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ABSTRACT

In the past few years, acoustic-mechanical devices have be-
come widely used, which increased the demand for noise
control solutions. One of the approaches to solve such
problems consists in designing noise barriers. However,
finding the best topology for these barriers can be a com-
plex task. In this work it is proposed a methodology to de-
sign periodic noise barriers, composed of rigid materials,
using the bi-directional evolutionary structural optimiza-
tion (BESO) method. The acoustic problem is modeled
using the Helmholtz equation and solved by the finite el-
ement procedure, while a material interpolation scheme is
used for switching acoustic and rigid elements. The op-
timization problem is defined as the minimization of the
average square pressure amplitude in a specific region of
the acoustic domain, while the volume of the barrier is
reduced. The sensitivity analysis was carried out by the
gradient of the objective function with respect to the de-
sign variable. Two cases are presented in order to show the
capabilities of the proposed approach. In the first one, pe-
riodic conditions are imposed in the entire system, while in
the second non-periodic conditions are considered. The re-
sults showed that, although the barrier volume was reduced
by 35% in both cases, the objective function decreased at
least 68.80%.

1. INTRODUCTION

In the last decades, topology optimization methods have
become powerful engineering tools since they provide non-
intuitive structure designs for a large number of applica-
tions. Generally, what is sought is a lighter structure that
is also able to enhance a few characteristics of the system,
making the design even less costly. After the development
and popularization of computing, many methods arose in
order to make use of topology optimization.

The Evolutionary Structural Optimization (ESO)
method, first introduced by Xie and Steven in the early
1990s [1], has as premise the removal of inefficient ma-
terial from the structure. However, this could also result in
non-optimal geometries due to inappropriate initial design
settings [2]. Later, the Bi-directional Evolutionary Struc-
tural Optimization (BESO) method, proposed by Yang et
al. [3], made possible not only to remove but also add el-
ements to the structure during the optimization process.
Shortly thereafter, the so-called new BESO algorithm [4]

has been used in many works, since also provides solutions
for some important numerical problems, such as checker-
board pattern and mesh-dependence. All these improve-
ments made the method even more popular and highly used
in many engineering applications [5, 6].

Acoustic-mechanical devices (AMDs), like micro-
phones and speakerphones, are increasingly familiar and
so is the noise control situation. As a result, the interest
of many researchers, whose main focus is the design of
acoustic barriers, enhanced. Due to the vast applicability
of such acoustic components, going from houses, hospi-
tals and schools to the automotive industry, for example,
a great number of techniques have been implemented to
design such systems.

It became common to design acoustic barriers, in repeti-
tive domains, taking into account the complexities of fluid-
structure interactions [7]. However, a more simplified ap-
proach, which consists of infinitely enlarge, in a theoret-
ical point of view, the mass density and bulk modulus
of the barrier material to generate a rigid structure, has
gained many supporters [8–10]. This is due to the fact that
it reduces the multiphysical fluid-structure problem to an
acoustical one, ruled by the Helmholtz equation.

Acoustic topology optimization (ATO) problems have
been solved, using the BESO method, in the works of Vi-
cente et al. [11] and Picelli et al. [12], but their main fo-
cus was on the structural part of the problem and, in many
situations, even neglected the effects of the acoustic do-
main. Kook [13] and Dilgen et al. [14] also used the bi-
directional optimization method, together with a mixed u/p
formulation, in order to solve classical acoustic-structure
problems. Finally, Azevedo et al. [15] combined the BESO
approach and the rigid material approximation with the
goal of maximizing the transmission loss in the internal
partitions of a reactive muffler.

With this in mind and seeking to enhance the use of the
bi-directional evolutionary structural topology optimiza-
tion method in the context of noise attenuation, this paper
aims to optimize noise barriers when subjected to periodic
and non-periodic conditions. The organization of this pa-
per is presented as follows: In section 2 the acoustic prob-
lem is formulated using the finite element approach. In
section 3 the optimization problem, as well as the mate-
rial interpolation scheme and the design sensitivity analy-
sis are discussed. Also in this section, the BESO method is
described in detail. Section 4 presents numerical results,
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intending to demonstrate the relevance of the presented
methodology. Finally, conclusions are drawn in section 5.

