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ABSTRACT

The Finite Element Method is one of the most popular
methods used to solve wave propagation problems. Yet,
this method is computationally intensive as the number of
wavelengths increases in the computational domain. As an
alternative, the Partition of Unity Finite Element Method
(PUFEM) emerges as a promising method to tackle short-
wave problems for both acoustics and vibration problems.
The method is an extension of the classical Finite Element
Method in which enrichment basis functions are used. This
entails a reduction in the number of degrees of freedom in
the model while maintaining its accuracy. In the present
work, the PUFEM method is extended and applied to 2D
vibro-acoustic problems. The configuration under investi-
gation consists of a Euler-Bernoulli beam coupled with an
enclosed acoustic cavity. Wave functions combined with
polynomials are used as the enrichment basis for the beam
and plane waves for the acoustic domain. Computational
performances measured in terms of accuracy and number
of degrees of freedom are demonstrated via convergence
analyses. It is shown that the method outperforms classi-
cal FEM, as evidenced by the highly satisfactory level of
errors reached by using a very small number of degrees of
freedom.

1. INTRODUCTION

The finite element method (FEM) is the most widely used
method to solve wave-like problems. However, the method
is best-suited to simulate waves in so-called low frequency
regime. Indeed, assuming classical linear interpolation, the
FEM requires at least 10 elements per wavelength. Hence
as the wavelength shortens the model becomes heavier
computer-wise. In addition this method suffers from dis-
persion and pollution errors [1]. This makes the classical
FEM both inaccurate and expensive for solving short-wave
problems. To overcome these issues, alternative methods
have been developed. One very common technique widely
used in commercial softwares for acoustics is the statisti-
cal energy analysis (SEA) [2]. This method is particularly
well suited for quick system level response predictions at
the early design stage of a product, and for predicting re-

sponses at higher frequencies but relies on many assump-
tions and is not deterministic. On the other hand, the inclu-
sion of the wave character of the solution in the FEM for-
mulation gave rise to new deterministic methods i.e.: the
Partition of Unity Finite Element Method (PUFEM) [3],
the Ultra-Weak formulation [4], Wave-Based Methods [5],
the Discontinuous Enrichment Method and the Variational
Theory of Complex Rays [6].
In the present work which deals with vibro-acoustic prob-
lems, the PUFEM is favored as it has the advantage of
being very similar to classical FEM which facilitates its
implementation. In addition it has already been devel-
oped with success for the numerical simulation of acous-
tic [7], [8] and structural waves [9].

2. FORMULATION

The aim of this work is to model the coupling between a
beam and an acoustic cavity. Throughout this paper Γs
refers to the beam domain and Ωf refers to the acoustic
domain. The time convention used is exp(−iωt) where ω
is the angular frequency.

2.1 Weak formulation

2.1.1 Beam

The beam is considered as a Euler-Bernoulli beam. So
its motion is described by the transverse displacement w
which satisfies :

EI
∂4w

∂x4
− ω2ρsSw = Q in Γs, (1)

where E is the Young’s modulus, I = bh3/12 the second
area moment, b the width of the beam, h its height, ρs its
density, S = bh its cross section area and Q an arbitrary
load. The associated variational formulation writes∫

Γs

(
EI

∂2δw

∂x2

∂2w

∂x2
− ω2ρsSwδw

)
dΓ =∫

Γs

δwQdΓ + δwλ(0) + δwλ(Lx) in Γs,

(2)
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where δw is the test function and λ(x) are Lagrange mul-
tipliers used to impose the pinned boundary conditions at
both ends of the beam.

2.1.2 Acoustics

In the acoustic domain the pressure satisfies the Helmholtz
equation :

∆p+ k2
fp = 0, (3)

where p is the pressure, kf = ω/c is the wave number and
c the speed of sound. The associated variational formula-
tion is∫

Ωf

(
∇δp∇p− k2

fpδp
)

dΩ−
∫

Γ

δp
∂p

∂n
dΓ = 0, (4)

where δp is the test function and Γ is the boundary of Ωf .
The boundary Γ can be split into two sub-boundaries as
Γ = Γf ∪ Γs where Γf is a boundary on which a variety
of boundary condition can be applied.

2.1.3 Coupling

Applying the continuity of displacement leads to
∂p

∂n
= ρaω

2w,

−pb+ fext = Q,

(5)

(6)

where fext is a known force applied on the beam as illus-
trated in Fig. 1. Finally Eqn. (6) and Eqn. (5) are injected
in Eqn. (4) and Eqn. (2) respectively. The following cou-
pled system is obtained :

∫
Ωf

(
∇δp∇p− k2

fpδp
)

dΩ =

∫
Γf

δp
∂p

∂n
dΓ

+

∫
Γs

δpρfω
2wdΓ in Ωf ,∫

Γs

(
EI

∂2δw

∂x2

∂2w

∂x2
− ω2ρsSwδw

)
dΓ = +δwλ(0)

+ δwλ(Lx) +

∫
Γs

δw(fext − pb)dΓ in Γs.

