (ρ−, ρ+)-shock measures. (i) Assume
|ρ+ − ρ−| = 1, and we do not simultaneously have (48) and ν ∈ Bl1. Then
ν′ is a translate of ν, i.e. there exists n ∈ Z such that ν′ = τnν. (ii) Assume
|ρ+ − ρ−| = 2, ν′ is not a translate of ν, and we do not have (48). Then every
(ρ−, ρ+)-shock measure is either a translate of ν, or a translate of ν′.

Final step. We assemble the previous steps to conclude the proof of Theorem
2.2. We first introduce the sets R and R′ involved in Theorem 2.2.

Definition 4.2. We denote by R the set of (ρ−, ρ+) ∈ [0, 2]2 \ (D∪B) such that
Ie contains at least one (ρ−, ρ+)-shock measure, and by R′ the set of (ρ−, ρ+) ∈
B1 such that Ie contains at least one (ρ−, ρ+)-shock measure.

In Subsection 4.2 below, we prove the following proposition, after introducing
the macroscopic flux function of our model. We can then end this section with
the proof of Theorem 2.2.

Proposition 4.6. Outside (49)–(50), the following holds: (i) in cases (101)–
(102) with k = 2, µ is a (0, 2)-shock measure; (ii) Statements (ii), (b) and (c)
of Theorem 2.2 hold. (iii) Statement (i) of Proposition 4.5 still holds if we have
(48) and ν ∈ Bl1.

Proof of Theorem 2.2. First, for µ ∈ Ie, we consider the different possibilities
in Proposition 4.1. In case (103), we have µ ∈ (I ∩S)e; by Theorem 2.1, µ = νρ
for some ρ ∈ [0, 2]. In case (104) (which may only occur under (48)), Proposi-
tion 4.2 implies µ ∈ Bl1 ∪ Bl2, with Bl1 and Bl2 given by (59)–(61). In cases
(101)–(102) with k = 2 in (105), Proposition 4.3 and (i) of Proposition 4.6 lead
to µ ∈ Bl2. In cases (101)–(102) with k = 1 in (105), by Proposition 4.3, µ is a
shock measure of amplitude 1.

Next, to obtain (46), we consider the structure modulo translations of shock
measures. Cardinality bounds for R and R ∪R′ are given by Proposition 4.6.
By (i) of Proposition 4.5 and (iii) of Proposition 4.6, for every (ρ−, ρ+) ∈ R∪R′,
the set of (ρ−, ρ+)-shock measures in Ie consists of translates of a single measure.
The set Bl2 is stable by translation because the generator (3) with transition
kernel (19) is translation invariant. By (ii) of Proposition 4.5, outside (48), Bl2
consists of at most (up to translations) two measures. This concludes the proof
of (i) and (ii), (a). Finally, (ii), (b) and (ii), (c) are contained in statement
(ii) of Proposition 4.6.

4.2 Proof of Proposition 4.6

We begin by defining the flux function, which will also play an important role
in the proof of Theorem 2.3, and state some of its properties.
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4.2.1 Microscopic current and macroscopic flux

We first define the microscopic current by

j(η) :=
∑

x(0)≤0,y(0)>0

p(x, y)η(x)(1 − η(y))−
∑

x(0)≤0,y(0)>0

p(y, x)η(y)(1 − η(x))

(107)
for η ∈ X . With the kernel defined by (19), this yields

j(η) =

1∑

i=0

{
diη

i(0)[1− ηi(1)]− liη
i(1)[1− ηi(0)]

}

=

1∑

i=0

{
γiη

i(0)[1− ηi(1)] + li[η
i(0)− ηi(1)]

}
(108)

The macroscopic flux is then given by, for ρ ∈ [0, 2],

G (ρ) :=

∫
j(η)νρ (dη) . (109)

Using (71) and (35), this yields

G (ρ) = γ0G0 [ρ̃0 (ρ)] + γ1G0 [ρ̃1 (ρ)] (110)

where G0 is the flux function of the single-lane TASEP, given by

G0 (α) = α (1− α) ∀α ∈ [0, 1]. (111)

In the following two special cases, the function G has a simple expression.

Example 4.1. Assume q = 0 < p. Then, by (110) and (70),

G(ρ) =

{
γ1ρ(1− ρ) if ρ ∈ [0, 1]
γ0(ρ− 1)(2− ρ) if ρ ∈ (1, 2]

(112)

In particular, when γ0 = γ1, the flux is a function of period 1 whose restriction
to [0, 1] is the TASEP flux. It exhibits a change of convexity at ρ = 1, where
it is also non differentiable. Note that the latter property is not seen in usual
single-lane models with product invariant measures.

Example 4.2. Assume p = q > 0. Then, by (110) and (68),

G(ρ) =
γ0 + γ1

4
ρ(2− ρ) (113)

Here, the flux has the same shape as the single-lane TASEP flux (from which it
is obtained by a scale change in the horizontal and vertical directions). It is in
particular strictly concave.

Useful properties of G are gathered in the following proposition.
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Proposition 4.7.

(o) G(0) = G(2) = 0.

(i) Outside cases (49), (50) and (51), G has at least one and at most three
local extrema.

(ii) (a) G(1) = 0 if and only if q = 0 or γ0 + γ1 = 0; (b) if q > 0, G is
continuously differentiable on [0, 2], and G′(1) = 0 if and only if γ0 = γ1 or
p = q.

(iii) Under (23), G′(2) ≤ 0. Besides, G′(2) < 0 holds unless we have (49),
or (50), or q = γ0 = 0.

(iv) The function G depends only on the parameters γ0, γ1 and r defined in
(52). Denoting G = Gγ0,γ1,r, it holds that

Gγ0,γ1,r(2− ρ) = Gγ1,γ0,r(ρ) = Gγ0,γ1,r−1(ρ) (114)

where the last equality holds when r > 0. If γ0 + γ1 6= 0, for d ∈ R, it holds that

Gγ0,γ1,r = (γ0 + γ1)Gd,1−d,r, with d defined in (52). (115)

(v) Assume γ0 = γ1 6= 0, that is d = 1/2. Then: (a) G′(1/2) > 0; (b) for
r ∈ (0, r0), with r0 given by (53), we have G(1/2) > G(1).

(vi) If q 6= 0 and γ0 + γ1 6= 0, the equation G(ρ + 1) − G(ρ) = 0 has a unique
solution in [0, 1]. If q 6= 0, p 6= q and γ0 + γ1 = 0 6= γ0γ1, the solutions of this
equation in [0, 1] are ρ = 0 and ρ = 1.

4.2.2 Proof of Proposition 4.6

The scheme of proof of Proposition 4.6 is the following. We introduce in Defini-
tion 4.3 a set denoted by R0, which depends only on the flux function. Lemma
4.1 (which will be proved using Proposition 4.7) says that R0 contains at most
three elements, in most cases no more than one, and sometimes none. Propo-
sition 4.8 provides information on possible stationary shock measures, implying
that R is contained in R0; part of this proposition will be useful for the proof of
Theorem 2.3. The proof of Proposition 4.6 is concluded using Lemma 4.1 and
Proposition 4.8; these are proved in Subsection 5.2.

Definition 4.3. Let R0 denote the set of pairs (ρ−, ρ+) ∈ [0, 2]2 \ D satis-
fying the following conditions: (i) |ρ+ − ρ−| = 1; (ii) G(ρ+) = G(ρ−) =
minρ∈[ρ−,ρ+]G if ρ− < ρ+; or G(ρ+) = G(ρ−) = maxρ∈[ρ+,ρ−]G if ρ− > ρ+,
where G is defined by (109)–(110).

Remark 4.1. Condition (ii) in Definition 4.3 means that (ρ−, ρ+) is an entropy
shock for the scalar conservation law with flux function G, that is the expected
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hydrodynamic equation for our model. Thus R0 is exactly the set of entropy
shocks of amplitude 1.

Lemma 4.1. Outside (49)–(51), the set R0 contains at most three elements.
More precisley:
(i) If q > 0 and γ0 + γ1 6= 0, R0 contains one element, and B1 ∩R0 = ∅.
(ii) If q > 0, p 6= q and γ0+γ1 = 0 6= γ0γ1, or if q = 0 and γ0 6= γ1, R0 contains
two elements, and R0 ⊂ B1.
(iii) Assume d = 1/2, and recall r0 defined by (53). Then R0 = {(1/2, 3/2)} if
and only if r ∈ [r0, 1], R0 = ∅ if and only if

r ∈ (0, r0), (116)

and R0 = {(3/2, 1/2); (0, 1); (1, 2)} if and only if r = 0.
(iv) There exists an open subset Z of [0, 1]2, containing {1/2} × (0, r0), such
that R0 = ∅ for (d, r) ∈ Z.

Proposition 4.8. (i) Assume that a measure ν ∈ I is a (ρ−, ρ+)-shock measure.
Then (ρ−, ρ+) satisfies condition (ii) of Definition 4.3.
(ii) Assume that in Proposition 4.1 we have (101) or (102), and k = 1. Then
the pair (ρ−, ρ+) in Proposition 4.3 satisfies (ρ−, ρ+) ∈ R0.
(iii) Under the assumptions of (ii), suppose in addition that (ρ−, ρ+) ∈ B1; then
either γ0 + γ1 = 0, or q = 0. If the latter holds, we are in one of the cases (iv),
resp. (v), (vi) of Theorem 2.3, and ν lies in the set given by (59), resp. (62),
(63).

Proof of Proposition 4.6.

Proof of (i). By (i) of Proposition 4.3, µ is a shock measure of amplitude
2, that is either a (0, 2) or a (2, 0)-shock measure. The second possibility and
(i) of Proposition 4.8 would imply that (2, 0) satisfies condition (ii) of Definition
4.3, thus that the maximum of G is 0; whereas (iii) of Proposition 4.7 (when
q > 0) and (112) (when q = 0) imply that this maximum is positive under (23).

Proof of (ii). By Definition 4.2 and (ii) of Proposition 4.3, R and R′ con-
tain only shocks of amplitude 1 associated with stationary shock measures. By
Proposition 4.8, (i), any shock associated with a stationary shock measure is
an entropy shock (cf. Remark 4.1). Thus by Definition 4.2 and Remark 4.1, we
have R ∪ R′ ⊂ R0, R ⊂ R0 \ B1 and R′ ⊂ R0 ∩ B1. The results then follow
from (i) and (ii) of Lemma 4.1 if q > 0. If q = 0, γ0γ1 6= 0 and γ0 6= γ1, (112)
and Definition 4.3 show that R0 contains at most two points and R0 ⊂ B1, thus
R = ∅ and R′ ⊂ R0.