2. ACOUSTIC PROBLEM FORMULATION

Considering an acoustic volume Ωf that includes the de-
sign, Ωd, non-design, Ωnd, and objective, Ωo, domains, as
illustrated in Fig. 1. The boundaries are of Dirichlet, ΓD,
Neumann, ΓN , and Robin, ΓR, types where it is possible
to prescribe the acoustic pressure, normal gradient pres-
sure and acoustic admittance [16], respectively, according
to the system of Eqn. (1).

n

�D

�N

�R

�nd

�d

�o

�f = �nd∪�d∪�o

Figure 1. Acoustic continuum


∇2p̃+

ω2

c2
p̃ = 0 in Ωf

p̃ = p̄ at ΓD

∇p̃ · n = −ρ0ān at ΓN

∇p̃ · n + iρ0ωÃp̃ = 0 at ΓR

(1)

Where p̃ and p̄ are, respectively, the complex and pre-
scribed acoustic pressure, ω is the angular frequency, c is
the speed of sound in air, n is the outward unit normal vec-
tor, ρ0 is the fluid mass density, ān is the prescribed normal
acceleration and Ã is the acoustic admittance.

In order to provide a discrete approximation of the
continuum problem stated in Eqn. (1), the finite element
(FE) method is considered [15–17]. Thus, multiplying the
Helmholtz equation by a weight function ν and integrating
on the entire fluid domain (method of weighted residual)
the strong form can be written as Eqn. (2).∫

Ωf

∇2p̃ν dΩf +
ω2

c2

∫
Ωf

p̃ν dΩf = 0 (2)

Applying Green’s theorem, Eqn. (2) becomes,

−
∫

Ωf

∇p̃ · ∇ν dΩf +

∫
Γ

∇p̃ · nν dΓ+

ω2

c2

∫
Ωf

p̃ν dΩf = 0 (3)

for Γ = ΓD ∪ ΓN ∪ ΓR. Substituting the boundary condi-
tions presented in Eqn. (1), and knowing that ∇p̃ · n = 0

for the rigid wall case, the weak form can then be written
as Eqn. (4).∫

Ωf

∇p̃ · ∇ν dΩf +

∫
ΓN

ρ0ānν dΓN+∫
ΓR

iρ0ωÃp̃ν dΓR −
ω2

c2

∫
Ω

p̃ν dΩf = 0 (4)

The complex acoustic pressure and its normal gradient
can be rewritten in a more suitable manner,

p̃ = Np̃i, ∇p̃ = ∂Np̃i (5)

where N is the FE shape function matrix, with ∂N denot-
ing its derivation, and p̃i is the complex acoustic pressure
vector of the ith element. With the use of Galerkin method,
the weight function can be written,

ν = Nνi, ∇ν = ∂Nνi (6)

where ν is the weight function vector of the ith element.
Finally, substituting Eqns. (5) and (6) in Eqn. (4) and per-
forming the FE assembly procedure, the global dynamic
system arises,

Sp̃ = (K + iωC− ω2M)p̃ = f (7)

where S corresponds to the system matrix and has contri-
butions from K, C and M, denoting the acoustic stiffness,
damping and mass matrices, respectively, while f is the
acoustic load vector. Besides,

Ki =
1

ρ0

∫
Ωf

(∂N)t∂N dΩf (8)

Ci = Ã

∫
ΓR

NtN dΓR (9)

Mi =
1

κ

∫
Ωf

NtN dΩf (10)

fi = −ān
∫

ΓN

Nt dΓN (11)

where the subscript i represents elementary variables. The
bulk modulus of the acoustic medium is denoted by κ,
which is equal to ρ0c

2.

3. RIGID BARRIER TOPOLOGY OPTIMIZATION

In this section, the optimization problem is presented, as
well as the adopted material interpolation scheme, the de-
sign sensitivity analysis and the evolutionary procedure.
Eqn. (12) states the topology optimization problem as the
minimization of the average square acoustic pressure am-
plitude at Ωo [7–9, 13] subject to restrictions stated in
Eqns. (13), (14) and (15).

