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ABSTRACT

In structural design and structural health monitoring
(SHM), characterization of the elastic stiffness tensor of
materials is fundamental. However, due to anisotropy and
matrix-fiber interactions in commonly used composite ma-
terials, the accurate reconstruction of these stiffness coef-
ficients becomes a complex problem. In the present study,
an inversion procedure is proposed based on 3D compo-
nent Lamb wave phase velocity matching to identify the
stiffness parameters of orthotropic composite plates. Ex-
periments have been performed on an aluminum and a
composite plate using either broadband (50-200 kHz) or
narrowband signals (5-cycle Hanning-filtered tone burst
at 240 kHz) generated by a piezoelectric actuator. A 3D
Infrared Scanning Laser Doppler Vibrometer is used for
in- and out-of-plane velocity measurements on the sur-
face of the plate. These measurement data are converted
into frequency-wavenumber space by way of 3D Fourier
transform, and dispersion curves are extracted in 3D. For
the forward model, the third order shear deformation the-
ory (3SDT) is used and embedded in an inversion algo-
rithm. The 3SDT model’s accuracy at low frequencies and
its computational efficiency allows to calculate truthful 3D
dispersion curves of layered composite in less than a sec-
ond, which is crucial for the inversion procedure. The ex-
pected stiffness parameters are calculated by minimizing
the error between the first three measured and calculated
lamb wave modes (A0, S0 and SH0). As part of the study,
different heuristic optimization algorithms such as surro-
gate optimization, particle swarm, genetic algorithm and
simulated annealing have been considered, and their per-
formance has been evaluated in terms of accuracy and ef-
ficiency. The reconstructed stiffness properties for an Alu-
minum sample and a quasi-isotropic composite plate with
quasi-isotropic stacking sequence are compared with val-
ues from the literature, showing good agreement, with a
mean difference around 3.1% for all 9 stiffness parameters.

1. INTRODUCTION

On one hand, characterization of the visco-elastic stiffness
tensor of composites is fundamental in structural design
applications. In addition, gradual material degradation, for
instance due to cyclic thermal or stress exposure, or an
abrupt impact might also change the visco-elastic moduli
of the materials. Therefore, methods that are able to per-
form a timely and accurate characterization of materials
are essential in nondestructive evaluation (NDE), structural
health monitoring (SHM) and Noise Vibration and Harsh-
ness (NVH) and are crucial for instance for applications in
automotive and aerospace industries.

In the past few decades, different inversion procedures
have been developed to identify the elastic constants of ma-
terials. Destructive techniques such as tensile, compres-
sion and shear tests can provide only a few of the elastic
moduli. The use of non-destructive techniques based on
ultrasonic waves has many advantages compared to con-
ventional methods [1]. Among the ultrasonic methods,
wave propagation based characterization employing bulk
waves [2–7] or guided waves [8–11] is well recognized.
In both methods, identification of the medium’s elastic-
ity is mainly expressed by phase velocity measurements
of a propagating ultrasonic wave inside the material [12].
By applying an accurate forward wave propagation model
within a suitable inversion procedure, all (or a subset of
the) stiffness constants can be inferred.

Despite the fact that bulk wave models are extremely
fast, the use of phase velocity data in bulk wave model
based methods has limitations. First of all, the bulk wave
approximations are only valid in a certain frequency range.
Indeed, due to the infinite plate assumption in the bulk
wave propagation models, the considered wavelength (λ)
has to be far smaller than the plate thickness (t), putting
a lower boundary on the frequency. At the same time
however, the smaller the wavelengths, the more the trans-
mission signals become dominated by the appearance of
multiple guided waves in the higher frequency times thick-
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ness (fd) regions, thus putting an upper limit on the fre-
quency as well. Additionally, bulk wave based methods
typically require a-priori knowledge about the material in
terms of symmetry axes, and essentially rely on measure-
ments along these propagation directions. Otherwise, large
errors can be encountered in the inverted stiffness parame-
ters [13,14]. As an alternative, the many drawbacks of bulk
wave based inversion can be eliminated by considering the
full aspects of Lamb wave propagation. Yet, the forward
calculation of Lamb wave phase velocities in multilay-
ered composite structures can be hard and may require ex-
treme computational power and time, which increases the
complexity of the inversion procedure. Typically, heuris-
tic algorithms, such as the commonly used genetic algo-
rithm [10,11], calls the forward calculation method several
thousand times during the global optimization procedure
in order to identify all nine stiffness parameters simulta-
neously. In addition, in order to avoid convergence to a
local minimum, the procedure needs to be repeated several
times to ensure achieving the global minimum. In the lit-
erature, extension of an analytical equivalent single layer
thin plate methodology is developed for fast characteriza-
tion of stiffness and damping at low frequencies (up to 20
kHz) [15]. However, proposed method can only identify
up to five stiffness and damping parameters [16].