Proof of (iii). In this case, by (iii) of Proposition 4.8, Bl1 is contained in
the right-hand side of (59). Each of the two sets on this right-hand side consists
of translates of a single measure; the first set contains only (1, 2)-shock measures
and the second one only (0, 1)-shock measures.
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4.3 Proof of Theorem 2.3

We will need the following lemma, proved in Section 5.2.

Lemma 4.2. Assume ν1, ν2 ∈ I are supported on X2, and H2(η) defined by (57)
has the same constant value under ν1 and ν2. Then, unless l0 = l1 = q = 0 < p,
it holds that ν1 = ν2.

Proof of Theorem 2.3.

Proof of (o). Since µ ∈ I, we have (recalling (9))

∫
L

∑

x∈Z:m≤x≤n
η (x) dµ(η) = 0

where
Lη(x) = τx−1j(η)− τxj(η) (117)

with j defined by (108). Hence, for arbitrary n,m ∈ Z, we conclude that the
quantity µ[τxj(η)] is independent of x. Since µ is a (0, 2)-shock measure (see
(42)), we have

lim
n→+∞

µ[η(n, i)] = 1, lim
n→−∞

µ[η(n, i)] = 0

Since 0 ≤ η(x, i)(1 − η(y, i)) ≤ min[η(x, i), 1 − η(y, i)] for x, y ∈ Z, this implies

lim
n→+∞

µ[η(x, i)(1 − η(x+ 1, i))] = lim
n→+∞

µ[η(x+ 1, i)(1− η(x, i))] = 0 (118)

for i ∈ {0, 1}. Thus µ[τxj(η)] = 0, which can be written

µ

{
1∑

i=0

γiη
i(x)[1 − ηi(x+ 1)]

}
= µ

{
1∑

i=0

li[η
i(x) − ηi(x+ 1)]

}
(119)

Summing (119) over x ∈ Z and using (118), we obtain

1∑

i=0

γiµ

{
∑

x∈Z
ηi(x)[1 − ηi(x+ 1)]

}
< +∞ (120)

For each i ∈ {0, 1}, γi > 0, hence the series inside braces in (120) converges
µ-almost surely. Thus, µ-almost surely, ηi(x)[1 − ηi(x + 1)] → 0 as x → ±∞
implying ηi(x)[1 − ηi(x+ 1)] = 0 for |x| large enough, and η ∈ X2.

Proof of (i). Let ϕ ∈ C0
K(R), that is, a continuous function with compact

support. We consider the function FN : X → R defined by

FN (η) := N
∑

x∈Z
ϕ
( x
N

)
η(x)
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Since γ0 = γ1 = 0, i.e. l0 = d0 and l1 = d1, the microscopic current (108) writes

j(η) =

1∑

i=0

di[η
i(0)− ηi(1)] (121)

Using (117), (121) and two summations by parts, we obtain

LFN (η) = N−1
1∑

i=0

di
∑

x∈Z
ϕ′′
( x
N

)
ηi(x) + oN (1) (122)

where oN (1) is a quantity bounded in modulus by a deterministic sequence
vanishing as N → +∞. By Theorem 2.2, µ satisfies (42), where either ρ+ = ρ−

and µ is a product measure given by Theorem 2.1, or ρ+ 6= ρ− and µ is a
(ρ−, ρ+)-shock measure. We show that we are in the first situation. Indeed,
(42) implies

lim
x→±∞

∫

X
ηi(x)dµ(η) = ρ̃i(ρ

±) (123)

Thus, taking the expectation of (122) and using stationarity of µ, we have

0 =

∫

X
LFN (η)dµ(η) = ϕ′′(0)

1∑

i=0

di
[
ρ̃i(ρ

−)− ρ̃i(ρ
+)
]
+ εN (124)

where εN → 0 as N → +∞. Since ρ̃i is increasing and ϕ arbitrary, it follows
that ρ+ = ρ−.

Proof of (ii), (a). The product measure µρ. defined by (25) for ρ. given by
(55) is reversible because ρ. is a solution of (24). The result follows since the
measures in (56) are defined by conditioning the reversible measure µρ. on the
conserved quantity H2. Assume now ν̌n = (1 − α)ν1 + αν2 with ν1, ν2 ∈ I.
Since ν̌ is supported on X2 and H2 has constant value 2n under ν̌n, the same
holds for ν1 and ν2. Thus ν1 = ν2 by Lemma 4.2, implying that ν̌n is extremal.
The same argument applies to ν̂n.

Proof of (ii), (b). The measure ν̌0 is a product measure of the form (25),
with ρ. given by

ρx,i = ρ̌x,i := 1{x>0}, (x, i) ∈ Z×W, (125)

On the other hand, let µ̂0 denote the product measure (25) where

ρx,i = ρ̂x,i := 1{x>0}

+ ρ01{(0,0)}(x, i) + ρ11{(0,1)}(x, i), (x, i) ∈ Z×W (126)

with

ρ0 :=
c

1 + c
, ρ1 :=

cpq
1 + cpq

; c > 0 (127)
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The functions defined by (125) and (126)–(127) are solutions of (24). Thus, µ̂0

and ν̌0 are reversible. Under µ̂0, we have a.s. that

η(x, i) = 1 for x > 0, η(x, i) = 0 for x < 0; i ∈ {0, 1} (128)

which does not evolve in time. Hence under µ̂0, η(−1, 0)+ η(−1, 1) is conserved
by the evolution, and conditioning µ̂0 on {η(−1, 0) + η(−1, 1) = 1} yields a
reversible measure satisfying (128), under which the vertical layer {0} × {0, 1}
contains a single particle located at i ∈ {0, 1} with probability pi given by

p0 =
ρ0(1− ρ1)

ρ0(1 − ρ1) + ρ1(1− ρ0)
=

q

p+ q

p1 =
ρ1(1− ρ0)

ρ0(1 − ρ1) + ρ1(1− ρ0)
=

p

p+ q

This measure is exactly ν̂0. Note that the process starting with (128) and a
single particle on {0}× {0, 1} reduces to the two state Markov-process followed
by this single particle jumping between lanes 0 and 1, and ν̂0 reduces to the
unique invariant measure of this process (which is reversible).

For the measures ν̌0 and ν̂0, the proof of extremality in (ii), (a) also applies
here. Finally, by Theorem 2.2, (ii), (a), the above measures are (modulo hori-
zontal translations) the only elements of Bl2.

Proof of (iii). That R = R′ = ∅ follows from Definition 4.2, (ii) of Propo-
sition 4.8 and (ii)–(iv) of Lemma 4.1. When d1 = λd0 and l1 = λl0 with λ close
to 1, then d is close to 1/2, and (54) follows from (46) and (ii) of Theorem 2.3
proven above.

Proof of (iv)–(vi). We first treat Bl1 with an argument common to the three
situations. Indeed in (iv), resp. (v), (vi), by statement (iii) of Proposition 4.8,
any element of Bl1 must belong to the set (59), resp. (62), (63). Conversely,
elements of these sets are extremal invariant probability measures in each case.
We detail the argument for ν⊥,+∞,n in case (iv), all others are similar. Assume
ν⊥,+∞,n = (1 − α)ν1 + αν2, with ν1, ν2 ∈ I and α ∈ (0, 1). Since lane 0 is
empty under ν⊥,+∞,n, the same holds under ν1 and ν2. Thus under the three
measures, lane 1 evolves as an autonomous SEP with jump rate d1 to the right
and l1 to the left, i.e., (4) with transition kernel (3) with (d, l) = (d1, l1). The
marginal of each measure on lane 1 is then an invariant measure for this SEP.
Since the marginal of ν⊥,+∞,n is an extremal (blocking) invariant measure for
the SEP on lane 1, we have ν1 = ν2 = ν⊥,+∞,n. Since lane 0 remains empty
under the evolution, ν⊥,+∞,n is indeed an invariant measure for the two-lane
SEP.

We next treat R and Bl2 with arguments specific to each situation.
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Proof of (iv), (a). This corresponds to (112), that is, example 4.1. Note first
that, since γ0 > 0 and γ1 > 0,

(ρ−, ρ+) = (0, 1); (ρ−, ρ+) = (1, 2) (129)

satisfy the conditions of Definition 4.3. These two shocks belong to B1.

If γ0 = γ1, we have G(ρ+1) = G(ρ) for every ρ ∈ [0, 1]; thus (ρ−, ρ+) = (ρ, ρ+1)
and (ρ−, ρ+) = (ρ + 1, ρ) satisfy G(ρ+) = G(ρ−) for every ρ ∈ [0, 1]. Among
such shocks different from the ones in (129), only (ρ−, ρ+) = (3/2, 1/2), sat-
isfies the variational equality in condition (ii) of Definition 4.3. Thus R0 ⊂
{(3/2, 1/2); (0, 1); (1, 2); (0, 2)}, and R ⊂ {(3/2, 1/2)}.

If γ0 6= γ1, then for every ρ ∈ (0, 1), we have G(ρ + 1) 6= G(ρ). Thus R0

contains no other shock than those in (129). Hence R = ∅.

We finally prove that Bl2 is empty unless l0 = l1 = 0. Let µ ∈ Bl2, and

H1(η) :=
∑

z∈Z: z≤0
η(z, 1)−

∑

z∈Z: z>0

[1− η(z, 1)]

(which is well-defined since µ is supported on X2). The function H1 is constant
along horizontal jumps and is increased by vertical jumps from lane 0 to lane 1.
We claim and prove below that if l0 > 0, there is a positive probability that by
time 1, the leftmost particle on lane 0 has jumped to lane 1. This implies

Eµ [H1(η1)−H1(η0)] > 0 (130)

which contradicts stationarity. Similarly, if l1 > 0, there is a positive probabil-
ity that by time 1, the leftmost particle on lane 1 has jumped to lane 0, which
implies the reverse strict inequality in (130).

