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ABSTRACT 

Elastic modulus is one of the most important mechanical 
properties of homogeneous materials. It describes the 
dynamic behaviour of elastic and viscoelastic materials, 
strongly affecting both panel modes and coincidence 
frequencies, so is an important quantity to consider in 
noise and vibration control. A method to obtain the elastic 
modulus of materials is proposed herein, based on the 
measurement of the surface velocity field occurring due to 
the propagation of bending waves through a panel. A 2D 
spatial Fourier transform applied to the measured velocity 
field allowed evaluation of the wavevectors of the free 
bending waves propagating in the panel. By averaging 
over wave direction, the overall amplitude distribution 
versus wavenumber can be found, and from this the 
dominant wavenumber obtained. From the latter it is 
straightforward to calculate the flexural wave speed, which 
can, via classical plate theory, be related to the static elastic 
modulus value of the material. A preliminary experimental 
test-rig was based on laser Doppler vibrometry 
measurements in order to assess the surface velocity of a 
freely suspended sample, acoustically excited by a 
broadband signal. The experimental results show a 
reasonable agreement to the manufacturer’s technical data 
and to the outcomes of related numerical simulations, 
although some issues require further research. 

1. INTRODUCTION 

Propagation of vibrational waves in homogeneous plates is 
a topic that has received substantial study and is well 
understood [1-2]. In practical applications however, there 
is often uncertainty over material parameters, for 
composites in particular, and it is commonplace to observe 
mismatch between the behaviour of real structures and that 
predicted by computer models. This is undesirable since it 
means that designs may not perform as expected. It also 
challenges the emerging ‘Digital Twin’ vision. In this, 
products are accompanied by a tightly aligned digital 
model that can be used as a performance benchmark. For 
this to work, both simulation algorithms and material data 
must be accurate, hence there is a need for accurate 
material characterisation methods. This is particularly 
challenging for existing structures that cannot be 
dismantled and must be characterised in-situ. Here we 
propose such a technique for measuring bending wave 

speed and, from this, the elastic modulus. Notably, this 
method is non-contact and relies upon passive excitation. 

Techniques for measuring elastic modulus include static 
and/or dynamic testing [3], nanoindentation and methods 
based on measuring speed of bending wave propagation 
[4-7]. This latter category is non-destructive in its 
approach, so aligns with the objective of this study. Most 
have however required attachment of shakers and/or 
accelerometers; the method proposed here prevents this by 
passive acoustic excitation and laser Doppler vibrometry. 
This avoids mass loading, so is applicable for lightweight 
structures, and ensures that the structure is not damaged. 

Methods for measuring panel bending wave speed can be 
categorised into those based on transient analysis and those 
using spatial wave decomposition. The former 
approximates an infinite plate by time-windowing out 
reflections [6]. This is effective but inevitably limits low 
frequency accuracy. Spatial decomposition approaches 
can be applied in one [8] or two [9-10] spatial dimensions, 
i.e. to bars or plates, and are able to simultaneously extract 
wavespeeds for different propagation modes and/or 
different directions, potentially allowing characterisation 
of orthotropic panels. They have often been applied at high 
and/or ultrasonic frequencies by the Non-Destructive 
Testing (NDT) community [11]. The starting point for 
spatial decomposition methods is usually a spatial Fourier 
transform. This requires a high-density of measurement 
points, something that is tedious to acquire with 
accelerometers but relatively unproblematic with a 
scanning laser vibrometer. Limitations include: finite 
aperture effects; an assumption that constituent plane 
waves are homogeneous (no propagation loss); poor 
convergence near driving points (due to the cylindrical 
nature of the vibration field). Recent works have attempted 
to overcome these limitations by including propagation 
loss [12-13] and/or source functions [14], or more 
sophisticated signal processing techniques [15]. 

In the preliminary test case reported herein, number of 
scanning points was not a limiting factor hence a 2D 
Fourier transform could be applied without significant 
windowing issues. It is also anticipated that distributed 
acoustic excitation will not infringe the homogeneous 
plane wave assumption of the Fourier transform so much 
as for point excitation. The study herein limits itself to 
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isotropic panels. This allows a new postprocessing step 
that searches for energy peaks in any propagation 
direction. This means that instead of struggling to 
distinguish overlapping modes, as some works above try 
to do, all modes contribute to the estimate. 