Minimize: Φ =
1∫

Ωo
dr

∫
Ωo

|p̃(r, χ(r))|2 dr (12)

Subjected to: V ∗ − 1∫
Ωd

dr

∫
Ωd

χ(r) dr = 0 (13)

S(χ(r))p̃(r,χ(r)) = f (14)

χ(r) = 0 or 1 ∀r ∈ Ωd (15)
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Where Φ is the objective function and V ∗ is the imposed
volume fraction, which varies from 0 to 1. Eqn. (14) ex-
poses that p̃ depends on the binary design variable, χ, and
the position, r, vectors. The elemental values of χ can only
be 0 for air or 1 for rigid materials.

3.1 Material interpolation scheme

As discussed in section 2, three different regions are in-
cluded in the fluid domain Ωf (see Fig. 1). In the non-
design, Ωnd, and objective, Ωo, domains the medium is air.
However, in the design domain, Ωd, the medium is com-
posed of an acoustic barrier of rigid constitution. Follow-
ing many researchers [7–10, 18], this so-called rigid mate-
rial is the result of a mathematical resource in which the air
density and bulk modulus are infinitely amplified, from a
purely theoretical point of view, in order to generate a ma-
terial where the wave is totally reflected. However, to avoid
numerical singularities in the calculation of the acoustic fi-
nite element matrices, adequate values need to be chosen
for these variables. In this sense, the physical properties
considered are ρair = 1.21 kg/m3, κair = 1, 42e5 Pa,
ρrigid = 1, 21e5 kg/m3 and κrigid = 1, 21e12 Pa, where
the subscripts air and rigid denote air and rigid mate-
rial, respectively [9]. To find the optimal distribution of
rigid in Ωd, the material interpolation scheme, presented
in Eqns. (16) and (17), is adopted.

1

ρ
=

1

ρair
+ χ

(
1

ρrigid
− 1

ρair

)
(16)

1

κ
=

1

κair
+ χ

(
1

κrigid
− 1

κair

)
(17)

3.2 Design Sensitivity Analysis

It is discussed, in this section, the sensitivity numbers
based on the average square acoustic pressure amplitude
[7]. Thus, since p̃ is a complex vector, it can be written as
follows,

p̃ = pR + ipI (18)

with pR and pI denoting real and imaginary parts of p̃.
Knowing that Φ is a function of,

Φ = Φ(pR,pI ,χ), (19)

the adjoint method [19] is used by the introduction of La-
grangian multipliers, λ̃ and ¯̃λ,

Φ = Φ(pR,pI ,χ) + λ̃
t
(Sp̃− f) +

¯̃
λ
t
(S̄¯̃p− f̄) (20)

where the over bars denote complex conjugates. It is im-
portant to note that all pressure vectors are also dependent
on χ, but this was not shown in Eqns. (18), (19) and (20)
in order to simplify the notation.

Taking the derivative of Eqn. (20), with respect to the

design domain variable, yields,

dΦ

dχ
=
∂Φ

∂χ
+

∂Φ

∂pR

∂pR
∂χ

+
∂Φ

∂pI

∂pI
∂χ

+

λ̃
t
(
∂S

∂χ
p̃ + S

∂pR
∂χ

+ iS
∂pI
∂χ
− ∂f

∂χ

)
+

¯̃λ
t
(
∂S̄

∂χ
¯̃p + S̄

∂pR
∂χ
− iS̄∂pI

∂χ
− ∂ f̄

∂χ

)
(21)

which becomes,

dΦ

dχ
=
∂Φ

∂χ
+ λ̃

t
(
∂S

∂χ
p̃− ∂f

∂χ

)
+ ¯̃λ

t
(
∂S̄

∂χ
¯̃p− ∂ f̄

∂χ

)
+(

∂Φ

∂pR
+ λ̃

t
S + ¯̃λ

t
S̄

)
∂pR
∂χ

+(
∂Φ

∂pI
+ iλ̃

t
S− i¯̃λ

t
S̄

)
∂pI
∂χ

. (22)

Since the Lagrangian multipliers can assume any num-
ber, the unknown expressions involving ∂pR

∂χ and ∂pI

∂χ can
be eliminated by satisfying Eqns. (23) and (24).