We now prove the claim when l0 > 0 (the proof in the case l1 > 0 is simi-
lar). In the sequel, on each lane, we call active those particles initially on the
left of the rightmost hole and the next particle to the right of this hole (we also
call active those sites where active particles are initially sitting). For x, y ∈ V ,
we say a Poisson process N(x,y) of the Harris construction is attached to some
site z ∈ V if z ∈ {x, y}. We condition µ on the number and positions of active
particles on each lane. Denote respectively by x0, y0, x1 the initial positions of
the leftmost particle on lane 0, the next particle on its right, and the leftmost
particle on lane 1. We couple our two-lane SEP with a random walk on lane 0
starting from (x0, 0), that jumps to the right and left with respective rates d0, l0
and is reflected at (y0, 0). The random walk is defined from the Harris system
as follows: if its current position is (x, 0) ∈ V , at the first point of a Poisson
process N(x,0),(x+ε,0) where ε ∈ {−1, 1}, it jumps to x+ ε, except if x = y0 − 1
and ε = 1. Let x′0 := min(x0, x1 − 1, y0 − 2), and E0 denote the event that
the random walk hits (x′0, 0) for the first time before time 1/2 and stays there
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at least until time 1 (if x′0 = x0, E0 corresponds to the return time to (x0, 0)).
This event has positive probability and depends only on the Poisson processes
N(x,x+1) and N(x+1,x) for x′0 − 1 ≤ x ≤ y0 − 2. Let T0 denote the first time
among all the following Poisson processes:
(a) N(y0,0),(y0−1,0);
(b) N(x,0),(x,1) for x′0 < x ≤ y0 − 1; and
(c) the Poisson processes attached to active sites on lane 1; T0 is an exponential
random variable. Consider the event

E′0 := E0 ∩ {T0 > 1}
∩ {N(x′

0
,0),(x′

0
,1) has at least one point in the time interval [1/2, 1]}

On E0, in the two-lane SEP starting from the conditioned measure, the particle
initially at (x0, 0) coincides with the random walk until it reaches (x′0, 0); then
its next motion is a jump from there to (x′0, 1) before time 1; all this occurs
before any particle initially on lane 1 has moved and before the particle initially
at (y0, 0) has moved. The three events of which E′0 is the intersection are inde-
pendent, because they depend on disjoint sets of Poisson processes. It follows
that E′0 has positive probability when starting from the conditioned measure,
irrespective of the conditioning.

Proof of (iv), (b). Assume l0 = l1 = 0. The measure ν⊥,i,j is shown to be
reversible as in (ii) above, since it is a product measure of the form (25) with

ρx,0 = 1{x>i}, ρx,1 = 1{x>j}

for x ∈ Z, and the above function ρ. satisfies the reversibility conditions (24).
The measure ν⊥,i,j is a Dirac measure, hence it is extremal in the set of proba-
bility measures on X , thus a fortiori extremal in I.

Now we prove that any element µ of Bl2 is of the form ν⊥,i,j for (i, j) ∈ B.
Indeed, since µ is supported on X2, the random variable

n0 := inf{z ∈ Z : η(z, i) = 1, ∀z ≥ n0, i ∈ {0, 1}}

is µ-a.s. finite, as well as the number of particles to the left of n0. Since
jumps are totally asymmetric both horizontally and vertically, conditioned on
this number and on n0, the process lives on a finite space, and its irreducible
classes are singletons containing states {η⊥,i,j} that can be reached from the
initial state (indeed, states η⊥,i,j are the only ones from which no transition is
possible, and no return is possible from a state not belonging to this class). This
implies that µ is a mixture of the invariant measures ν⊥,i,j , and by extremality,
it must be one of them.

Proof of (v). The flux function G has the form (112), that is, example 4.1.
Since γ1 < 0 < γ0, the only pairs (ρ−, ρ+) satisfying the requirements of Def-
inition 4.3 are (ρ−, ρ+) = (1, 0) and (ρ−, ρ+) = (1, 2). These shocks belong
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to B1, hence R = ∅. We next prove that Bl2 is empty. Indeed by statement
(i) of Proposition 4.8, a (ρ−, ρ+)-shock measure must satisfy condition (ii) of
Definition 4.3. This is not the case for (ρ−, ρ+) = (0, 2) or (ρ−, ρ+) = (2, 0),
because by (112), G(0) = G(2) and γ1 < 0 < γ0 implies that G is negative on
(0, 1) and positive on (1, 2).

Proof of (vi). The flux function G has the form (112), that is, example 4.1.
The proof that R = ∅ is similar to the case γ0 6= γ1 in (iv), (a) (the fact that
γ0 = 0 being irrelevant there). The proof that Bl2 is empty is similar to case
(iv), (a) above, since γ0 = 0 implies l0 > 0.

4.4 Proof of Theorem 2.4

Proof of (0). The proof of Theorem 2.1 requires only minor changes. First we
can repeat the proof of Lemma 3.2. The only difference is that on a vertical layer
{z}×W , we now use the fact that Lz

v is the generator of a translation-invariant
SEP on a torus, and νρ is a homogeneous product Bernoulli measure, which is
thus invariant for Lz

v. The rest of the proof is exactly similar to that of Theorem
2.1. Note that here by (ii) of Lemma 3.3, a p-ordered pair of configurations is
ordered, so we do not need analogues of Lemmas 3.4 and 3.5 in this context.

Proof of (1). (a). We can repeat the following steps of the proof of Theo-
rem 2.2: Proposition 4.1 (leading to (101)–(103) with k ∈ {1, . . . , n} instead
of k ∈ {1, 2} in (105), (104) is irrelevant here because p(., .) is weakly irre-
ducible), Corollary 4.1, Proposition 4.3 and Proposition 4.5. This yields that
an extremal invariant measure that is not invariant by horizontal translations
is a shock measure whose amplitude lies in [1, n] ∩ Z. Similarly to Proposition
4.5, we can prove that there are at most (up to translations) k shock measures
of amplitude k. To further characterize possible shocks (ρ−, ρ+), we consider
the macroscopic flux function G defined by (107) and (109) in this setup. By
definition (64) of νρ,

G(ρ) =

(
n−1∑

i=0

γi

)
ρ

n

(
1− ρ

n

)

We can then repeat the proof of statement (i) of Proposition 4.8. Since the
above function G is strictly concave and symmetric around ρ = n/2, shocks
satisfying condition (ii) of Definition 4.3 are those specified in the theorem.
(b). The proof is similar to Theorem 2.3, (o).
(c) Stationarity of the product measure νρ

c
. is proved as in Lemma 3.2, observ-

ing that on vertical layers we have a periodic SEP for which a homogeneous
product measure is invariant. Stationarity and extremality of the conditioned
measure are proved as in Theorem 2.3, (ii).

Proof of (2). We can repeat with minor modifications the proof of statement (i)
of Theorem 2.3. The microscopic current is as in (121). Summation there and
in (123)–(124) is now over i ∈ W := {0, . . . , n − 1}. In the latter two displays,
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ρ̃i(ρ) is replaced by ρ/n.

Proof of (3). Let µ ∈ Ie. If µ ∈ S, the conclusion follows from (o). Oth-
erwise, since the generator (3) is invariant by τ ′, µ′ := τ ′µ ∈ Ie. By (1), µ
and µ′ are shock measures, and µ′ = τ ′µ implies that they are (ρ−, ρ+)-shock
measures for the same pair (ρ−, ρ+). The proof of Proposition 4.4 carries over
to the multilane model (notice indeed that under condition (iii’), the global
kernel p(., .) is weakly irreducible; thus when repeating the part of the proof of
Proposition 4.1 that is used to derive Proposition 4.4, we always obtain (139),
and do not need an analogue of step three). Hence, we have either µ ≤ µ′ or
µ′ ≤ µ. Since τ ′ is a periodic shift, this implies µ′ = µ.

5 Proofs of intermediate results from Subsections

4.1–4.3

5.1 Proofs of intermediate results from Subsection 4.1

Proof of Proposition 4.1.

Proof of (i). Cases (101)–(103) are an adaptation of [4, Proposition 3.2], the
main ingredients of which we recall in steps one and two below, whereas an
additional argument (step three below) is required for (104). Let us fix T > 0.

Step one. Let λ̃0 denote the distribution on X × X of the coupled configu-
ration (η0, ξ0), where η0 ∼ µ and ξ0 = τη0. We denote by (ηt, ξt)t≥0 the coupled
process starting from (η0, ξ0). Define

RT = {x ∈ V : −T ≤ x (0) ≤ T } (131)

Let NT be the number of discrepancies of (ηt, ξt)t≥0 that visit RT at any time

in [
√
T , T ], N in

T the number of these starting from [−(1+ σ)T, (1+ σ)T ] (where
σ is the constant in Proposition 3.1), and N out

T the number of these starting
outside this interval. Adapting the proof in [4, Proposition 2.5] to our model
yields

E
λ̃0 (NT ) = o (T ) when T → ∞. (132)

The proof of [4, Proposition 2.5] used only the following properties of single-lane
SEP, which hold also for our two-lane model.
(a) The finite propagation property (Proposition 3.1) is used to show

E
λ̃0
(
N out

T

)
= o (T ) (133)

(b) the invariance of the generator with respect to horizontal translations, and
(c) the characterization theorem (here Theorem 2.1) for stationary measures
invariant with respect to such translations: these are used to show

E
λ̃0
(
N in

T

)
= o (T ) (134)
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Step two. For x, y ∈ Z, let N x,y
T denote the number of discrepancies that

visit either x or y and disappear during the time interval [
√
T , T ]. Recall the

definition (94) of Ex,y, and define

ex,y := inf
(η,ξ)∈Ex,y

P(η,ξ) (one of the discrepancies at x and y has coalesced by time 1)

where P(η,ξ) denotes the law of the coupled process starting from (η, ξ). The
same argument as in [4, Lemma 3.1] shows that

ex,y > 0 if x→p y or y →p x (135)

Let

λ̃T =
1

T −
√
T

∫ T

√
T

λ̃0S̃tdt (136)

and let λ̃ = limi→∞ λ̃Ti be a subsequential weak limit. Then

λ̃ ∈ Ĩ (137)

Since µ ∈ Ie and the two-lane SEP is translation-invariant in the Z-direction,
we have τµ ∈ Ie. Since λ̃0 has marginals µ ∈ I and τµ ∈ I, λ̃ has marginals µ
and τµ. As in [4, Proposition 3.2], (132) and the strong Markov property yield
respectively the following equality and inequality:

0 = lim inf
T→+∞

1

T
Eλ̃0

(N x,y
T ) ≥ ex,yλ̃(Ex,y) (138)

Combining (135) and (138), we obtain

λ̃ {(η, ξ) is p− ordered} = 1. (139)

that is, (95). In the case q > 0, by (i) of Lemma 3.4, (139) implies (98). When
q = 0, we only arrive at (99).