2. THEORY 

2.1 Plate bending wave theory 

It is well known that bending waves in plates are 
dispersive, that is their wavespeed varies with frequency. 
According to classical plate theory [1]: 

 (1)

Here: 
  is the elastic modulus of the material (Nm-2) 
  is the thickness of the plate (m) 
  is the mass density of the material (kgm-3) 
  is the Poisson ratio of the material 

Noting that wavenumber  gives: 

 (2)

It is therefore expected that  will follow a  trend. The 
method estimates  by fitting a curve  to 
measured wavenumber data and then using: 

 (3)

Regarding the other quantities in Eqn. (3),  can usually 
be measured and  is typically known with good 
confidence for most materials. Knowledge of  may be 
less certain for some materials e.g. composites, though the 
form of Eqn. (3) means the estimate of  will be relatively 
insensitive to it for small values at least. It is also worth 
noting that in many numerical models, e.g. FEM with 
Mindlin-Reissner shell physics, these parameters are 
recombined similarly to Eqn. (1), reducing the influence of 
chosen values. 

2.2 Processing by two-dimensional Fourier transform  

The data processing method utilised herein builds on the 
concepts introduced in [9]. A Cross-Power Spectral 
Density analyser is first used to find the amplitude and 
phase relationship  between out-of-plane velocity, 
as measured by the laser vibrometer at coordinates  
on the plate, and some reference signal.  is sampled 
at a grid of measurements points, then a two-dimensional 
Fourier transform converts these spatial measurements 
into an equivalent wavenumber spectrum : 

 (4)

Here  and  are wavenumber in the  and  directions 
respectively.  is a spatial window function, a future 
development recommended by Ferguson et al in [9]. Here 
it was chosen to be a Hanning window with support over 
the plate dimensions  and . They 
also discuss how a Discrete Fourier Transform (DFT) 
gives insufficient points in  space and advocate 
evaluation of values in-between what a direct 2D Fourier 
series would deliver. Here that is achieved using the DFT 
algorithm simply by zero-padding the measured data. 

Many of the papers cited in the previous section have the 
aim of characterising angle-dependent wave speed for 
orthotropic plates. Here the scope has been limited to 
isotropic plates, offering an advantage in how dominant 
wavenumber can be estimated. Rather than searching for 
peaks in  space, and struggling with distinguishing 
between overlapping modes, we consider that any mode 
for a rectangular plate will be built out of plane waves with 
a bending wavenumber matching that frequency. All such 
modes can then contribute to the estimate of wavenumber 
at that frequency, regardless of direction or phase.  
 

 is introduced as a measure of power in wavenumber 

, regardless of direction. It is defined as: 

 (5) 

Here  is propagation angle so  and 
 . It is related to total power by: 

 (6) 

 is expected to have peak at the bending wavenumber 
for the material. A peak-search at each frequency should 
therefore give , and from this  via Eqn. (3).  will 
experience peak-widening due to the spatial window 
present in Eqn. (4), but this will be symmetrical so peak 
location should be retained. 

3. METHOD VALIDATION   

The method was tested on an acrylic panel by means of 
acoustic measurements carried out in the acoustics 
laboratories at the University of Salford. The post-
processing chain was validated by means of numerical 
simulations performed at the University of Naples. 

3.1 Numerical test-case  

A three-dimensional vibroacoustic FEM simulation was 
carried out in COMSOL™ by modelling an acrylic plate 
in unconstrained conditions, having dimensions 960 mm 
× 510 mm × 2 mm, acoustically excited by a monopole 
source in free field. The panel surface velocity field was 
numerically evaluated and then post-processed by 
applying the method described in the previous section. 
The panel was modelled as a linear elastic and isotropic 
shell, free at the edges, the mechanical properties of 
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which are defined in Tab. 1. The structural domain was 
surrounded by a spherical acoustic domain, in which a 
monopole sound source was defined and located at 3 cm 
distance from the panel, close to a corner, in order to 
obtain the highest structural modal density. The exterior 
boundaries of the spherical air volume were modelled as 
a Perfectly Matched Layer (PML), in order to 
approximate free field conditions (Fig.1). The acoustical 
and mechanical physics were then coupled by means of 
the ‘multiphysics’ node, so as to include both the air load 
on the panel and the structural acceleration experienced 
by the fluid [16]. Structural and acoustic domains were 
discretized by means of unstructured tetrahedral meshes 
ranging from 0.01 m to 0.11 m, and unstructured 
quadrilateral meshes were used for the PML. As a result 
of a stationary frequency domain study, complex values 
of transverse surface velocity were evaluated at a regular 
grid of 527 (31×17) evenly spaced point receivers 
distributed over the entire surface of the panel. The spatial 
periodicity of bending wave propagation at each 
frequency can be analysed by observing the function 

 in the wavenumber space. An example at 102 
Hz is shown in Fig. 2, where the yellow peaks indicate 
the dominant wavenumbers. The values of  and  at 
the peaks can be related to the number of repetitions of 
the modes shape in the  and  directions. It can also be 
seen that while many peaks are present, most have the 
same value of , following a circular locus. A peak search 
on  will find the radius of this locus. 