λ̃
t
S + ¯̃λ

t
S̄ = − ∂Φ

∂pR
(23)

iλ̃
t
S− i¯̃λ

t
S̄ = − ∂Φ

∂pI
(24)

Multiplying Eqn. (24) by−i, adding the result to Eqn. (23)
and transposing both sides (knowing that St = S), the ad-
joint equation is found,

Sλ̃ = −1

2

(
∂Φ

∂pR
− i ∂Φ

∂pI

)t
(25)

with λ̃ being the solution of the adjoint equation and with
the right side of Eqn. (25) defined as the adjoint load. Fi-
nally, it is possible to rewrite Eqn. (22) in its final form,

αi = −dΦ

dχ
= −

{
∂Φ

∂χ
+ 2Re

[
λ̃
t
(
∂S

∂χ
p̃− ∂f

∂χ

)]}
(26)

where αi denotes the sensitivity number of the ith element.
Also, it is noticeable that (26) has received a minus sign on
its right side, which acts as a corrector of the BESO method
towards minimization of the objective function.

Making use of the material interpolation scheme,
Eqns. (16) and (17), the derivatives stated at Eqn. (26) can
be easily written, at the elementary level, as follows,

∂Φ

∂χ
= 0,

∂f

∂χ
= 0 (27)

∂S

∂χ
=
∂K

∂χ
+ iω

∂C

∂χ
− ω2 ∂M

∂χ
(28)

with,

∂C

∂χ
= 0 (29)

∂K

∂χ
=

(
1

ρrigid
− 1

ρair

)∫
Ωd

(∂N)t∂N dΩd (30)

∂M

∂χ
=

(
1

κrigid
− 1

κair

)∫
Ωd

NtN dΩd. (31)
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Knowing that,

|p̃|2 = p2
R + p2

I (32)

pR = NpR (33)

pI = NpI (34)

the adjoint load can also be rewritten in an integral form as
Eqn. (35).

− 1

2

(
∂Φ

∂pR
− i ∂Φ

∂pI

)t
=

−

(
1∫

Ωo
dΩo

(ptR − iptI)
∫

Ωo

NtN dΩo

)t
(35)

Since the optimization of periodic noise barriers is ex-
amined, an additional procedure needs to be performed in
order to ensure the same topology in all barrier cells. In
that way, when more than one cell is considered, a peri-
odic vector of sensitivities is calculated by the following
procedure:

1. Calculate all the sensitivity numbers inside the de-
sign domain using Eqns. (25) to (35).

2. Separate the sensitivity numbers by cell vectors, in
order to identify the first, second, down to the last
elements, of each periodic cell.

3. Average the sensitivity numbers of all the firsts, sec-
onds, down to the last elements, and store those val-
ues inside another variable, called periodic sensitiv-
ity vector.

4. Use this new vector throughout the BESO method-
ology.

All this process ensures that the same barrier is obtained
independently of the amount of cells considered.

3.3 Bi-directional Evolutionary Procedure

This section presents the Bi-directional evolutionary struc-
tural optimization (BESO) method related with acoustic
problems [4, 5, 13, 15]. The main steps of the methodol-
ogy are given as follows:

1. Execute the finite element procedure using Eqns. (7)
to (11). This analysis should be performed in order
to find the acoustic pressure in the fluid domain. At
this point, it is important to differentiate air and rigid
elements, that encompass the design domain, by at-
tributing the correct physical properties to each case
(see section 3.1).

2. Carry out the sensitivity analysis. In this case the
sensitivity numbers were validated by comparing
them to the ones obtained by the finite differences
method.

3. Apply the filter scheme, Eqns. (36) to (38), in order
to deal with numerical problems that arises with the
use of low order elements [4, 20].

αj =

M∑
i=1

wiαi (36)

wi =
1

M − 1

(
1− rij∑M

i=1 rij

)
(37)

Where αj denotes the sensitivity number of the jth
node, M is the total number of elements connected
to the jth node, wi is the weight factor of the ith ele-
ment, with

∑M
i=1 wi = 1, and rij corresponds to the

distance between the center of the ith element and
the jth node. Additionally, a length scale, rmin, is
defined with the goal of identify the nodes that con-
tribute to the sensitivity of the ith element as follows,

αi =

∑tnd
j=1 w(rij)αj∑tnd
j=1 w(rij)

(38)

with tnd being the total number of nodes that has in-
fluence over αi andw(rij) is the linear weight factor
determined by rmin − rij , for all nodes inside the
subdomain imposed by rmin.