Step three. Assuming q = 0, we prove below that

λ̃(E>< \ E⊲⊳) = 0 (140)

This together with (99) implies

λ̃(E0 ∪ E1 ∪E2 ∪ E⊲⊳) = 1 (141)

Moreover, each of the events in (141) is invariant under the coupled dynamics.
Then using the fact that µ and τµ lie in Ie, we can conclude as in [4, Proposition

3.2] that λ̃ actually satisfies one of the conditions (101)–(104).

We now prove the claim (140). Recall the random variables X,Y defined by
(88)–(89). Then, by conditions (ii)–(iii) of Definition 4.1,

E>< \ E⊲⊳ ⊂
⋃

x,y∈Z:x<y

E′⊲⊳,x,y ∪
⋃

x,y∈Z:x<y

F ′⊲⊳,x,y (142)
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where, for x < y,

E′⊲⊳,x,y := E>< ∩ {X = x, Y = y}
∩ {There are at least y − x holes on lane 1 to the right of x}

F ′⊲⊳,x,y := E>< ∩ {X = x, Y = y}
∩ {There are at least y − x coupled particles on lane 0 to the

left of y}

We claim that λ̃(E′⊲⊳,x,y) = λ̃(F ′⊲⊳,x,y) = 0 which, in view of (142), implies (140).
On E′⊲⊳,x,y, there is a possible sequence of moves with positive probability that
brings the discrepancy from (x, 1) to (y, 1) that is p-connected to (y, 0). In-
deed one can construct an event on the Harris system prescribing that on the
time interval [0, 1], the corresponding Harris clocks will ring in the desired or-

der while no other clock rings. Hence, by stationarity, λ̃(E′⊲⊳,x,y) > 0 implies

λ̃(E(y,0),(y,1)) > 0, in contradiction with (139). Similarly on F ′⊲⊳,x,y, there is a
possible sequence of moves with positive probability that brings the discrepancy
from (y, 0) to (x, 0) that is p-connected to (x, 1).

Proof of (ii). Since the coupled configurations η and ξ are a.s. ordered under

λ̃, all discrepancies (if any) are of the same type (that is η or ξ discrepancies),
so no coalescence occurs. Thus, recalling the definition of D(η, ξ) from (91),
the sets Ak := {D(η, ξ) = k}, with k ∈ N ∪ {+∞}, are invariant under the
dynamics. Hence,

λ̃ =
∑

k∈N∪{+∞}: λ̃(Ak)>0

λ̃(Ak)λ̃k (143)

where λ̃k := λ̃(.|Ak) ∈ Ĩ. Since µ and τµ are extremal elements of I, for each

k such that λ̃(Ak) > 0, λ̃k has marginals µ and τµ. Assume for instance that λ̃

(and thus λ̃k) satisfies (101). Then

λ̃k[Dm,n(η, ξ)] = λ̃k





∑

x∈V :m≤x(0)≤n
[ξ(x) − η(x)]





= µ[η(n+ 1)]− µ[η(m)] ∈ [0, 2] (144)

Letting m → −∞ and n → +∞, by monotone convergence, and because λ̃k is
supported on Ak, we obtain

k = λ̃k[D(η, ξ)] ∈ {0, 1, 2} (145)

Notice that the right-hand side of (144), and thus also its limit, depends only on

µ. Hence k depends only on µ. This shows that λ̃ = λ̃k for a unique k ∈ {0, 1, 2}.
Since we are in case (101), k = 0 would yield a contradiction. Thus k ∈ {1, 2}.
Dealing with the case (102) is similar.
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Proof of Corollary 4.1. (i) The marginals of λ̃ are µ and τµ, thus µ ≤ τµ in
case (101), or τµ ≤ µ in case (102), or τµ = µ in case (103).

(ii) Given the assumptions, the limits (106) exist and satisfy τµ̂± = µ̂±, that is
µ̂± ∈ S. Besides, we have µ̂± ∈ I. Indeed if f is a local function on X ,

∫

X
Lf(η)dµ̂±(η) = lim

n→±∞

∫

X
Lf(η)d(τnµ̂)(η)

= lim
n→±∞

∫

X
L[τnf ](η)dµ̂(η) = 0

where we used that L commutes with the shift and µ̂ ∈ I. The last equality in
(106) follows from Theorem 2.1 and (38).

Proof of Proposition 4.2. Recall from Proposition 4.1 that (104) may only occur
when q = l0 = l1 = 0. Hence the dynamics of horizontal jumps on each lane
is a TASEP, and these TASEP’s interact through vertical jumps from lane 0 to
lane 1. Let (η0, ξ0) = (η, ξ) ∼ λ̃, where λ̃ is the measure in Proposition 4.1.
We couple the process η. through basic coupling with a process ζ. such that for
every i ∈ {0, 1}, ζit is a TASEP on lane i starting from configuration ηi0 = ηi

(with jumping rates di, li). Then one has, for every t ≥ 0,

η1t ≥ ζ1t , η0t ≤ ζ0t (146)

Indeed, to derive the first inequality in (146), note that at certain random times
belonging to one of the Poisson processes N(z,0),(z,1), a new particle may appear
(following a jump of a particle from lane 0) at site z ∈ Z in η1. that does not
appear in ζ1. . On the other hand, between such times, both processes evolve as
coupled TASEP’s on lane 1, whose order is preserved by attractiveness property
(86). A similar argument holds for the second inequality in (146).

For t > 0, define the empirical measures

M i
t :=

1

t

∫ t

0

µi
sds, N i

t :=
1

t

∫ t

0

νisds (147)

where µi
t denotes the law of ηit and νit that of ζit . Since µ ∈ I, µt = µ does not

depend on t, hence M i
t =: µi does not depend on t and is the marginal of µ on

lane i.

Let tn ↑ +∞ be a subsequence along which N i
tn → νi∞, where νi∞ is an invariant

measure for TASEP. Since η ⊲⊳ ξ, there is a random variable N ∈ Z ∪ {−∞}
such that ζi0(x) = ηi0(x) = 1 for i ∈ {0, 1} and x ∈ Z with x ≥ N . By TASEP
dynamics, this remains true at time t for ζit with the same N . Thus if ζ is a
random configuration with distribution νi∞, we a.s. have

ζ(x) = 1, ∀x ≥ N ′ (148)
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where N ′ has the same law as N . As νi∞ is invariant for TASEP by [8, Theo-
rem 1.4], it is a mixture of Bernoulli and blocking measures. But by (148), the
only possible Bernoulli measure is the one with density 1. Thus there exists a
random variable Ni ∈ Z∪{−∞} such that the random configuration ζi∞ := η∗Ni

has distribution νi∞.

By (146), µ1 ≥ ν1∞ and µ0 ≤ ν0∞. It follows from the above that there ex-
ist random variables M0 and M1 with values in Z ∪ {−∞} such that η10 ≥ η∗M1

and η00 ≤ η∗M0
a.s. Since η ⊲⊳ ξ, the dynamics of (η1t )t≥0 can only possibly cre-

ate a finite number of particles (from lane 0) to the left of M1 and move these
particles to the right until they pile up and get blocked. The same argument
applies to holes in η0, since the dynamics of holes is a two-lane TASEP with
jumps to the left and from lane 1 to lane 0. Thus there exist random variables
−∞ ≤M ′1 ≤M1 < +∞ and −∞ < M0 ≤M ′0 ≤ +∞ such that

lim
t→+∞

η1t = η∗M ′
1
, lim

t→+∞
η0t = η∗M ′

0
(149)

Since particles can jump from lane 0 to lane 1 but not the other way, the
dynamics imposes

M ′0 ≥M ′1 (150)

The limits in (149) imply that ηt converges in law to the distribution of the
random configuration η∞ defined by ηi∞ = η∗M ′

i
for i ∈ {0, 1}, that is (cf. (60))

η∞ = η⊥,M
′
0,M

′
1 . By stationarity, µ is the distribution of this configuration;

hence, recalling the definition of B above (60),

µ =

∫

B

ν⊥,i,jdm(i, j) (151)

where m(di, dj) denotes the law of (M ′0,M
′
1). This with (59)–(61) implies that

µ is a mixture of the measures in Bl.

Proof of Proposition 4.3.

Proof of (i). Without loss of generality, we may assume µ ≤ τµ. Since µ ≤ µ+

(where µ+ is defined as in Corollary 4.1) and µ 6= µ+ (because we are not in case
(103)), by [9, Proposition 2.14 in Chapter VIII] there exists a coupling measure
µ̃(dη, dξ) with marginals µ(dη) and µ+(dξ), such that

µ̃ ((η, ξ) ∈ X × X : η < ξ) = 1 (152)

and which is invariant for the coupled process.

For n,m ∈ Z such that m ≤ n, and ξ ∈ X , we set

Mm,n(ξ) :=
1

n−m+ 1

∑

x∈V :m≤x(0)≤n
ξ(x)

41



and simply write Mn(ξ) when m = 1. Because µ+ is a mixture of Bernoulli
measures, by the ergodic theorem, the limit

M(ξ) := lim
n→+∞

Mn(ξ) = lim
n→+∞

M−n,n(ξ) (153)

exists µ̃-a.s. The distribution of M(ξ) is exactly γ+. Besides, M(ξ) is a con-
served quantity for the dynamics of the stationary coupled process (ηt, ξt)t≥0
starting from µ̃(dη0, dξ0). Indeed, by the finite propagation property (Proposi-
tion 3.1),

2n+ 1− 4⌊σt⌋
2n+ 1

M−n+2⌊σt⌋,n−2⌊σt⌋(ξ0) ≤ M−n,n(ξt)

≤ 2n+ 1 + 4⌊σt⌋
2n+ 1

M−n−2⌊σt⌋,n+2⌊σt⌋(ξ0)

with probability greater than 1− e−Cn. Letting n→ +∞ yields

M(ξt) =M(ξ0) (154)

It follows that for every ρ in the support of γ+, the conditioned measure

µ̃ρ(dη, dξ) := µ̃ ((dη, dξ)|M(ξ) = ρ) (155)

is invariant for the coupled process. Indeed, for every bounded function f on
X × X and every bounded measurable function g on [0, 2],

∫

[0,2]

< µ̃ρ, S̃tf > g(ρ)γ+(dρ) = Ẽµ̃ [f(ηt, ξt)g (M(ξ0))]

= Ẽµ̃ [f(ηt, ξt)g (M(ξt))]

= Ẽµ̃ [f(η0, ξ0)g (M(ξ0))]

=

∫

[0,2]

< µ̃ρ, f > g(ρ)γ+(dρ)

In the above display, the first and last equality follow from definition (155), the
second one from (154), and the third one from stationarity.

