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ABSTRACT

We present a geometrical theory of diffraction (GTD) for
sound radiation and structural response. Six types of hy-
brid rays are identified travelling either from structure-to-
fluid (sound radiation) or from fluid-to- structure (struc-
tural response). Three rays correspond to sound radiation
by the surface, edge, or corner of a structure while the three
others are the reciprocal paths corresponding to sound-to-
vibration conversion by the surface, edge, or corner. We
present the calculation of geometrical properties of wave-
fronts (principal directions and curvatures) and their laws
of transformation during an interaction process. Further-
more, some simple explicit relationships for diffraction co-
efficients are given under the light fluid assumption. Fi-
nally, two examples are discussed to illustrate the concepts.
The first one is a pure radiation problem while the sec-
ond one involves transmission through walls, structural re-
sponse and sound radiation.

1. INTRODUCTION

The geometrical theory of diffraction (GTD) founded by
Keller [1] more than sixty years ago, is today a well-
accepted and widespread theory in the fields of electro-
magnetism and acoustics.

The main idea of the GTD is that waves propagate as
rays. Although this idea is ancient and goes back at least
to Greek antiquity, the novelty of GTD leads on the dis-
covery that it exists diffracted rays in addition to reflected
and refracted rays.

Nowadays, the GTD has not been extended to describe
interaction between sound and vibration. Such a theory
has been recently proposed in Ref. [2]. This constitutes an
important step to model high frequency vibrations beyond
the classical diffuse field assumption adopted in statistical
energy analysis [3].

In this paper, we present a short review of the content of
Ref. [2]. We show that sound structure interaction may be
described with only six types of hybrid rays i.e. structural
and acoustical. We first present these rays and illustrate
their interest with two examples.

2. REVIEW OF HYBRID RAYS

Interaction between structure and sound appears in the
phenomena of sound radiation and structural response. In
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Figure 1. Radiation of a supersonic structural ray, the
acoustical ray starts with an emission angle θ0 defined in
Eq. (1).

both cases, a vibrational energy is exchanged between the
structure and the surrounding fluid. The description of
these interactions in the framework of geometrical acous-
tics implies that a ray propagating in the structure is con-
verted in a ray propagating in the fluid, or reciprocally.
This is what we call hybrid rays.

Their existence is predicted by Fermat’s principle. We
know that the radiation process may be decomposed in
three modes: radiation by surface, edges or corners of the
structure.

Consider a structural ray travelling inside the plate in
direction u−. This ray is converted into a sound ray at
point p in direction u+. For radiation by surface, the point
p is anywhere on the structure as shown in Fig. 1. Then, an
acoustical ray starts from p in the same direction but with
an emission angle θ0. Snell’s law then reads

sin θ0 =
cf
cs

(1)

where cf is the speed of sound and cs that of flexural wave.
It follows that a sound ray exists only if cs > cf , that is the
structural ray is supersonic.

Radiation by edges is rather a problem of diffraction.
The point p is located on the edge of tangent vector t
and the incoming ray has incidence ϕ as shown in Fig. 2.
The possible directions of sound radiation all belongs to
Keller’s cone of axis t and angle θ given by

cos θ =
cf
cs

cosϕ (2)
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Figure 2. Diffraction of a structural ray by edge, the acous-
tical ray lies in a Keller’s cone which angle θ is given in
Eq. (2).
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Figure 3. Diffraction of a structural ray a corner, the
acoustical ray may follow any direction.

while the azimuthal angle of emission α can take any
value. Note that for supersonic structural ray (cs > cf ),
there is always a diffracted ray. But in the subsonic case,
no diffraction occurs for incidence ϕ < arccos cs/cf .

Finally, consider a structural ray impinging on a plate
corner as shown in Fig. 3. The point p is fixed at corner.
A corner diffracts structural rays in all directions in the
fluid. More generally this is the case for any singular point
such as force point, attachement point of additional mass
or stiffness, or small hole.

By virtue of reciprocity, all previously determined paths
can be inverted. It follows that acoustical rays hitting
the plate with the particular incidence θ0 are absorbed
and transformed into structural rays. In a similar way,
acoustical rays reaching a plate edge are also absorbed
for any incidence in the subsonic case and incidence θ >
arccos cf/cs in the supersonic case. Finally, absorption by
corner or any singular points occurs for any incidence.

Thus, there exists six types of hybrid rays i.e. rays trav-
elling in both fluid and structure. They appear in vibroa-
coustics each time a structure radiates or absorbs acousti-
cal energy. But all other classical rays may be required in
practice.

3. RADIATION OF SOUND

In this section, we detail a simple application of GTD to a
sound radiation problem.

We consider a structural plane wave incident on the
edge of a semi infinite baffled plate as shown in Fig. 4.
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Figure 4. Plane wave hitting the edge of a plate. Three
rays are radiated towards the fluid and three zones num-
bered in roman characters are defined depending on the
number of rays reaching the zone.

Let r denote a point above the plate. To determine the
acoustical pressure at this point, we need to make an in-
ventory of all rays passing through that point. First, the in-
cident ray is diffracted by the edge leading to the field p1.
Since any point in the fluid is located on a unique Keller’s
cone, the point r is always reached by such a diffracted ray.
Secondly, in the supersonic frequency range, the incident
structural ray radiates continuously acoustical rays at an-
gle θ0 which may reach or not the reception point r. The
attached field is noted p2. Finally, the incident ray is re-
flected by the edge and the resulting reflected plane wave
also radiates acoustical rays at angle −θ0 whose field is
noted p3. Three zones are thus clearly defined depending
on the number of rays reaching r. They are summarized as
follows.