4. Apply the sensitivity history. One of the main char-
acteristics of the BESO method consists in the usage
of discrete design variables, which may cause diffi-
culties in the convergence of the objective function
and its corresponding topology. One way to solve
this issue is to average the sensitivity numbers with
its historical information. A way to do that is by the
application of Eqn. (39),

αi =
αiti + αit−1

i

2
(39)

where superscript it refers to the current iteration.

5. Define the volume target for the next iteration,

Vit+1 = Vit(1± ER) (40)

where Vit is the volume fraction of the iteration it
and ER is the evolutionary rate. When the final vol-
ume fraction, V ∗, is reached, the next iterations must
necessarily keep the volume constant until the stop
criteria (step 7) is fulfilled.

6. Define element type. The definition of volume for
the next iteration establishes a threshold for the
amount of elements that will be air (χ = 0) or rigid
(χ = 1). Looking at the sensitivity numbers in the
context of minimization of the objective function, it
is possible to write Eqns. (41) and (42).

αi ≤ αth air elements (41)

αi > αth rigid elements (42)
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Besides, another important parameter that needs to
be addressed is the addition ratio,AR, which defines
the additional volume that can return to the FE mesh.
However, in order to restrict this amount, the max-
imum addition ratio, ARmax, is also stated. If the
case AR > ARmax happens, only some elements
with the lowest αi will be turned to air in order to
respect the AR = ARmax restriction. This fact also
implies that some elements with the highest αi will
be turned to rigid, fulfilling Vit+1 [12].

7. Repeat 1 to 6 until the final volume is reached and
the stop criteria, Eqn. (43), is satisfied.

|
∑5
m=1 Φit−m+1 −

∑5
m=1 Φit−m−4|∑5

m=1 Φit−m+1

≤ τ (43)

The variable τ denotes the allowable error tolerance.

4. NUMERICAL RESULTS

This section presents the optimization of an acoustic bar-
rier with periodic, case 1, and non-periodic, case 2, set-
tings. Fig. 2 illustrates the geometry considered in the ex-
amples. The gray region denotes the design domain, ini-
tially full of rigid elements. The green and white areas are
the objective and non-design domain regions, respectively,
composed of air elements. The entire cell has 730 mm of
length and 45 mm of height, with an initial barrier of 30x27
mm2. At boundary Γin different inputs are given in order
to explore further the behavior of the optimization method
when dealing with this kind of ATO problem, while Γout
is considered closed in all examples.

300 mm 30 mm 300 mm 100 mm

27 mmΩd Ωo

Ωnd

Γup

Γdown

Γin
Γout

=∇p n = 0= ~

∇p n = 0= ~

45 mm

=

Figure 2. Geometric details of the structure adopted in the
examples

4.1 Case 1: Barrier optimization in a periodic system

Fig. 3(a) shows the sound pressure field of the acoustic
tube with dimensions given in Fig. 2, when subjected to a
plane wave caused by an acceleration of 1 m/s2, at Γin, and
frequency of 2900 Hz. The fluid domain is discretized by
292x30 first order quadrilateral elements, which is above
the minimum recommend per wavelength [16]. The speed
of sound in air is 343 m/s, with the physical character-
istics of air and rigid materials as stated in section 3.1.
Fig. 3(b) illustrates the sound pressure field of the acoustic
system with the optimized rigid barrier. The BESO param-
eters are: V ∗ = 0.65, ER = 1.0%, ARmax = 1.4%,
rmin = 10 mm and τ = 0.1%. Fig. 3(c) is the represen-
tation of the same problem, but with three periodic cells,
which makes a finite element mesh of size 292x90.

-0.05 -0.03 -0.01 0.01 0.03

-0.03 -0.01 0.01 0.03

-0.03 -0.01 0.01 0.03

(a)

(b)

(c)

Figure 3. Sound pressure field of an acoustic tube (a) one
cell with a non-optimized barrier (b) one cell with an opti-
mized barrier (c) three cells and optimized barriers

It is observed from Fig. 3(b) and (c) that the same re-
sults are found after the optimization is complete due to the
periodic conditions of the problem. Since the fluid domain
is horizontally symmetric, it is possible to model rigid bar-
riers with one or even half of a periodic cell, representing a
significant reduction of computational cost. This becomes
even clearer with the observation of Fig. 4, that presents
the identical evolution of the objective function for the ex-
amples with one and three periodic cells, respectively. The
barrier topology in iterations 10, 30 and 50 are also shown.
The BESO method reveals great potential in the optimiza-
tion of noise barriers with periodic conditions, since the
average square pressure is reduced by 68.80%, while 35%
of the barrier volume is also reduced. Additionally, there
was no break of horizontal symmetry during the entire op-
timization process, resulting in a smooth behavior of the
objective function.