Hence, the η-marginal of µ̃ρ, that is µρ(dη) := µ̃ (dη|M(ξ) = ρ) is invariant
for L. Since

µ =

∫

[0,2]

µργ
+(dρ), (156)

by extremality of µ, we must have µρ = µ for γ+-a.e. ρ ∈ [0, 2]. This means
that that under µ̃(dη, dξ), η is independent of M(ξ).

Now we consider A,B,A′, B′ ∈ R such that A lies in the support of γ+ and
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B < B′ < A′ < A. Let f, g be nondecreasing continuous functions on X sup-
ported respectively on [A′,+∞) and (−∞, B′], taking constant value 1 respec-
tively on [A,+∞) and (−∞, B]. By (152), (153), and independence of Mn(η)
and M(ξ), the following holds under µ̃:

0 = Ẽµ̃ [f(Mn(η))g(Mn(ξ))] = Ẽµ̃ [f(Mn(η))g(M(ξ))] + εn

= Ẽµ̃ [f(Mn(η))] Ẽµ̃ [g(M(ξ))] + εn

for some sequence εn → 0. It follows that

lim
n→+∞

µ̃ (Mn(η) > A) µ̃ (M(ξ) < B) = 0

Choosing B strictly larger than the infimum of the support of γ+ yields

lim
n→+∞

µ̃ (Mn(η) > A) = 0

It follows that
lim sup
n→+∞

Ẽµ̃[Mn(η)] ≤ A (157)

Set

µn :=
1

n

n∑

x=1

τxµ

so that (157) also writes

lim sup
n→+∞

∫

X
η(0)dµn(η) ≤ A (158)

On the other hand, by Proposition 4.1, µn → µ+, thus

∫

X
η(0)dµ+(η) =

∫

[0,2]

ρdγ+(ρ) ≤ A

for every A in the support of γ+. Hence γ+ = δρ+ for some ρ+ ∈ [0, 2].

Proof of (ii). Assume for instance ρ− < ρ+, the other case being similar.

The equality (144) yields (recall that λ̃ = λ̃k for k ∈ {0, 1, 2}, cf. (145))

λ̃[D(η, ξ)] = k = lim
n→+∞

µ[η(n)]− lim
m→−∞

µ[η(m)] = ρ+ − ρ−

Proof of Proposition 4.4. The proof of (ii) is similar to that of Proposition 4.2.
We prove (i) and (iii) below.
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Proof of (i), step one. We show that if λ̃0 ∈ Ĩe is a coupling of ν and ν′

(that exists by [9, Proposition 2.14 in Chapter VIII]), then

∫

X×X




∑

x∈Z, i∈W, |x|≤T
|ηi(x) − ξi(x)|


 dλ̃0(η, ξ) = o(T ), as T → +∞ (159)

Let (recall definition (91))

λ̃±T :=
1

|[−T, T ]∩ Z±|
∑

x∈Z±: |x|≤T
τxλ̃0,

Al(η, ξ) :=
1

2(2l+ 1)

∑

y∈Z, i∈W : |y|≤l
|ηi(y)− ξi(y)| = 1

2(2l+ 1)
D−l,l(η, ξ)

Bl(η, ξ) :=

∣∣∣∣∣∣
1

2(2l+ 1)

∑

y∈Z: i∈W : |y|≤l
ηi(y)− 1

2(2l+ 1)

∑

y∈Z: i∈W : |y|≤l
ξi(y)

∣∣∣∣∣∣

Every subsequential weak limit λ̃±∞ of the family (λ̃±T )T≥0 (which is tight as it

lives on a compact space) lies in Ĩ ∩ S̃. Thus by Proposition 3.2 and Lemma
3.5, it is supported on E− ∪ E+ (see (96)–(97)), where Al = Bl. The desired

conclusion (159) is equivalent to having, for any subsequential limit λ̃∞,

0 = lim
l→+∞

lim
T→+∞

∫

X×X


 1

T

∑

x∈Z±, |x|≤T
τxAl(η, ξ)


 dλ̃0(η, ξ)

= lim
l→+∞

∫

X×X
Bl(η, ξ)dλ̃

±
∞(η, ξ) (160)

By definition (42) of shock measures, λ̃±∞ has marginals νρ± . It follows that un-

der λ̃±∞, the spatial averages in Bl(η, ξ) both converge in probability and (being
bounded by 2) in L1 to ρ±, thus implying the limits in (160).

Proof of (i), step two. We now adapt the proof of Proposition 4.1, defining

NT , N in
T and N out

T as we did there, and replacing the initial distribution λ̃0
defined there by the one considered in the first step of the current proof. In the
first step of the proof of Proposition 4.1, we similarly derive (133) from Proposi-
tion 3.1, whereas we can now obtain (134) as a consequence of (159). Steps two

and three are unchanged and yield (139), where the measure λ̃ now coincides

with λ̃0, because the latter is invariant. Hence, we obtain (98) if q > 0, or (141)

if q = 0. By extremality, this implies that λ̃0 satisfies one of (101)–(104).

Proof of (iii). The proof is similar to that of Proposition 4.1, statement (ii).
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The only differences lie in the following points, assuming for instance that the
conclusion of (i) is (101). First, the second line of (144) is now

∑

x∈V :m≤x(0)≤n
[ν′(ξ(x)) − ν(ξ(x))] ∈ [0,+∞] (161)

which depends only on ν, ν′. Next, in (145), k can be a priori any value in
N ∪ {+∞} instead of only 0, 1, 2.

Proof of Proposition 4.5. For two ordered probability measures γ, γ′ on X , let

∆(γ, γ′) :=
∑

x∈V
|γ(η(x))− γ′(η(x))| ∈ [0,+∞] (162)

Note that ∆(γ, γ′) satisfies the three following properties:

∆(γ, γ′) = 0 if and only if γ = γ′ (163)

If γ̃ is an ordered coupling of γ and γ′, we have

∆(γ, γ′) =

∫

X×X
D(η, ξ)dγ̃(η, ξ) (164)

If a probability measure γ′′ on X is such that γ ≤ γ′ ≤ γ′′ or γ′′ ≤ γ′ ≤ γ, then

∆(γ, γ′′) = ∆(γ, γ′) + ∆(γ′, γ′′) (165)

Proof of (i). Without loss of generality, we assume ρ− < ρ+. For n ∈ Z, let us
denote νn := τnν. We can apply Proposition 4.1 to ν and rule out the case (104)
by assumption and Proposition 4.2. Thus by (i) of Corollary 4.1, νn ≤ νn+1

for all n ∈ Z. We can also exclude the case k = 2 by (ii) of Proposition 4.3
because |ρ+ − ρ−| = 1; and the case (103) because ρ− 6= ρ+. Thus by (164),
(ii) of Proposition 4.1 and (ii) of Proposition 4.3,

∆(νn−1, νn) = 1, ∀n ∈ Z (166)

By (i) of Proposition 4.4, for n ∈ Z, there exists a coupling ν̃n(dη, dξ) of νn(dη)
and ν′(dξ) that satisfies one of the properties (101)–(104) of Proposition 4.1.
By assumption and (ii) of Proposition 4.4, we can rule out (104). Thus νn and
ν′ are ordered. Besides, (iii) of Proposition 4.4 and (164) imply

∆(νn, ν
′) ∈ N, ∀n ∈ Z (167)

Let S := {n ∈ Z : ν′ ≤ νn}. We claim that S is non-empty and bounded from
below. Indeed if S were empty, since ν a (ρ−, ρ+)-shock measure (cf. definition
(42)), ν′ ≥ νn and n→ +∞ would imply ν′ ≥ νρ+ ; if S were not bounded from
below, n → −∞ along a subsequence where ν′ ≤ νn would imply ν′ ≤ νρ− .
Both conclusions would contradict ν′ being a (ρ−, ρ+)-shock measure. We set
n0 := min(S), thus

νn0−1 < ν′ ≤ νn0
(168)
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By (168) and (165),

∆(νn0−1, νn0
) = ∆(νn0−1, ν

′) + ∆(ν′, νn0
) (169)

By (168), (163) and (167), the first term on the right-hand side of (169) is a
nonzero integer; thus by (166) for n = n0, the second term is zero, and the
conclusion follows from (163).

Proof of (ii). We can consider n0 and the couplings of νn0
with ν′ and νn0−1

with νn0
as in (i). Let ν′′ be a (ρ−, ρ+)-shock measure. For n ∈ Z, we can also

apply (i) of Proposition 4.4 to ν′′n := τnν
′′ and ν, and rule out case (104), since

by assumption we exclude (48); thus these measures are ordered. The same
holds for ν′′n and ν′. Similarly to n0, we can then define n1 ∈ Z such that

ν′′n1−1 < νn0−1 ≤ ν′′n1
(170)

Property (167) holds, but instead of (166), (iii) of Proposition 4.4 now implies

∆(νn−1, νn) = 2 = ∆(ν′′n−1, ν
′′
n), ∀n ∈ Z (171)

Since ν′ is not a translate of ν, both terms on the right-hand side of (169) are
now nonzero integers. The first equality in (171) for n = n0, combined with
(169), then yields

∆(νn0−1, ν
′) = ∆(ν′, νn0

) = 1 (172)

We now distinguish the following cases.

(1) If ν′′n1
≥ νn0

, by (170) we have ν′′n1−1 ≤ νn0−1 ≤ νn0
≤ ν′′n1

; by (165),

∆(ν′′n1−1, ν
′′
n1
) = ∆(νn′′

1
−1, νn0−1) + ∆(νn0−1, νn0

) + ∆(νn0
, ν′′n1

)

From (170), (171) with n = n1, and (163), we obtain ν′′n1
= νn0

.

(2) If νn0−1 ≤ ν′′n1
≤ νn0

, we distinguish whether (a) νn0−1 ≤ ν′′n1
≤ ν′ or

(b) ν′ ≤ ν′′n1
≤ νn0

. In the former case, (165) and (172) yield

1 = ∆(νn0−1, ν
′) = ∆(νn0−1, ν

′′
n1
) + ∆(ν′′n1

, ν′)

and one of the terms on the r.h.s. must be 0. Case (b) is similar.