• zone I: p(r) = p1(r)

• zone II: p(r) = p1(r) + p2(r)

• zone III: p(r) = p1(r) + p2(r) + p3(r)

These zones and the three types of acoustical rays are
shown in Fig. 4.

Now, let us calculate the field attached to each ray. The
incident structural ray is assumed to be a plane wave with
a unit magnitude.

Firstly, the diffracted field is

p1(r) = exp(iksd1)D
edge
f (α)

exp(ikfr1)√
r1

(3)

where d1 = |p1 − s|, r1 = |p1 − r| and ks = ω/cs,
kf = ω/cf are respectively the structural and acousti-
cal wavenumbers. The term exp(iksd1) is attached to the
structural part of the ray while Dedge

f exp(ikfr1)/
√
r1 is

the cylindrical acoustical wave from the edge to the re-
ceiver point. Dedge

f (α) is a diffraction coefficient whose
explicit expression is given in Ref. [2].

Secondly, the field radiated by the incident ray is

p2(r) = exp(iksd2)Lf exp(ikfr2) (4)

where d2 = |p2 − s| and r2 = |p2 − r|. Lf is the fac-
tor for radiation and exp(ikfr2) the field attached to the
acoustical plane wave.

Thirdly, the field radiated by the reflected ray is

p3(r) = exp(iksd1)Rs exp(iksd3)Lf exp(ikfr3) (5)
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Figure 5. Cylindrical wave hitting the plate. Six rays are
transmitted through the plate and six zones numbered in
roman characters are defined depending on the number of
rays reaching the zone.

where d3 = |p3 − p1| and r3 = |p3 − r|. The term
Rs exp(iksd3) is due to the reflected field Rs being the
reflection factor.

This simple example illustrates the ease with which a
ray-tracing approach applies to sound radiation problems.
Of course, the semi-infinite nature of the plate leads a small
number of rays. In the case of a finite plate, successive
reflections occur on plates edges and the fields are series of
structural rays radiating sound rays. An energetic approach
to this problem is presented in Refs. [4, 5].

4. TRANSMISSION OF SOUND

The second application is concerned with a transmission
problem. Consider a cylindrical acoustical wave emanat-
ing from the source point s and impinging on a semi-
infinite baffled plate as shown in Fig. 5. One searches the
acoustical field in the lower half-plane. From the source s
to the receiver point r, six rays can propagate.

The first one is the acoustical ray that reaches the re-
ceiver point in straight line directly through the plate. The
field is noted p1 with

p1(r) =
exp(ikfs0)√

s0
Tf

√
s0√

s0 + r0
exp(ikfr0) (6)

where s0 = |p0− s|, r0 = |p0− r| and Tf is the transmis-
sion coefficient.

The second ray is absorbed by the structure at incidence
θ0, travels in the plate, and is radiated into the lower fluid
with emission angle θ0. The corresponding field is

p2(r) =
exp(ikfs4)√

s4
Ls exp(iksd1)Lf exp(ikfr3) (7)

where s4 = |p4 − s|, r3 = |p3 − r|, d1 = |p4 − p3|, and
Ls = −1/Lf is the attachment coefficient.

The third one is similar to the second one, although it is
reflected by the edge before to be radiated.

p3(r) =
exp(ikfs4)√

s4
Ls exp(iks(d2+d3))RsLf exp(ikfr2)

(8)
where r2 = |p2 − r|, d2 = |p1 − p4| and d3 = |p1 − p2|.

The fourth ray is successively absorbed at incidence θ0
and diffracted by the edge.

p4(r) =
exp(ikfs4)√

s4
Ls exp(iksd2)D

edge
f

exp(ikfr1)√
r1

(9)
where r1 = |p1 − r|.

The fifth one is the acoustical ray impinging on the edge
and directly diffracted toward the receiver point.

p5(r) =
exp(ikfs1)√

s1
Dedge

f

exp(ikfr1)√
r1

(10)

with s1 = |p1 − s|.
Finally, the sixth ray is diffracted into the structure by

the edge, travels into the structure and is radiated with
emission angle θ0 toward the receiver point. Its field is

p6(r) =
exp(ikfs1)√

s1
Dedge

s exp(iksd3)Lf exp(ikfr2)

(11)
These rays do not reach every point of the lower half-

plane and the pattern. They are summarized as follows.

• zone I: p(r) = p4 + p5

• zone II: p(r) = p1 + p4 + p5

• zone III: p(r) = p1 + p2 + p4 + p5

• zone IV: p(r) = p1 + p4 + p5

• zone V: p(r) = p1 + p2 + p3 + p4 + p5 + p6

• zone VI: p(r) = p1 + p3 + p4 + p5 + p6

These zones and the three types of acoustical rays are
shown in Fig. 5.

5. CONCLUSION

In conclusion, the geometrical theory of diffraction has
been applied to sound radiation and structural response of
plane structures. It has been shown that fluid-structure in-
teraction gives rise to six structural-acoustical rays. These
are radiation of supersonic structural rays, diffraction by
edges of structural rays, diffraction by corners of structural
rays, absorption of acoustical rays at incidence θ0, absorp-
tion of acoustical rays by edges, absorption of acoustical
rays by corners.
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