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ABSTRACT

Porous materials are traditionally used in industry for their
sound absorption and insulation properties. Over the past
decade, more attention has been given to their elastic and
damping properties. For instance, there is a particular
interest in the automotive industry to replace heavy lay-
ers (consisting of constrained viscoelastic rubber layers)
with felts or foams evidencing high damping capabilities.
Hence, characterizing efficiently the viscoelastic proper-
ties of porous materials is crucial for purposes of quality
control and further improvements in product development
and fabrication. The goal of this work is to propose an
experimental-numerical method for the inverse character-
ization of the frequency-dependent properties of porous
materials within the Bayesian framework. To that pur-
pose, vibration tests are first carried out on a simply sup-
ported panel with a free-layer of closed-cell polyurethane
foam in the low-frequency range. Then, a finite element
model is developed considering only the viscoelasticity of
the porous skeleton, neglecting the influence of the fluid
phase. A four-parameter fractional derivative model is cal-
ibrated and validated using a probabilistic approach. Fur-
thermore, the results of this inverse characterization are
compared to the viscoelastic properties identified by dy-
namical mechanical analysis.

1. INTRODUCTION

Porous materials have recently gained attention due to
their potential capacity to be used for purposes of vibration
control, without significantly influencing the weight of the
structure [1–4]. Hence, the determination of their mechan-
ical properties has become crucial in the prediction of their
damping performance.

Direct measurement of all properties often requires dif-
ferent testing equipment, and this could be troublesome in
some sense. Therefore, inverse methods have been increas-
ingly used in the characterization of materials. Among the
different approaches available in the literature, a proba-
bilistic identification seems more reasonable as it can deal
with uncertainties of experimental measurements and nu-
merical models which are based on assumptions and ap-
proximations [5, 6].

Bearing this in mind, this work proposes an

experimental-numerical procedure for the inverse charac-
terization within the Bayesian framework of the viscoelas-
tic properties of porous materials, in particular a closed-
cell polyurethane foam. For this reason, vibrational tests
are first carried out on a two-layered simply supported
panel, as shown in Fig. 1, in the low-frequency range.
A finite element model is then implemented considering
only the viscoelasticity of the porous skeleton. A four-
parameter fractional derivative model is calibrated within
Bayesian framework. The results of this inverse character-
ization are compared with the ones identified by a dynamic
mechanical analysis [4].

Base plate

Foam layer

F

Figure 1: Configuration of simply supported panel.

This work is organized as follows. Section 2 introduces
the constitutive model and the finite element formulation.
Then, Section 3 presents the inverse formulation adopted
to estimate the viscoelastic properties. Afterward, Sec-
tion 4 describes the experimental set-up. Finally, Section 5
presents the results, followed by concluding remarks.

2. NUMERICAL MODEL

2.1 Finite element formulation

Under the paradigm of modeling porous materials, the
dissipation of mechanical energy due to the viscoelasticity
of the solid skeleton is often the main source of damping
in the low-frequency range [2, 4, 7]. Therefore, the porous
material is herein assumed to be as a homogeneous vis-
coelastic one.

The finite element discretisation of the differential
equations of a general problem consisting in a vibrating
elastic structure bonded to a viscoelastic layer results in
the following equation of motion

[KE +G∗(ω)K0
V − ω2M]U(ω) = F (ω), (1)
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where KE is the global stiffness matrix related to elastic
component, K0

V is the global stiffness matrix associated
with the viscoelastic layer and evaluated for a unitary shear
modulus, G∗(ω) is the complex shear modulus of the vis-
coelastic material, M is the global mass matrix, U(ω) and
F (ω) are, respectively, the displacement and force vectors
in the frequency domain.

As for the complex shear modulus G∗(ω), it is as-
sumed herein a four-parameter fractional derivative model
(FPFDM), also known as fractional Zener model, due to
its capability of providing good predictions of the behav-
ior of the investigated foam [4, 7]. It is thus expressed as
follows [8, 9]

G∗(ω) =
G0 +G∞(jωτ)α

1 + (jωτ)α
(2)

where G0 and G∞ are, respectively, the relaxed and unre-
laxed shear moduli, τ is the relaxation time and α is the
order of the fractional derivative model. It is worthwhile
mentioning that these four parameters must follow thermo-
dynamical constraints such as G∞ > G0 > 0, τ > 0, and
0 < α ≤ 1, and must be estimated by inverse techniques.

It is worth noting that the hypotheses of isotropy and
constant Poisson’s ratio ν are also adopted for the inves-
tigated foam. In this way, all foam’s mechanical mod-
uli are independent of the direction and also have the
same frequency dependence. As a consequence, a three-
dimensional constitutive law can be implemented as fol-
lows

C∗(ω) =G∗(ω)
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(3)
where C∗(ω) is the constitutive matrix of the material.

2.2 Numerical implementation

An in-house program combining GMSH [10] and
MATLAB R© software is used to build the geometries to-
gether with the corresponding meshes, and also to compute
the frequency response functions (FRFs) using the multi-
model approach [11].