5.2 Proofs of intermediate results from Subsections 4.2–

4.3

Proof of Proposition 4.7.

Proof of (o). This follows from (110), (111), and Lemma 3.1.

Proof of (i). For the following, we rely on the expression for G given in (110).
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Therefore G ≥ 0. In cases (49) and (50), G is identically 0 (the former follows
from example 4.2). We henceforth exclude these cases. If q = 0, the conclusion
follows from example 4.1. If q > 0, G is continuously differentiable. First, G′

vanishes at least once because G(0) = G(2) = 0, cf. (o). Next,

G(ρ) = (γ0 + γ1)
ρ

2

(
1− ρ

2

)
+ (γ0 − γ1)(1 − ρ)ϕ(ρ)

−(γ0 + γ1)ϕ(ρ)
2, with (173)

ϕ(ρ) =
1

2

(
r + 1

r − 1

)(
1−

√
ψ(ρ)

)
if r 6= 1

= 0 if r = 1 (174)

ψ(ρ) = 1 +

(
r − 1

r + 1

)2

ρ(ρ− 2) (175)

Note that ψ(ρ) ≤ 1. We then compute

ψ′(ρ) =

(
r − 1

r + 1

)2

2(ρ− 1) (176)

ϕ′(ρ) = −1

2

(
r − 1

r + 1

)
(ρ− 1)√
ψ(ρ)

(177)

ϕ′′(ρ) = −2r

(
(r − 1)

(r + 1)3

)
ψ(ρ)−3/2 (178)

ϕ(3)(ρ) = 6r(ρ− 1)

(
(r − 1)3

(r + 1)5

)
ψ(ρ)−5/2 (179)

G′(ρ) = (γ0 + γ1)
1

2
(1− ρ) + (γ0 − γ1) [−ϕ(ρ) + (1− ρ)ϕ′(ρ)]

−2(γ0 + γ1)ϕ(ρ)ϕ
′(ρ) (180)

G′′(ρ) = −1

2
(γ0 + γ1) + (γ0 − γ1) [−2ϕ′(ρ) + (1− ρ)ϕ′′(ρ)]

−2(γ0 + γ1)[ϕ
′(ρ)2 + ϕ(ρ)ϕ′′(ρ)] (181)

G(3)(ρ) = (γ0 − γ1)
[
−3ϕ′′(ρ) + (1− ρ)ϕ(3)(ρ)

]

−(γ0 + γ1)[6ϕ
′(ρ)ϕ′′(ρ) + 2ϕ(ρ)ϕ(3)(ρ)] (182)

= 6r
(r − 1)2

(r + 1)4
ψ(ρ)−5/2 ×

[
(γ0 − γ1)

4r

(r − 1)(r + 1)
+ (γ0 + γ1)(1 − ρ)

]
(183)

Hence, if γ0+ γ1 = 0, G(3) has a constant sign. Whereas if γ0+ γ1 6= 0, we have
that G(3)(ρ) changes sign exactly once, for the value

ρ̃0 = ρ̃0(r, d) = 1 +
γ0 − γ1
γ0 + γ1

4r

(r − 1)(r + 1)
(184)
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Therefore G′′ is increasing before ρ̃0 and decreasing afterwards. Hence G′′

changes sign at most twice and G′ changes sign at most three times.

Proof of (ii). If q = 0, then G(1) = 0 by (112). If q 6= 0, the functions ρ̃i
in Lemma 3.1 are continuously differentiable on [0, 2], thus the same holds for
G. By (173), (174)–(175), (177) and (180),

G(1) =
γ0 + γ1

4
, G′(1) =

γ1 − γ0
2

√
r − 1√
r + 1

,

whence the desired conclusions.

Proof of (iii). Here we obtain

G′(2) = −γ0 + rγ1
r + 1

Under (23), we have γ0 + rγ1 ≥ r(γ0 + γ1) ≥ 0. The lower bound is positive if
r > 0 and γ0+γ1 > 0. On the other hand, γ0+rγ1 = (1−r)γ0 > 0 if γ0+γ1 = 0
and γ0 6= 0; and γ0 + rγ1 > 0 if r = 0 and γ0 > 0.

Proof of (iv). This follows from (173), (174) and (175).

Proof of (v). Without loss of generality, we assume γ0 = γ1 = 1. Then (173)
becomes

G(ρ) =
ρ

2

(
1− ρ

2

)
− ϕ(ρ)2 (185)

and (180) becomes

G′(ρ) =
1

2
(1− ρ)− 2ϕ(ρ)ϕ′(ρ) = (1− ρ)

(
1− 1

2
√
ψ(ρ)

)
(186)

We have that

G′(1/2) =
1

2

(
1− 1

2
√
ψ(1/2)

)

G′(1/2) > 0 ⇔ ψ(1/2) >
1

4
⇔ 1 >

(
r − 1

r + 1

)2

which is true. Then after some computations, one can see that

G(1/2) > G(1) ⇔ 4ψ(
1

2
)ψ(1) <

[
−1 +

7

4

(
r − 1

r + 1

)2
]2

⇔ 3− 7

2

(
r − 1

r + 1

)2

− 1

16

(
r − 1

r + 1

)4

< 0 (187)
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Solving this inequation with respect to r gives the condition in (b).

Proof of (vi). In view of (114), we may consider γ0 ≥ γ1 and r ≥ 1. Let
F (ρ) := G(ρ+ 1)−G(ρ). Note that

F (ρ) = F(ρ+ 1)− F(ρ) with (188)

F(ρ) = (γ0 + γ1)

[
−1

4
(ρ− 1)2 − ϕ(ρ)2

]
− (γ0 − γ1)(ρ− 1)ϕ(ρ) (189)

First case. We assume γ0 + γ1 6= 0. By (115), without loss of generality, we
may consider γ0 = d and γ1 = 1− d with d ≥ 1/2. We have

F ′(ρ) = −1 +
1

2

[
ρ√

ψ(ρ+ 1)
− (ρ− 1)√

ψ(ρ)

]

+
(2d− 1)

2

(
r − 1

r + 1

)[
ρ2√

ψ(ρ+ 1)
− (ρ− 1)2√

ψ(ρ)

]

+
(2d− 1)

2

(
r + 1

r − 1

)[√
ψ(ρ+ 1)−

√
ψ(ρ)

]

then

F ′′(ρ) = −1

2

(
r − 1

r + 1

)2 [
ρ2

ψ(ρ+ 1)
− (ρ− 1)2

ψ(ρ)

]
(190)

+
2r

(r + 1)2

[
1

ψ(ρ+ 1)3/2
− 1

ψ(ρ)3/2
− 1

ψ(ρ+ 1)
+

1

ψ(ρ)

]
(191)

+(2d− 1)

(
r − 1

r + 1

)[(
ρ√

ψ(ρ+ 1)
+

2r

(r + 1)

ρ

ψ(ρ)3/2

)
(192)

−
(
(ρ− 1)√
ψ(ρ)

+
2r

(r + 1)2
(ρ− 1)

ψ(ρ)3/2

)]
(193)
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We check the sign of each term.

f(ρ) =
(ρ− 1)√
ψ(ρ)

(194)

f ′(ρ) =
1

ψ(ρ)3/2
4r

(r + 1)2
> 0 (195)

f̄(ρ) =
1

ψ(ρ)3/2
− 1

ψ(ρ)
(196)

f̄ ′(ρ) =
ψ′(ρ)

2ψ(ρ)5/2[2
√
ψ(ρ) + 3]

[
−5 + 4

(
r − 1

r + 1

)2

ρ(ρ− 2)

]
≥ 0 (197)

g(ρ) = f(ρ)2 (198)

g′(ρ) = 2f(ρ)f ′(ρ) < 0 for ρ ∈ [0, 1) (199)

h(ρ) =
(ρ− 1)

ψ(ρ)3/2

[
ψ(ρ) +

2r

(r + 1)2

]
(200)

h′(ρ) =
1

ψ(ρ)5/2
2r

(r + 1)2
12r

(r + 1)2
> 0 (201)

(note that f̄ ′(ρ) = 0 if r = 1, and f̄ ′(ρ) > 0 if r 6= 1). Hence F ′′(ρ) > 0 for
ρ ∈ [0, 1). Then

F ′(0) = −1

2
− 2d− 1

2

[(
r − 1

r + 1

)
+

(√
r − 1√
r + 1

)]
< 0 (202)

F ′(1) = −1

2
+

2d− 1

2

[(
r − 1

r + 1

)
+

(√
r − 1√
r + 1

)]
< 0 (see below)(203)

F (0) = G(1) =

√
r

(
√
r + 1)2

> 0 (204)

F (1) = −G(1) < 0 (205)

We now show that F ′(1) < 0. We write X =
√
r, and we consider X ≥ 1.

f(X) := 2(r + 1)(
√
r + 1)F ′(1)

= (4d− 3)X3 −X2 −X − (4d− 1) (206)

f(1) = −4 < 0 (207)

f′(X) = 3(4d− 3)X2 − 2X − 1 (208)

If if d = 3/4, f′(X) < 0. Otherwise we solve f′(X) = 0.

δ = 4(3d− 2) > 0 for d > 2/3 (209)

X± =
1±

√
δ

3(4d− 3)
for δ ≥ 0 (210)

Then

• if d < 2/3, δ < 0, f′(X) < 0, f is decreasing hence F ′(1) < 0.
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• if 2/3 ≤ d < 3/4, f′(X) > 0 for X ∈ (X−, X+); but X± < 0, hence
f′(X) < 0, f is decreasing and F ′(1) < 0.

• if d = 3/4, f′(X) < 0, hence F ′(1) < 0.

• if d > 5/6, X− < 0 < X+ and X+ > 1 because

X+ < 1 ⇔ 9(d− 1)(4d− 3) > 0 ⇔ d /∈ (3/4, 1)

thus f′(X) < 0, f is decreasing hence F ′(1) < 0.

• if 3/4 < d < 5/6 we also have X+ > 1, thus F ′(1) < 0.

• if d = 5/6, then X+ = 1 + 2√
2
> 1 hence f is decreasing and F ′(1) < 0.

