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ABSTRACT

The study of elastic wave propagation is a fundamental
tool in different fields, from non-destructive damage eval-
uation to ultrasonic imaging. Usually these techniques rely
on inversion methods based on homogenised theories, that
are valid only when the wavelength of the perturbation is
considerably larger than the characteristic size of the het-
erogeneities of the materials. Heterogeneities can occur at
different scales, and then it is useful to fix the scales of
interest: the micro scale (i.e. the scale of the constitutive
material µm), the meso scale (the scale of the architecture
∼mm) and the macro scale (the scale of the tissue ∼cm).
When the wavelength approaches the characteristic size of
the architecture, an upscaling occurs and mesoscopic ef-
fects can be transferred to macro-scale. In this case, classic
models used in the aforementioned inversion procedures
can fail to predict a the correct response and they need to
be improved. In this work, we will address the case of non-
centrosymmetric architectures, i.e. those for which the unit
cell does not have any centre of inversion, and it will be
shown that the effects on wave propagation in terms of dis-
persion and polarisation cannot be negliged in common ap-
plications involving elastic waves. We will also show that,
in order to describe these media with a continuum model,
the use of an enriched continuum theory, such as the Strain
Gradient Elasticity (SGE), is mandatory. The particular ex-
ample of the gyroid unit cell (Fig. 1) is detailed, following
the results presented in [1].

Figure 1. Gyroid unit cell.

The SGE model has been introduced in the early 1960s
in the seminal works of Mindlin (see e.g. [2]). In order

to solve the elastodynamic problem, constitutive equations
relating primal and dual quantities are needed. This re-
sults been already presented in [3–5]. The description of
all the anisotropic strain-gradient elastic systems can be
found in [3,6]. The classification detailed in this references
is based on the point group of the unit cell. The most gen-
eral form of the constitutive law has tensors up to the rank
six. Each constitutive tensor has a precise role in defin-

Figure 2. Wave polarisations for waves propagating to-
wards direction [100] for the Gyroid architecture.

ing the elastodynamic properties of the system. We will
show that the odd ranked tensors in the constitutive law
are the direct consequence of noncentrosymmetry. Then,
the way they affect wave propagation in SGE continuum
model is compared to the phenomena observed in full field
simulations, such as circular polarization of waves (see e.g.
Figure 2) or acoustical activity.
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