In the present study, a fast inversion procedure is pro-
posed to characterize the nine orthotropic stiffness param-
eters of a solid using measured phase velocity informa-
tion on the first three Lamb modes A0, S0 and SH0 for
a plate-like sample. Section 2 of this contribution briefly
reviews the basics of the third order shear deformation the-
ory (3SDT), which was selected as the forward model to
be embedded in the optimization method based on its ac-
curacy in the low frequency range and its efficiency. The
inverse model and the experimental procedure are outlined
in Section 3. As a validation of the proposed model, the re-
sults for the reconstruction of the stiffness coefficients for
an Aluminum plate and a [45/0/−45/90/−45/0/45/90]s
carbon fiber reinforced polymer plate are discussed in Sec-
tion 4. The results and the performance of the inversion
process is evaluated and compared for different heuris-
tic optimization algorithms such as the surrogate opti-
mization, particle swarm optimization, genetic algorithm
and simulated annealing. We conclude that the recon-
structed stiffness properties for the different optimization
approaches compare well with each other and are in excel-
lent agreement with values from literature.

2. FORWARD MODEL

In this section, the expressions for the third order shear de-
formation theory are derived for an anisotropic composite
plate consisting of perfectly bonded layers with constant
thickness h. The origin of the coordinate system is located
in the center of the plate and it is assumed that the solid ma-
terial of each layer has a plane of symmetry parallel to the
xy plane (see Fig. 1).Additionally, the reflections coming
from boundaries are neglected (i.e. the plate is assumed to
be infinitely large in X- and Y-directions).

𝒛

𝒚

𝒙

ℎ/2

ℎ/2

𝑄𝑥

𝑁𝑥𝑦

𝑁𝑥

𝑀𝑥

𝑀𝑥𝑦

𝑄𝑦

𝑁𝑦

𝑁𝑦𝑥

𝑀𝑦

𝑀𝑦𝑥

𝜃

Figure 1. Resultant force and moment identification on a
composite plate.

From classical mechanics it is known that when a force
is applied to the surface of an object, the body undergoes a
small deformation. Following general elasticity, the consti-
tutive relationships for each layer, representing the relation
between stresses and strains for an monoclinic material,
can be expressed in the following manner


σx
σy
σz
τyz
τxz
τxy

 =


C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0
0 0 0 C45 C55 0
C16 C26 C36 0 0 C66




εx
εy
εz
γyz
γxz
γxy


(1)

Cij are the components of the monoclinic stiffness ma-
trix. σ and ε are normal stress and strain values, respec-
tively. Shear stress and strain values are represented by τ
and γ, respectively. Although the constitutive relations are
belonged to monoclinic materials, the derivations are still
valid for the orthotropic materials (subset of monoclinic
materials) as well. The amount of strain can be calculated
based on the linear strain-displacement relations given in
Eq. 2.

εx = u,x εy = v,y εz = w,z

γyz = v,z + w,y γxz = u,z + w,x γxy = u,y + v,x
(2)

where u, v and w are the displacement components in
the x, y and z directions, respectively, and partial differen-
tiation is represented by a comma followed by the differ-
entiation variable.