Second case. We assume γ0 + γ1 = 0 and p 6= q. Without loss of generality, we
can consider γ0 = 1. This amounts to repeating the computations of the first
case keeping only in F ′(ρ) and F ′′(ρ) those termes with the factor (2d − 1)/2,
which we replace by 1. This leads similarly to F ′′(ρ) < 0 for ρ ∈ [0, 1). However,
we now have F ′(0) < 0 and F ′(1) > 0. Thus there exists ρ∗ ∈ (0, 1) such that
F is decreasing on [0, ρ∗] and increasing on [ρ∗, 1]. Besides, (204)–(205) are now
replaced by F (0) = F (1) = 0, cf. (o) and (ii) of Proposition 4.7. This implies
that 0 and 1 are the only solutions of the equation G(ρ+ 1)−G(ρ) = 0.

Proof of Lemma 4.1. In cases (i)–(ii) below, we always have |R0| ≤ 3. The only
case not covered below is q = 0 < p and γ0 6= γ1. Then (112) and Definition 4.3
show that R0 is reduced to two elements of B1.

Proof of (i). By Definition 4.3, for any (ρ−, ρ+) in R0, ρ = min(ρ−, ρ+)
must be a solution of the equation G(ρ + 1) − G(ρ) = 0. By (vi) of Propo-
sition 4.7, this equation has exactly one solution ρ in [0, 1]. This implies
R0 ⊂ {(ρ, ρ + 1); (ρ + 1, ρ)}. But condition (ii) of Definition 4.3 implies that
(ρ, ρ+1) and (ρ+1, ρ) cannot both lie in R0. Indeed, G would then be constant
on [ρ, ρ + 1], and the only situations where G can be constant on a nontrivial
interval are (49), (50) and (51), which are excluded here.

Since G(0) = G(2) = 0 by (o) of Proposition 4.7, in order to have B1 ∩R0 6= ∅,
it is necessary to have G(1) = 0. By (ii) of Proposition 4.7, this only occurs if
q = 0 or γ0 + γ1 = 0.

Proof of (ii). First case: q > 0, p 6= q and γ0 + γ1 = 0 6= γ0γ1. Similarly
to (i), using (vi) of Proposition 4.7, we see that R0 ⊂ B1. By (o) and (ii) of
Proposition 4.7, G only vanishes for ρ ∈ {0, 1, 2}; thus by Definition 4.3, one of
the points (0, 1) or (1, 0), and one of the points (1, 2) or (2, 1), lie in R0. And
since (ρ, ρ+ 1) and (ρ+ 1, ρ) cannot both lie in R0, R0 contains two elements.
Second case: q = 0 and γ0 6= γ1. Then (112) and Definition 4.3 shows that R0

is reduced to two elements of B1.
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Proof of (iii). Assume first r > 0. By (114), since γ0 = γ1, we have G(2− ρ) =
G(ρ) for all ρ ∈ [0, 2]. Thus G(1/2) = G(3/2) and G′(1) = 0. Recalling (i),
there can be no shock of amplitude 1 other than (1/2, 3/2) or (3/2, 1/2); and at
most one of these lies in R0. If G has a single extremum (which must be at 1),
by (iii) of Proposition 4.7, G it is bell-shaped and this extremum is a maximum.
Thus R0 = {(1/2, 3/2)}. If G has more than one extremum, by symmetry it
must have three. Still by (iii) of Proposition 4.7, the extremum at 1 is then a
local minimum and the other two are local maxima symmetric with respect to
1. Since G′(1/2) > 0 by (v) of Proposition 4.7, condition (ii) of Definition 4.3
cannot hold with (ρ−, ρ+) = (3/2, 1/2). On the other hand, this condition holds
with (ρ−, ρ+) = (1/2, 3/2) if and only if G(1/2) ≤ G(1). The conclusion then
follows from (v) of Proposition 4.7. Finally, for r = 0, R0 follows from (112)
and Definition 4.3 (recall (23), implying here that γ0 > 0 and γ1 > 0).

Proof of (iv). For (d, r) ∈ [1/2, 1]× [1,+∞), let us denote by ρ(d, r) the unique
solution given by (vi) of Proposition4.7 of Fd,1−d,r(ρ) = 0, where Fd,1−d,r(ρ) :=
Gd,1−d,r(ρ + 1) − Gd,1−d,r(ρ). The proof of Proposition4.7, (vi) showed that
F ′d,1−d,r(ρ) < 0 for every ρ ∈ [0, 1]. Besides, by (173), (174) and (175), Fd,1−d,r
is continuously differentiable with respect to (d, r). Thus the implicit function
theorem implies that (d, r) 7→ ρ(d, r) is continuously differentiable. Let

I(d, r) := inf
ρ∈[ρ(d,r),1+ρ(d,r)]

G(ρ), S(d, r) := sup
ρ∈[ρ(d,r),1+ρ(d,r)]

G(ρ)

We define

Z := {(d, r) ∈ [0, 1]× [0, 1] : I(d, r) < G[ρ(d, r)] < S(d, r)} (211)

The set Z is an open subset of [0, 1]2 because (d, r) 7→ ρ(d, r) is continuous. By
(iii), it contains {1/2}× (0, r0). Finally, by (ii) of Definition 4.3, for (d, r) ∈ Z,
neither (ρ(d, r), 1 + ρ(d, r)) nor (1 + ρ(d, r), ρ(d, r)) lies in R0, thus R0 = ∅.

Proof of Proposition 4.8.

Proof of (i). Assume for instance ρ− < ρ+, the case ρ− > ρ+ being simi-
lar. Let r ∈ [ρ−, ρ+]. Let ν̃(dη, dξ) be a coupling of ν(dη) and νr(dξ) that
is invariant for the coupled generator (83) (it exists by [9, Proposition 2.14 in
Chapter VIII]). Since ν̃ is supported on a compact space, there exists an increas-
ing N-valued sequence xn → +∞ such that τ−xn−1ν̃ and τxn

ν̃ have weak limits
denoted respectively by ν̃−∞ and ν̃+∞. By (42) and translation invariance of

νr, ν̃±∞ is a coupling of νρ± and νr. Since the coupled generator L̃ given by
(83) for the transition kernel (19) is translation invariant in the Z-direction, we

have ν̃ ∈ Ĩ ∩ S̃. Hence, by (98) in the proof of Theorem 2.1, ν̃ is supported
on ordered pairs (η, ξ). On the other hand, under ν̃±∞, empirical averages (cf.
(153)) exist by the law of large numbers and are given by M(η) = ρ± and
M(ξ) = r. These averages must be ordered like η and ξ, hence ν̃−∞ and ν̃+∞
are supported respectively on E− and E+.
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Let N ∈ N, RN := (Z ∩ [−N,N ])×W , and

F̃N (η, ξ) := D−N,N(η, ξ) =
∑

i∈W

∑

z∈Z∩[−N,N ]

|η(z, i)− ξ(z, i)| (212)

Since ν̃ ∈ Ĩ, we have

∫

X×X
L̃F̃N (η, ξ)dν̃(η, ξ) = 0 (213)

By [8, Lemma 2.4], we have

L̃F̃N (η, ξ) =
∑

x 6∈RN , y∈RN

p(x, y)Jx,y(η, ξ) (214)

−
∑

x∈RN , y 6∈RN

p(x, y)Jx,y(η, ξ) (215)

−
∑

x∈RN , y∈RN , x 6=y

[p(x, y) + p(y, x)]Dx,y(η, ξ) (216)

where

Jx,y(η, ξ) := [η(x)(1 − η(y)) − ξ(x)(1 − ξ(y))]
{
1{η(x)≥ξ(x), η(y)≥ξ(y)}−

1{η(x)≤ξ(x), η(y)≤ξ(y)}
}

(217)

and

Dx,y(η, ξ) := 1Ex,y
(η, ξ) = 1{η(x)>ξ(x), η(y)<ξ(y)} + 1{η(x)<ξ(x), η(y)>ξ(y)} (218)

Let

j̃(η, ξ) :=
∑

x(0)≤0,y(0)>0

p(x, y)Jx,y(η, ξ)−
∑

x(0)≤0,y(0)>0

p(y, x)Jy,x(η, ξ)

where Jx,y is defined by (217). Then (214)–(215) can be written as τ−N−1j̃(η, ξ)−
τN j̃(η, ξ). By (217) and (107)

j̃(η, ξ) = j(η)− j(ξ) if η ≤ ξ, j̃(η, ξ) = j(ξ)− j(η) if ξ ≤ η (219)

Since Dx,y(η, ξ) defined by (218) is nonnegative, the stationarity relation (213)
combined with (214)–(216) yields

ν̃(τ−N−1j̃)− ν̃(τN j̃) ≥ 0 (220)

Taking N = xn and letting n→ +∞ yields

ν̃−∞(j̃)− ν̃+∞(j̃) ≥ 0 (221)
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Under ν̃±∞, we can use (219) for ordered configurations. The marginals of ν̃±∞
then yield

G(r) −G(ρ−) ≥ G(ρ+)−G(r) (222)

Since r ∈ [ρ−, ρ+] is arbitrary, we first obtain G(ρ+) = G(ρ−) by letting r = ρ±,
and then G(ρ+) = G(ρ−) = minr∈[ρ−,ρ+]G(r).

Proof of (ii). This follows from (i) above, and (ii) of Proposition 4.3.

Proof of (iii). By Lemma 4.1, γ0 + γ1 = 0 or q = 0. Assume from now on
that the latter holds.

(a) We assume first γ1 ≥ 0. Then by (112) and Definition 4.3, if γ0 and γ1
are not both 0, we have R0 ∩ B1 = {(0, 1); (1, 2)}.

We consider first (ρ−, ρ+) = (0, 1). We show that this case is impossible if
γ1 = 0, whereas if γ1 > 0, µ is one of the measures ν⊥,+∞,j in (59). To this end,
observe first that since q = 0 < p, ν0 is the probability measure supported on
the empty configuration and ν1 is supported on the configuration that is empty
on lane 0 and full on lane 1. Since µ is a (0, 1)-shock measure, we have

lim
x→−∞

τxη
0
0 = µ0, lim

x→+∞
τxη

0
0 = µ0, (223)

lim
x→−∞

τxη
1
0 = µ0, lim

x→+∞
τxη

1
0 = µ1 (224)

where µρ, cf. Section 2.4.2, denotes the product Bernoulli measure on {0, 1}Z
with parameter ρ. As in the proof of Proposition 4.2, we couple η. with an
ASEP ζ0. on lane 0 starting from ζ00 := η00 , with jump rate d0 to the right and
l0 to the left, that is (4)–(3) with (l, d) = (l0, d0). The limit (223) implies

lim
n→+∞

1

n

n∑

x=1

ζ00 (x) = lim
n→+∞

1

n

1∑

x=−n
ζ00 (x) = 0 (225)

in probability. Since the initial configuration satisfies (225), ζ0t converges in
law as t → +∞ to the Bernoulli invariant measure with zero density, that is
the empty configuration; this follows from [3, Theorem 1] when γ0 > 0, or [9,
Chapter VIII] when γ0 = 0. Since η0t ≤ ζ0t , the same limit holds for η0t . By
stationarity of µ, this implies that under µ, lane 0 is almost surely empty. It
follows that (η1t )t≥0 is itself an autonomous SEP. Thus the marginal of µ on
lane 1 is an invariant measure for SEP. By [8, Theorem 1.4], it is a mixture of
Bernoulli and blocking measures. Because of (224), only blocking measures are
present in the mixture. Note that this is only possible if γ1 > 0. In this case,
µ is a mixture of the invariant measures ν⊥,+∞,j in (59) for j ∈ Z. Since µ is
extremal, it is one of them.