4.2 Case 2: Optimization of a non-periodic system

Fig. 5(a) illustrates the sound pressure field of a similar
acoustic tube to the one presented in section 4.1 since
the geometry, acceleration and frequency are maintained.
However, a wave is generated by a cylindrical source of
45 mm in length, located at the center of Γin. In this case,
since the boundary is non-periodic, the entire tube needs to
be analyzed or Floquet-Bloch boundary conditions would
have to be imposed in order to consider the different phases
between cells [21]. Since this is an early study on the be-
havior of the BESO method in the optimization of noise
barriers, the authors choose to only consider the case pre-
sented in Fig. 5(a). It is our hope to go deeper into this
topic and even study the optimization of acoustic barri-
ers composed of poroelastic materials [22, 23] in future
work. Fig. 5(b) presents the results found after the opti-
mization takes place. The BESO parameters considered in
this case are: V ∗ = 0.65, ER = 0.6%, ARmax = 0.8%,
rmin = 18 mm and τ = 0.1%. It must be pointed out that
despite of the non-periodic setting, the barrier was consid-
ered as three cells, to which were applied the procedures
described at the end of section 3.2.
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(a)

(b)

Iteration

Iteration

Figure 4. Objective function and barrier evolutions (a) one
periodic cell (b) three periodic cells

From Fig. 5(b) it is noticed that the barrier converged
to a non-symmetrical optimized form, completely different
from the one presented in Fig. 3(c), even though its period-
icity is maintained by the optimization method. This ob-
servation implies that, for the case of non-periodic bound-
aries, the optimization needs to be made for the whole fluid
domain and not only for a small portion of it, as previously
discussed. Additionally, the barrier may present some ir-
regular behavior throughout the iterative procedure, due to
abrupt variations of the objective function when the swap
air-rigid is made. Sometimes, even elements located in-
side the barrier are turned to air, which does not affect the
objective function at first, but sudden variations are usu-
ally observed when these elements meet the design domain
surface. In this sense, the BESO parameters needed to be
changed in order to slow down the optimization process
and, therefore, reduce pressure variations.

Fig. 6 shows the evolution of the objective function with
a presentation of the topologies for the 9th, 45th, 81st and
117th iterations. When looking at Fig. 4 and 6 it is noted
that the number of iterations of the second case more than
doubled in comparison to the first, showing an increase
in computational cost. Despite that, the BESO method
presents a reduction of the average square pressure by
83.39%, while the barrier suffers a 35% volume reduction.

5. CONCLUSIONS

In this paper the Bi-directional evolutionary structural opti-
mization (BESO) methodology was implemented with the

-25                       -15                    -5                        5                       15                     25  

-20               -10                  0                  10                  20                 30                 40

(a)

(b)

Figure 5. (a) Sound pressure field of an acoustic tube with
a 45 mm cylindrical input (b) optimized result

Iteration

Figure 6. Evolution of the objective function for the non-
symmetric case

goal of finding the best distribution of air (χ = 0) and
rigid (χ = 1) elements in the design domain, thus building
the most suitable noise barrier for the applications consid-
ered. The first case used one and three periodic cells. It
is shown that the optimized results are, as expected, inde-
pendent from the number of cells used, since the entire do-
main remained periodic, representing a low computational
cost scenario. Additionally, the objective function has been
reduced by 68.80%, with smooth behavior during the op-
timization procedure. In the second case, non-periodic in-
puts were examined. This made clear that, in those types of
scenarios, the optimization needs to be made considering
the entire acoustic tube, or Floquet-Bloch boundary condi-
tions would have to be applied. In addition, BESO param-
eters were also required to change in order to deal with the
abrupt variations of the evolutionary procedure. Despite of
that, the objective function was reduced by 83.39% while
the barrier volume decreased by 35%, showing that BESO
is an applicable method to be used for the optimization
of rigid acoustic barriers subjected to periodic and non-
periodic conditions.
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