To obtain approximate strain values of the plate, it is
common to represent the deformation fields u, v, and w by
polynomial functions of a finite degree with respect to the
depth variable z, or equivalently as truncated Taylor series
in z. The degree of the approximation can be increased to
minimize the error of the model, but simultaneously, the
complexity of the model and its computational costs will
also increase. Besides, for a given level of approximation,
the number of computable Lamb wave velocities per fre-
quency equals the number of variables in the displacement
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field taken in to account in this approach. Here, in accor-
dance to the 3SDT, the deformation fields are represented
as third order polynomials because dispersion curves con-
sisting of 11 lamb wave modes (4 modes from u, 4 modes
from v and 3 modes from w) are sufficient for this study.

u(x, y, z, t) = u0(x, y, z, t) + zψx(x, y, z, t)+

z2φx(x, y, z, t) + z3Xx(x, y, z, t)

v(x, y, z, t) = v0(x, y, z, t) + zψy(x, y, z, t)+

z2φy(x, y, z, t) + z3Xy(x, y, z, t)+

w(x, y, z, t) = w0(x, y, z, t) + zψz(x, y, z, t)+

z2φz(x, y, z, t)

(3)

By using Eq. 2 and Eq. 3, the zero, first , second and
third order components of the strain values can thus be
written in vector notation as

ε(0) = {u0,x, v0,y, κ3ψz, κ2(w0,y + ψy), κ1(w0,x + ψx),

(u0,y + v0,x)}T

ε(1) = {ψx,x, ψy,y, 2κ6φz, κ5(ψz,y + 2φy),

κ4(ψz,x + 2φx), (ψx,y + ψy,x)}T

ε(2) = {φx,x, φy,y, 0, κ8(φz,y + 3Xy), κ7(φz,x + 3Xx),

(φx,y + φy,x)}T

ε(3) = {Xx,x, Xy,y, 0, 0, 0, (Xx,y +Xy,x)}T

(4)

To calculate the lamb waves for traction free bound-
ary conditions, σz , τyz and τxz should be zero. As we
work with approximations, the difference between the ap-
proximated and actual displacement fields needs to be
somehow corrected to obtain these boundary conditions.
To eliminate shear correction factors, displacement field
can be defined alternative ways [17–19] but it signifi-
cantly increase the computational power and complexity
of the problem. For this reason, shear related terms in Eq.
(4) are multiplied with κi values.These correction factors
κi(i =1,2,..,8) can be calculated by matching the cut-off
frequencies of the A1, S1, SH1 and SH2 modes in the
Lamb wave spectrum based on 3-D elasticity theory [20].
The parameters are derived for isotropic materials but same
parameters can also be used for composites with small er-
rors.

κ1 = κ2 = κ7 = κ8 = π/

√
90− 2

√
1605,

κ3 = π/
√

12, κ4 = κ5 = κ6 = π/
√

15,
(5)

Additionally, the resulting stresses and moments per
unit length are defined below in the following manner:

(Nx, Ny, Nz) =

∫ h/2

−h/2

(σx, σy, σz)dz

(Nyz, Nxz, Nxy) =

∫ h/2

−h/2

(τyz, τxz, τxy)dz

(Mx,My,Mz) =

∫ h/2

−h/2

(σx, σy, σz)zdz

(Myz,Mxz,Mxy) =

∫ h/2

−h/2

(τyz, τxz, τxy)zdz

(Sx, Sy, Sz) =

∫ h/2

−h/2

(σx, σy, σz)z2dz

(Syz, Sxz, Sxy) =

∫ h/2

−h/2

(τyz, τxz, τxy)z2dz

(Tx, Ty, Tz) =

∫ h/2

−h/2

(σx, σy, σz)z3dz

(Tyz, Txz, Txy) =

∫ h/2

−h/2

(τyz, τxz, τxy)z3dz

(6)

With the above definitions, the constitutive equations
of a composite laminate with an arbitrary lay-up can be
obtained by rearranging Eq. 4 and Eq. 6.