2.2 PUFEM formulation

In [10] authors showed that the ’wave enrichment’ com-
bined with a family of polynomial functions provide
a highly satisfactory convergence rate for the Euler-
Bernoulli beam. So the transverse displacement is ex-
pressed as follows :

w(x) =

2∑
i=1

6∑
k=1

Nh
i (µ)Ψik(x)Wik (7)

whereNh are Hermite shape function for a 2-nodes line el-
ement, the unknown Wik is the amplitude of the kth func-
tion of the enrichment basis attached to node i. The en-
richment basis is :

Ψik =
{

1, x̃i, x̃
2
i , x̃

3
i , cos(ksx̃i), sin(ksx̃i)

}
, (8)

fext

Γs

Ωf

Figure 1: Configuration.

where x̃i = x − xi and ks = 4

√
ρsSω2

EI is the the wave
number for an infinite beam. For more details see [11]. The
geometry is mapped using classical linear shape functions.

In [7] authors showed the efficiency of the plane wave
basis to solve Helmholtz problems. Here, the pressure is
expressed as a combination of plane waves travelling in
different directions:

p(r) =

3∑
j=1

Qj∑
q=1

Nj(ξ, η) exp(ikdjq(r − rj))Ajq (9)

whereNj are linear shape function of a triangular element,
djq is the direction of the qth plane wave attached to node
j. rj is the coordinate vector of node j. Ajq is the ampli-
tude of the qth plane wave attached to node j andQj is the
number of plane waves at node j. At node, plane waves
are evenly distributed on the unit circle like so :

djq =

(
cosαj,q
sinαj,q

)
where αj,q =

2πq

Qj
, q = 1, ...,Qj .

(10)
The number of plane waves at each node depends on the
frequency and the element size according to the following
criteria [8, 12] :

Qj = round[kh+ C(kh)
1
3 ]. (11)

Here, h is the largest element edge length connected to
the node j within the acoustic domain, and C is a constant
usually chosen in the interval C ∈ [2, 20].

3. NUMERICAL RESULTS

To test the accuracy of the method, it is applied to an aca-
demic case described in Fig. 1. This case consists of a
beam Γs, simply supported at both ends on which a uni-
form loading is applied. The beam is coupled to a rect-
angular acoustic cavity Ωf . The cavity is bounded by
three rigid walls and the beam. These two domains are
defined as Γs = {(x, z) ∈ R2/ 0 < x < 1, z = 0},
Ωf = {(x, z) ∈ R2/ 0 < x < 1, 0 < z < 1}. Fig. 2 and
Fig. 3 represent the real part of the pressure field and the
transverse displacement of the beam at f = 3000Hz. One
can observe that elements span over several wavelengths
which highlights the efficiency of the method.
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Figure 2: Real part of the pressure (Pa) field at 3000Hz.
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Figure 3: Transverse displacement of the beam at 3000Hz.
3 elements along the beam.

To further assess the quality of the model the L2 error
is computed in each domain as follows :

ε2 =

√∫
Ω
|ucomp − uref |2 dΩ√∫

Ω
|uref |2 dΩ

, (12)

where u stands for either p or w whether the error is as-
sessed in Ωa or Γs. Subscript comp refers to results from
PUFEM and ref refers to results of the reference solu-
tion. The reference solution obtained using modal expan-
sion with coupled modes along the z-direction as explained
in [13]. The error associated with Fig. 2 is 0.15% and with
Fig. 3 is 0.18%.

Convergence of the model is shown in Fig. 4. It is ob-
tained by performing h-refinement. It appears that highly
satisfactory level of errors are reached quickly. Indeed with
1600 degrees of freedom ε2 ≈ 10−3%. If one were to
model the same problem using classical linear FEM, using
the rule of 10 elements per wavelength, 8300 quadrangu-
lar elements would be necessary, leading to a minimum of
33, 000 degrees of freedom.
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100
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400 600 800 1000 1200 1400 1600

ε 2
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Figure 4: Convergence at f = 3000Hz.

4. CONCLUSION

The method presented in this paper couples a Euler-
Bernoulli beam with an acoustic domain using the
PUFEM. It is shown that it produces highly satisfactory
results. Indeed low level of error are obtained around
10−3%. The efficiency of the method is proven since this
level of error is obtained with very low numbers of de-
grees of freedom. To push the analysis further authors are
investigating other coupling strategies involving PUFEM
elements of different sizes which permits to consider sit-
uations where structural and acoustic wavelengths differ
notably.
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