The investigated structure is modeled with the 20-node
hexahedral elements since they can describe better some
physical mechanisms of viscoelastic layers. This resulted
in 14241 degrees of freedom.

3. BAYESIAN INVERSION METHOD

The goal of the inverse method is to estimate the param-
eters of the fractional derivative model chosen to describe

the viscoelastic behavior of the porous material, namely
{G0, G∞, τ, α}. For this, a probabilistic approach based
on the Bayesian inference is considered to assess informa-
tion about the parameters.

The central idea behind this approach is to obtain all
possible information about the unknown parameters θ con-
sistently with (i) the set of measured dataY , (ii) the mathe-
matical model, and (iii) the information about θ before the
measurements. The problem solution corresponds to the
posterior probability density function (PDF) for θ given
the available data Y .

In this regard, all unknown quantities and measure-
ments are considered as random variables. The uncertainty
about each random variable is modeled through its PDF.

From a mathematical standpoint, parameter estimation
within the Bayesian framework relies on the Bayes’ theo-
rem [5, 6]

π(θ|Y ) ∝ π(Y |θ)π0(θ) (4)

where π(θ|Y ) is the posterior probability density function
of the model parameters, π(Y |θ) is the likelihood func-
tion and π0(θ) is the prior model adopted for the unknown
parameters θ.

Once the posterior PDF π(θ|Y ) is built, one can com-
pute point estimates for θ such as the maximum a posteri-
ori (MAP) estimator θMAP and also explore this through
sampling based techniques such as Markov Chain Monte
Carlo (MCMC) method.

3.1 Choice of the likelihood function

The likelihood function π(Y |θ) is related to the uncer-
tainty of measuring Y . Its specification depends on the hy-
potheses about the distribution of noise [5,6]. In this work,
it is assumed that this uncertainty takes the form of an ad-
ditive noise described by a Gaussian distribution with zero
mean and unknown variance σ2 such as ε ∼ N(0, σ2).
Therefore, it may be represented as

π(Y |θ) = 1

(2πσ2)Ny/2
exp

{
− [Y − f(θ,x)]2

σ2

}
. (5)

3.2 Choice of the prior probability distribution

The prior PDF π0(θ) is used to describe the users’ be-
liefs about model parameters prior to measurements [5, 6].
In this work, it is assumed that the parameters are mutu-
ally independent, i.e., π0(theta) = πo(θ1)× . . . π0(θN ).
Each PDF π0(θi) is modeled as a uniform distribution such
that π0(θi) ∼ U(ai, bi). Moreover, the constraints of the
problem are imposed through the supports ai and bi.

3.3 Markov chain Monte Carlo method

Markov Chain Monte Carlo (MCMC) method is any
computational approach used to explore the posterior PDF
based on the ideas of Monte Carlo integration and Markov
chains. Generally speaking, it consists in generating sam-
ples from an ergodic Markov chain {θ(1),θ(2), ...,θ(M)}
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whose stationary distribution corresponds to the posterior
PDF π(θ|y). These samples are generated sequentially
such that the sample distribution θ(j) depends only on the
last generated sample θ(j−1) [5, 6].

Several algorithms can be found in literature [5, 6].
It is considered herein the Delayed Rejection Adaptive
Metropolis (DRAM) algorithm [12] aiming at improv-
ing the efficiency of the method. This particular algo-
rithm combines the main characteristics of the Adaptive
Metropolis (AM) and Delayed Rejection (DR) algorithms,
retaining the Markovian property and reversibility of the
Markov chains.

4. EXPERIMENTAL SET-UP

The system under analysis is a two-layered panel
mounted in frame to approximate simply supported condi-
tions [13] as shown in Fig. 2. The geometric and physical
characteristics of the base plate and the porous material are
detailed next on Tab. 1. The free-layer of porous materials
corresponds to a closed-cell polyurethane foam previously
characterized by Bonfiglio et al. [14] and by Henriques et
al. [4].

Spectrum 
analyserPC

Impact
hammer

Accelerometers

Aluminum plate
Foam layer

Figure 2: Experimental set-up.

Table 1: Description of the components of the simply sup-
ported panel.

Description Aluminum Polyurethane foam

ρ [kg/m3] 2700 48
ν 0.3 0.35

E [GPa] 69 -
Thickness [mm] 3 25

Width [mm] 360 200
Length [mm] 420 200

An impact hammer is used to apply a point force (F ) at
coordinates (0mm, 80mm, 80mm) to excite the panel and
four accelerometers (AC1, AC2, AC3, AC4) are glued on
the bare panel side through beeswax in different locations
to measure the structure’s response, as illustrated in Fig.
3. Measurements are thus performed up to 800Hz, with a
frequency step of 0.5Hz, at room temperature.

y

z

F

AC1

AC2

AC3

AC4

(a) Location of the applied force and ac-
celerometers

(b) Foam layer glued on aluminum plate

Figure 3: Photographs of simply supported panel.