N
M
S
T

 =


[A] [B] [D] [F ]
[B] [D] [F ] [H]
[D] [F ] [H] [J ]
[F ] [H] [J ] [K]



ε(0)

ε(1)

ε(2)

ε(3)

 (7)

where the values of the ABDFHJK matrix corre-
spond to

(Aij , Bij , Dij , Fij , Hij , Jij ,Kij) =∫ h/2

−h/2

Cij(1, z, z
2, z3, z4, z5, z6)dz

Next, by using the principle of virtual displacement
(Hamilton’s principle), the equations of motion can be cal-
culated [21], i.e., it suffices to require that

0 =

∫ t2

t1

(δU + δV − δK)dt (8)

where δU is strain energy, δV is work done by applied
force and δK is the kinetic energy. As we expect waves to
be traveling in the x and y direction, we can safely assume
solutions of the following form:

{u0, v0, w0} = {U0, V0,W0}expi[(kxx+ kyy)− ωt]
{ψx, ψy, ψz} = {Ψx,Ψy,Ψz}expi[(kxx+ kyy)− ωt]
{φx, φy, φz} = {Φx,Φy,Φz}expi[(kxx+ kyy)− ωt]
{Xx, Xy} = {xx, xy}expi[(kxx+ kyy)− ωt]

(9)
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where ω is the angular frequency, kx = k cos θ, ky =
k sin θ, with k is the wavenumber and θ is propagation di-
rection. In the absence of surface loads, the equations of
motion can be rewritten as a generalized eigenvalue prob-
lem, with L and I being 11x11 matrices:

(L− ω2I)ξexpi[k(x cos θ + y sin θ)− ωt] = 0 (10)

where ξ = {U0V0ΨzΦxΦy|W0ΨxΨyΦzxxxy}T . The
variables on the left and the right sides of the line relate to
the 5 symmetric and 6 antisymmetric modes, respectively,
that can be resolved in this approach. Symmetric and an-
tisymmetric modes can be separated if the stacking orien-
tation is symmetric. Details of the method can be found in
the literature [20, 22, 23]. By solving the eigenvalue prob-
lem given in Eq. 10, phase velocities of 5 symmetric and
6 antisymmetric lamb waves can be calculated in less than
a second on a standard laptop. The efficiency and the ac-
curacy of the 3SDT method for low frequency offers the
potential to embed this forward model into an inversion al-
gorithm to identify the stiffness parameters based on mea-
sured information regarding the low order Lamb modes.

3. INVERSE MODEL

The simultaneous inversion of all components of an or-
thotropic stiffness matrix demands a substantial amount
of computational power because a global optimization al-
gorithm involves the search for the global minimum in
a 9 dimensional space (the number of independent stiff-
ness parameters for a orthotropic material). The procedure
typically requires thousands of iterations, and many more
evaluations of a forward model. Besides, as most of the
optimization algorithms are heuristic approaches, the op-
timization procedure has to be repeated several times to
ensure attaining the global minimum. In case of an ineffi-
cient forward model, the entire procedure might take days
to solve. For this reason, approximated theories, such as
the 3SDT explained above, are sometimes better alterna-
tives, especially when the solution time is important. Still,
such theories and their embedding in an inversion proce-
dure have to be validated with experimental results. Here,
two experimental studies, conducted on different materials
and under different circumstances, are considered to vali-
date the proposed 3SDT based inversion method. The first
experiment concerns a 5 mm thick Aluminum plate with
a density of 2700 kg/m3. The second experiment deals
with a quasi-isotropic (stacking orientation leads in-plane
isotropic behavior) composite plate of 2 mm thick and a
density of 1571 kg/m3. The stacking orientation of the
composite plate is [45/0/− 45/90/− 45/0/45/90]s. The
data set of the composite plate is open source and can be
downloaded from the website given in article [24]. The
homogenized stiffness properties for both materials have
been reported in the literature [14, 24] and can be found in
Table 1.

A broadband (sweep) signal, amplified to 100V, with
frequencies ranging from 50 to 200 kHz was supplied to

Table 1. Literature values of the material properties cor-
responding to the different materials (in GPa) used in the
experiments.