Next, we consider (ρ−, ρ+) = (1, 2). This can be reduced to the previous case
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by Lemma 2.1, considering the image of ηt by σσ′σ′′. The resulting process
has drift γ′0 = γ1 on lane 0, and γ′1 = γ0 on lane 1. The image µ′′ of µ is a
(0, 1)-shock measure invariant for the transformed process. It follows from the
above that:

- If γ0 > 0, µ′′ = ν⊥,+∞,j , thus µ = ν⊥,j,−∞, for some j ∈ Z.

- If γ0 = 0, that is γ′1 = 0, from the above discussion, it is impossible for
µ′′ to be a (0, 1)-shock measure, and thus for µ to be a (1, 2)-shock measure.

Putting together the cases (ρ−, ρ+) = (0, 1) and (ρ−, ρ+) = (1, 2), we conclude
that in case (iv) of Theorem 2.3, a (ρ−, ρ+)-shock measure with (ρ−, ρ+) ∈ B1

lies in the set (59); whereas in case (vi) it lies in the set (63). In the former
case R′ = R0 ∩ B1 = {(0, 1); (1, 2)}, whereas in the latter case R′ = {(0, 1)} 6=
R0 ∩ B1 = {(0, 1); (1, 2)}.

(b) We consider now γ1 < 0 < γ0. Here, by (112) and Definition 4.3, we
have R0 ∩ B1 = {(1, 0); (2, 1)}. The case (ρ−, ρ+) = (1, 0) is treated like
(ρ−, ρ+) = (0, 1) in (a) above; except that on lane 1 we have a (1, 0)-shock
with a negative drift. The case (ρ−, ρ+) = (1, 2) is deduced by Lemma 2.1 and
particle-hole symmetry (recall (22)).

Proof of Lemma 4.2. Let ν̃ denote a coupling of ν1 and ν2 such that ν̃ ∈ Ĩ.
Since ν1 and ν2 are supported on X2, ν̃ satisfies assumption (92) of Proposition
3.2. Since we excluded the case l0 = l1 = q = 0 < p, by Lemma 3.3, p(., .) is
weakly irreducible. Thus, by (95) and the proof of Theorem 2.1, ν̃ is supported
on ordered pairs of configurations. Since H2 is a nondecreasing function on X2

and has the same value under both marginals of ν̃, it follows that ν̃ is supported
on E3, whence the conclusion.

A Additional proofs

A.1 Proof of (56)

We prove the first equality in (56), the proof of the second one being similar.
Let Xn := {η ∈ X : H2(η) = 2n}, and ξn denote the element of Xn defined by

ξn(z, i) = 1{z>−n}; z ∈ Z, i ∈W

so that ξn = τnξ
0, with ξ0 ∈ X0. For η, ξ ∈ Xn, let A, resp. B, denote the

set of x ∈ V for which η(x) = 1 − ξ(x) = 0, resp. η(x) = 1 − ξ(x) = 1. Then
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|A| = |B| < +∞, and

νρ
c
. (η)

νρ
c
. (ξ)

=
∏

x∈B

ρx
1− ρx

∏

x∈A

1− ρx
ρx

=

(
p

q

)∑
z∈Z, i∈W

i[η(z)−ξ(z)]
θ
∑

z∈Z, i∈W
z[η(z)−ξ(z)] =: r(η, ξ)

The second equality above follows from ρz,i/(1−ρz,i) = c(p/q)iθz for (z, i) ∈ V .
We apply this to η ∈ Xn and ξn:

ν̌n(η) =
νρ

c
. (η)

νρc(Xn)
=
r(η, ξn)

Zn

where
Zn :=

∑

ξ∈Xn

r(ξ, ξn)

Thus ν̌n does not depend on c. Note that if η ∈ X0, we have τnη ∈ Xn, and
r(τnη, ξ

n) = r(η, ξ0). This implies that Zn does not depend on n and that

ν̌n(τnη) = ν̌0(η)

A.2 Proof of Proposition 3.2

Let us rewrite the coupled generator (83) as

Lf(η, ξ) =
∑

(η′,ξ′)∈X×X
a[(η, ξ); (η′, ξ′)] [f(η′, ξ′)− f(η, ξ)] (226)

where the rates a[(η, ξ); (η′, ξ′)] are defined as follows. First, for any (x, y) ∈ V
such that x 6= y, a[(η, ξ); (η′, ξ′)] is given by





p(x, y)[η(x)(1 − η(y))] ∨ [ξ(x)(1 − ξ(y))] if (η′, ξ′) = (ηx,y, ξx,y)
p(x, y)[η(x)(1 − η(y))− ξ(x)(1 − ξ(y))]+ if (η′, ξ′) = (ηx,y, ξ)
p(x, y)[η(x)(1 − η(y))− ξ(x)(1 − ξ(y))]− if (η′, ξ′) = (η, ξx,y)

(227)

with the kernel p(., .) given by (19). Next, a[(η, ξ); (η′, ξ′)] = 0 if there exists no
(x, y) ∈ V 2 such that x 6= y and (η′, ξ′) ∈ {(ηx,y, ξx,y) , (ηx,y, ξ) , (η, ξx,y)}.

If a[(η, ξ); (η′, ξ′)] 6= 0, we say there is a transition from (η, ξ) to (η′, ξ′). Re-

calling the notation x
k→ y introduced before Definition 3.1, we shall prove the

following.

Lemma A.1. Let ν̃ ∈ Ĩ ∩ S̃. Then (93) holds for every (x, y) ∈ V × V such

that x 6= y, and x
k→ y or y

k→ x for some k.
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Proof of Lemma A.1. We prove by induction on k that (93) holds for every

(x, y) ∈ V × V such that x 6= y and x
k→ y. Applying the statement to (ξ, η)

then shows that it holds for (η, ξ) and y
k→ x.

We now use the computation done between (212) and (218). The sums in (214)–
(215) are boundary contributions, that we denote respectively by Γi

N (η, ξ) and

Γo
N (η, ξ). Since ν̃ ∈ Ĩ, we have

∫

X×X
L̃FN (η, ξ)dν̃(η, ξ) = 0 (228)

We have to exploit (228); for this we distinguish between the two assumptions:

First case. We assume that ν̃ ∈ S̃. Since J((u+z,i),(v+z,j)) = τzJ(u,i),(v,j) for
all u, v, z ∈ Z, we have

∫

X×X
Γi
N (η, ξ)dν̃(η, ξ)−

∫

X×X
Γo
N(η, ξ)dν̃(η, ξ) = 0 (229)

Second case. We assume (92). The latter with the inequalities

|Γi
N (η, ξ)| ≤

∑

i∈W
li(|η(−N − 1, i)− ξ(−N − 1, i)|+ |η(−N, i)− ξ(−N, i)|)

|Γo
N (η, ξ)| ≤

∑

i∈W
di(|η(N, i)− ξ(N, i)|+ |η(N + 1, i)− ξ(N + 1, i)|)

leads to

lim
N→+∞

{∫

X×X
Γi
N (η, ξ)dν̃(η, ξ)−

∫

X×X
Γo
N (η, ξ)dν̃(η, ξ)

}
= 0 (230)

Using (229) for all N , we obtain that for every (x, y) ∈ V 2 such that p(x, y) > 0,

∫

X×X
Dx,y(η, ξ)dν̃(η, ξ) = 0

This implies (93) for k = 1.

Now assume (93) holds for k − 1. If A is a subset of X × X and (η, ξ) ∈
X ×X , we write (η, ξ)

n→ A if there exists a sequence of coupled configurations,
(η0, ξ0) = (η, ξ), . . . , (ηn, ξn) = (η′, ξ′), such that a[(ηi, ξi); (ηi+1, ξi+1)] > 0 for
every i = 0, . . . , n− 1, and (η′, ξ′) ∈ A. Assume A = A0 is a local set (that is,
such that its indicator function is a local function) and

An := {(η, ξ) ∈ X × X : (η, ξ)
n→ A0}

A′n := {(η, ξ) ∈ X × X : (η, ξ)
i→ A0 for some i ≤ n}
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Then (226)–(227) implies that there exist positive constants an, bn such that

L̃1An
≥ an1An+1

− bk1An
(231)

Iterating (231) shows that if ν̃ ∈ Ĩ and ν̃(A) = 0, then ν̃(An) = 0, hence
ν̃(A′n) = 0. For the induction step, we use this as follows. Let En denote
the set of coupled configurations (η, ξ) ∈ X × X such that there is no pair of

opposite discrepancies at sites x, y ∈ V if x
i→ y or y

i→ x for any i ≤ n. We
choose A0 = Ek−1 so that ν̃(A0) = 0 by the induction assumption. Then we

claim that Ek is contained in A′k−1. Indeed, assume x
k→ y and (η, ξ) ∈ Ex,y.

Let (x = x0, . . . , xk = y) denote a p-path from x to y. By the induction
assumption, ν̃-almost surely, we have η(xi) = ξ(xi) for all i = 1, . . . , k − 1.
If η(x1) = ξ(x1) = 0, then (ηx0,x1 , ξx0,x1) ∈ Ex1,y. Otherwise let i∗ be the
maximum index i such that η(xi) = ξ(xi) = 1. Then one can find a sequence of
at most k−1 transitions leading from (η, ξ) to some (η′, ξ′) ∈ Ex,xk−1

as follows:
(i) if i∗ < k − 1, the coupled particle at xi∗ jumps from xi∗ to xk−1 along the
path; (ii) the coupled particle at xk−1 exchanges with the ξ-discrepancy at
y.
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