It should be pointed out that vibration tests on the bare
aluminum panel have been conducted to perform a model
updating process to take into account, for example, imper-
fections in the realization of the boundary conditions.

5. RESULTS

As previously mentioned, the unknown parameters
were defined as θ = {G0, G∞, τ, α}T . These parame-
ters, however, vary some orders of magnitude for the in-
vestigated material according to the results presented by
Bonfiglio et al. [14] and by Henriques et al. [4]. For this
reason, they were normalized θ = {p1, p2, p3, p4}T to en-
hance the performance of this estimation [6] such as

p1 = G0 × 10−4[Pa], (6a)

p2 = G∞ × 10−6[Pa], (6b)

p3 = τ × 10−8[s], (6c)

p4 = α. (6d)

The experimental data comprised the FRFs measured
by the four accelerometers {AC1, AC2, AC3, AC4}.
Since the model updating process must be independent
of model validation, a specific organization was thus
adopted. Firstly, the measured data has been split into
two groups such that the calibration was performed us-
ing the FRFs measured by accelerometers {AC1, AC2},
and the model validation was quantified using the FRFs
measured by accelerometers {AC3, AC4}. Then, the
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complex FRF measured by an accelerometer ACi was or-
ganized in a N-dimensional vector such as H̃|ACi =
{H̃(ω1)|ACi, . . . , H̃(ωN )|ACi}T . Finally, the measured
data Y used during model updating corresponded to a 4N-
dimensional vector defined as follows

Y = {<[H̃|AC1]
T<[H̃|AC2]

T=[H̃|AC1]
T=[H̃|AC2]

T }T
(7)

where <[ã] and =[ã] are, respectively, the real and imagi-
nary parts of a complex vector ã.

It is important to highlight that the calibration step did
not consider all the experimental points obtained in the
measurements. Only the experimental points related to
the resonance peaks and ten more points linearly-spaced
frequency grids located around each resonance peak were
selected. This strategy allowed us to improve the compu-
tational time of the problem.

The posterior PDF of the unknown parameters was thus
explored using the DRAM algorithm, which generated a
total of 50000 samples. The convergence of the algorithm
to the stationary posterior PDF was assessed by computing
the cumulative mean in the Markov chain of all the param-
eters, and also by observing the well-mixing behavior of
the chains.

Table 2 shows the posterior mean value E[θ] together
with the 95% credibility interval (CI) of the unknown pa-
rameters θ obtained with this MCMC method.

Table 2: Posterior mean value and 95% credibility interval
(CI) of the unknown parameters θ.

Material Parameter E[θ] 95% CI

G0 [×104 Pa] 1.09 [0.59, 1.89]
G∞ [×106 Pa] 2.66 [1.45, 4.42]
τ [×10−8 s] 4.42 [3.09, 5.88]

α 0.42 [0.35, 0.49]

Figure 4 shows the uncertainty propagation from the
model parameters θ ∼ π(θ|Y ) to the structure’s frequency
response function H̃ . It can be seen a good agreement, on
the whole, between the calibrated model and the experi-
mental data. The credibility intervals were quite narrow
for most of the frequency range. Higher uncertainties ap-
peared after approximately 680Hz and this difficulty may
be related to the multi-model approach used to compute
the FRFs in the uncertainty propagation.

To validate the estimated parameters, the uncertainty
propagation was performed for the FRFs of the two ac-
celerometers AC3 and AC4, which were not used in cal-
ibration. Figure 5 compares the 95% credibility interval
for the calibrated FPFDM and the measured data from ac-
celerometer AC3. A good agreement can be observed in
this prediction.
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Figure 4: Uncertainty propagation when considering θ ∼
π(θ|Y ) for the FRF of accelerometer AC1.
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Figure 5: Uncertainty propagation when considering θ ∼
π(θ|Y ) for the FRF of accelerometer AC3.

To further evaluate the efficiency of the proposed in-
verse identification, the results obtained are compared with
the ones estimated by Henriques et al. [4] using measured
data from DMA as shown in Tab. 3. It is possible to ob-
serve that the average values estimated for the parameters
G∞ and α are more discrepant (in percentage terms) when
compared to those estimated by the DMA. Nevertheless,
if one considers the credibility intervals shown in Tab. 2,
all estimated parameters had a good agreement with each
other.

Table 3: Comparison between the MCMC results and the
ones estimated using measured data from DMA [4].

Material Parameter MCMC DMA

G0 [×104 Pa] 1.09 1.31
G∞ [×106 Pa] 2.66 2.11
τ [×10−8 s] 4.42 4.70

α 0.42 0.30
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6. CONCLUSION

In this work, an inverse characterization procedure was
proposed to estimate the viscoelastic properties of porous
material based on the Bayesian framework. The inher-
ent uncertainties from model assumptions and experimen-
tal measurements could be quantified. The estimated pa-
rameters were expressed by a probability density function,
allowing the determination of some statistics such as the
mean. Stochastic models could be computed, showing
good levels of correlation with measured data.
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