Material Aluminum UD134
C11 110.5 56.6
C12 58.5 20.1
C13 58.5 5.7
C22 110.5 56.6
C23 58.5 5.7
C33 110.5 11.0
C44 26.0 3.6
C55 26.0 3.6
C66 26.0 18.2

a PZT transducer to excite the aluminum plate. Similarly,
a 5 cycle Hanning filtered sine at 240 kHz, amplified to
100 V, was used for the narrowband excitation of the quasi
isotropic composite plate. Surface response measurements
of the in-plane and out-of-plane velocities were performed
with a 3D Infrared Scanning Laser Doppler Vibrometer.
The sampling frequencies in the case of aluminum and in
the composite case equaled 1.25 MHz and 2.56 MHz, re-
spectively.

Figure 2. 3D dispersion curves of analytic and experimen-
tal results for aluminum.

Figure 3. 3D dispersion curves of analytic and experimen-
tal results for quasi-isotropic composites.

In preparation of the inversion procedure, the measure-
ment data is converted to the frequency-wavenumber space
(kx, ky , f ) by using 3D Fourier transform. Subsequently,
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dispersion surfaces for the A0, S0 and SH0 are extracted
in 3D (see Fig. 2 and Fig. 3). Experimental 3D dis-
persion curves are calculated by using MATLAB™ Image
Processing Toolbox. Three levels of threshold has been
found for each frequency and images are quantized by us-
ing these thresholds. These post-processed data are used as
input to the inversion routines. The stiffness tensor compo-
nents are inverted by maximizing the overlap between the
dispersion landscapes of the three measured and the three
calculated Lamb wave modes. For this, the cost function
to be maximized is built up as the sum of the interpolated
values of the post-processed data over the theoretically pre-
dicted dispersion surfaces of each mode. The lower bound-
ary and upper boundaries for the C-tensor components are
selected as minus 40 and plus 60 percent of the literature
values except for C33. As the out of plane stiffness value
has a relatively low effect for A0, S0 and SH0 modes, the
boundaries ofC33 are selected as minus 10 and plus 10 per-
cent of the literature value. The optimization is performed
by employing four heuristic routines within MATLAB™’s
powerful global optimization toolbox, namely genetic al-
gorithm, particle swarm optimization, simulated annealing
and surrogate optimization. Each optimization procedure
is repeated 100 times to avoid ending up in local minima.
The results, along with their statistics, as well as the inver-
sion times for each inversion routine are provided in the
next section.

4. RESULTS AND DISCUSSIONS

Statistics of the inverted stiffness matrix results, showing
the mean and standard deviation of the optimization results
corresponding to the different inversion procedures, can
be found in 2 and Table 3 for the aluminum plate and the
composite plate, respectively. The relative difference, ex-
pressed in percentage, between the obtained median values
and the literature values which are assumed to be ground
truth values, can be appreciated from Table 4

Comparing the different routines for the aluminum case,
it is observed that the particle swarm optimization algo-
rithm provides the best agreement with the values found in
the literature, with only 3.1% on average difference. The
average difference for the surrogate optimization, simu-
lated annealing and genetic algorithm are 4.6, 4.9 and 6%,
respectively. The misfit errors for C12, C22 and C33 modes
for aluminum are relatively higher for all optimization al-
gorithms.

When it comes to the quasi-isotropic composite plate,
simulated annealing gives the best fitting results, with a
2.7% difference on average. The average difference for
surrogate optimization, particle swarm and genetic algo-
rithm in this case are 4.3, 3.2 and 3.1%, respectively. Note
that the misfit error for the C13 and C23 parameters are
again relatively higher indicating that an accurate extrac-
tion of the shear stiffness values in the out-of-plane direc-
tion is relatively hard to obtain. However, as the four algo-
rithms independently converged to almost the same values
in both cases, it is possible that the considered specimens
have out-of-plane shear stiffness values that differ from the

Table 2. Statistics of the inverted material properties of an
aluminum plate (in GPa) resulting from inversions based
on surrogate optimization (SO), particle swarm (PS), sim-
ulated annealing (SA) and genetic algorithm (GA). SD
stands for standard deviation.

Stiffness SO Mean - SD PS Mean - SD
C11 118.6 ± 9.8 113.1 ± 13.4
C12 61.9 ± 6.8 61.6 ± 15.0
C13 60.0 ± 9.1 60.3 ± 11.8
C22 117.3 ± 9.5 119.4 ± 17.5
C23 58.3 ± 7.6 62.2 ± 14.5
C33 116.1 ± 4.8 115.1 ± 4.9
C44 24.4 ± 0.7 25.6 ± 0.9
C55 24.4 ± 1.1 27.1 ± 0.8
C66 26.5 ± 0.5 26.3 ± 0.0

Stiffness SA Mean - SD GA Mean - SD
C11 113.7 ± 8.4 114.4 ± 9.1
C12 63.3 ± 7.5 64.7 ± 8.2
C13 60.2 ± 7.7 61.1 ± 7.6
C22 122.9 ± 10.3 125.0 ± 11.7
C23 64.9 ± 8.4 66.9 ± 9.3
C33 111.6 ± 3.4 112.1 ± 4.6
C44 25.3 ± 0.5 25.4 ± 0.6
C55 26.8 ± 0.5 26.9 ± 0.5
C66 26.3 ± 0.2 26.3 ± 0.0

Table 3. Statistics of the inverted material properties of
a quasi-isotropic composite plate (in GPa) resulting from
inversions based on surrogate optimization (SO), particle
swarm (PS), simulated annealing (SA) and genetic algo-
rithm (GA). SD stands for standard deviation.

Stiffness SO Mean - SD PS Mean - SD
C11 56.2 ± 1.3 55.3 ± 1.1
C12 21.3 ± 1.3 20.2 ± 1.1
C13 6.5 ± 0.8 6.0 ± 0.9
C22 56.2 ± 1.2 55.3 ± 1.1
C23 6.5 ± 0.8 6.0 ± 0.9
C33 10.7 ± 0.5 11.5 ± 0.5
C44 3.6 ± 0.0 3.6 ± 0.0
C55 3.6 ± 0.0 3.6 ± 0.0
C66 18.6 ± 0.2 18.5 ± 0.3

Stiffness SA Mean - SD GA Mean - SD
C11 55.5 ± 0.1 55.2 ± 0.8
C12 20.4 ± 0.1 20.1 ± 0.8
C13 6.2 ± 0.1 6.0 ± 0.6
C22 55.5 ± 0.1 55.2 ± 0.8
C23 6.2 ± 0.1 6.0 ± 0.6
C33 11.1 ± 0.0 11.4 ± 0.4
C44 3.6 ± 0.0 3.6 ± 0.0
C55 3.6 ± 0.0 3.6 ± 0.0
C66 18.2 ± 0.0 18.4 ± 0.2
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Table 4. Relative difference, expressed in percentage, for
the inverted stiffness components in the case of an alu-
minum and a quasi-isotropic composite plate with respect
to surrogate optimization (SO), particle swarm (PS), simu-
lated annealing (SA) and genetic algorithm (GA).

Aluminum
Stiffness SO PS SA GA
C11 7.8 0.1 2.2 2.6
C12 5.3 1.5 8.2 10.2
C13 5.4 0.1 2.6 3.4
C22 5.6 7.4 11.2 12.7
C23 0.6 6.6 11.9 14.1
C33 6.4 4.5 0.6 0.6
C44 5.6 2.0 2.9 3.0
C55 6.5 4.6 3.5 3.3
C66 1.5 1.0 1.0 1.0

UD134
Stiffness SO PS SA GA
C11 1.0 2.3 2.0 2.0
C12 4.4 0.2 1.1 1.0
C13 13.3 7.8 8.5 8.3
C22 1.0 2.3 2.0 2.0
C23 13.3 7.8 8.5 8.3
C33 2.8 6.2 0.8 4.9
C44 0.8 0.6 0.7 0.6
C55 0.8 0.6 0.7 0.6
C66 1.9 1.3 0.1 0.3

literature values which could be attributed to the manufac-
turing process. On the other hand, the error percentage
is much lower for C44, C55 and C66 in both cases, and
as the standard deviation values for these components in
both cases are quite low, it can be clearly concluded that
retrieving these stiffness coefficients is easier than finding
the others.

The fact that the average error and standard deviation
for the aluminum case are higher than for the composite
plate inversion might originate from the relatively coarse
grid distance and sampling frequency used in the alu-
minum experiment compared to the composite data. To
identify the effect of the sampling frequency and the grid
distances, further experiments are required considering dif-
ferent sampling frequencies and grid distances, and the
inversion results of each case should be compared to de-
termine the optimum values. Conversely, higher sampling
frequencies and lower grid distances increase the measure-
ment time. At the same time, the size of the data used
during the inversion also increases which is again crucial
for inversion time.

Finally, the average calculation times of the different
inversion routines are summarized in Table 5 for one in-
version. The reported values correspond to the case of the
composite plate, and it was verified that the inversion times
approximately scale linearly with the size of the experi-
mental data. In the composite case, the wavenumber grid

distance in both axis is 24.5 rad/m from -2000 rad/m to
2000 rad/m, whereas the frequency ranges from 190 kHz to
250 kHz with a 0.625 kHz grid size. Therefore, an experi-
mental data set with a size of 131x131x177 values needs to
be loaded at each iteration. Obviously, the inversion time
can be reduced by loading a smaller data set but the accu-
racy might be lowered. The inversion procedure is repeated
100 times (to allow for statistics on the reconstructed val-
ues) on a workstation with Intel® Core™ i7-8700 CPU @
3.20 GHz and 16 GB ram, and the average solution times
are shared. The entire model is coded in vectorized form to
increase computational efficiency. The solution times for
the proposed combination of 3SDT with any of the con-
sidered optimization methods show that an acceptably fast
and accurate characterization is possible by using this ap-
proximate technique.

Table 5. Average solution times (expressed in seconds) for
inversions involving surrogate optimization (SO), particle
swarm (PS), simulated annealing (SA) and genetic algo-
rithm (GA).

SO PS SA GA
Time 30.0 410.8 1689.5 1051.5

5. CONCLUSION

An appreciably fast inversion procedure is proposed to
identify the stiffness coefficients of an orthotropic com-
posite plate based on experimentally measured Lamb wave
phase velocities. The forward model at the heart of the
inversion procedure uses a third order shear deformation
theory. The investigated heuristic optimization routines in-
clude the genetic algorithm, particle swarm optimizer, sur-
rogate optimizer and simulated annealing. To validate the
proposed model, experiments on different materials and
under different experimental conditions, involving either
broadband or narrowband excitation, are conducted. A
3D Infrared Scanning Laser Doppler Vibrometer is used
for in-plane and out-of-plane particle velocity measure-
ments. The measured time signal data is converted into
frequency-wavenumber space by using 3D Fourier trans-
form from which the dispersion surfaces for the A0, S0

and SH0 modes can be extracted. The resultant disper-
sion landscapes are then compared with predictions based
on the 3SDT. Doing so, orthotropic stiffness tensor com-
ponents are inferred by minimizing the distance between
the measured and calculated lamb wave modes in the 3D
wavenumber-frequency space. By using this approximate
method, fairly accurate inversions can be completed in ac-
ceptable calculation times ranging from 7 to 18 minutes
depending on the chosen optimization algorithm. The in-
verted stiffness properties for both case studies involv-
ing an aluminum and quasi-isotropic composite plate are
compared with values from the literature, showing a good
agreement, with an average misfit error of 3.1% for all 9
stiffness parameters. Stiffness tensor values closest to the
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literature are obtained by particle swarm and simulated an-
nealing for the aluminum and the composite plate, respec-
tively. In the end, it can be concluded that the proposed
method, combining 3SDT with heuristic optimization rou-
tines, allow for a fast and accurate characterization, inde-
pendent of the considered excitation signals and material
symmetry. Unidirectional and cross-ply composite plates
as well as layerwise (or individual) stiffness tensor charac-
terization will be examined in future studies.
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