 was calculated at each frequency using Eqn. (5). 
Fig. 3 shows a measure of the vibrational power of 
bending waves at 102 Hz regardless of propagation 
direction; the dominant wavenumber  can be then 
identified as the abscissa corresponding to the peak value 
of  . By repeating such an operation of peak finding 
for all frequencies, the wavenumber spectrum  was 
evaluated (Fig. 4). This shows a trend increasing in 
frequency with , as expected from Eqn. (2). From this, 
the phase velocity spectrum  was calculated (Fig. 5). 
The slope of a linear fit performed over the entire 
spectrum of  (also shown) allows to calculate the 
elastic modulus  according to Eqn. (3). The latter was 
found to be equal to 3.38 GPa, within 5% of the value set 
in the FEM model (Tab. 1).  
 

Mass density (kgm-3) 1190 
Poisson’s ratio  0.35 

Input Young’s Modulus (GPa) 3.2 

Table 1. Acrylic plastic mechanical properties, as defined 
in the COMSOL™ built-in material library.  

 
 

 
 

 
 

Figure 1. Geometry of the FEM vibroacoustic model. 
The acoustical domain surrounding the shell is bounded 
by a spherical Perfectly Matched Layer (PML). 

Figure 2. 2D spatial Fourier transform of surface plate 
velocity field  evaluated at 102 Hz.  

Figure 3. , the distribution of vibrational energy 
versus wavenumber, at 102 Hz, normalised to its peak. 
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4. MEASUREMENTS OF AN ACRYLIC PLATE 

The method was experimentally evaluated by acoustical 
tests on a rectangular acrylic panel of dimensions 960 mm 
× 510 mm × 2 mm, as was simulated in FEM in section 
3. The acrylic rectangular plate tested in the acoustical 
measurements was suspended limply from a supporting 
frame (Fig. 6a), in order to approximate the free edge 
boundary condition. The panel was excited by a 
broadband signal, emitted by a loudspeaker placed at its 
rear. A block diagram is given in Fig. 6b. 

As in the numerical case, a scanning grid of 527 evenly 
spaced points (31×17) was set. A secondary non-scanning 
LDV, pointing to a fixed position upon the panel, was 
used as a phase reference. Both had a standoff distance of 
1.32 m from the panel. The normal surface velocity field 

 was measured up to 500 Hz with a frequency 

resolution of 1.25 Hz.  and  functions were 
derived according to Eqns. (4) and (5), allowing the 
dominant wavenumber  to be found.  

Fig. 7a shows measured  versus wavenumber and 
frequency. As a reference, a black dashed curve is 
overlaid on the plot, showing the expected trend of the 
wavenumber calculated according to Eqn. (2) using the 
reference value of  provided in the technical datasheet 
(Tab. 2). A match between the two curves is observable 
up to 300 Hz, above which some outliers are present. 
Most of these follow a nearly linear trend below 20 rad/m. 
As suggested by previous work [11], such a linear trend 
in measured wavenumber might be attributable to the first 
symmetrical Lamb wave mode  [2]. In order to exclude 
the outlying values from the post-processing, a high-pass 
filter was applied to . The cut-off frequencies of this 
a filter (red dashed curve) increase in frequency with a 
factor of  and were defined by shifting the curve of the 
expected wavenumber down of 15 rad/m. This produced 
the plot of  in Fig. 7b, the peak of which better 
approximates the expected trend over the entire frequency 
range, although some noise is still present especially in 
the interval of 250-400 Hz. Starting from these data, the 
phase speed spectrum  was calculated and a linear 
fit performed over the 50-500 Hz frequency interval. The 

Figure 4. Plot of normalised  versus wavenumber 
and frequency. The yellow peak indicates the trend of the 
numerical dominant wavenumber . 

Figure 6. (a) The measurement setup, showing the acrylic
panel, supporting frame, and the pair of LDV. The
loudspeaker (not visible) is located behind the panel. (b)
Block diagram of the measurement setup: output signals 
from secondary LDV and noise generator were used as 
references. 

(a) 

(b) 

Figure 5. Linear fit of phase speed spectrum:  numerical 
values of ,    fitting line .  
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static elastic modulus was then found to be equal to 3.54 
GPa, showing a reasonably  good match (18% error) with 
the Young’s modulus minimum value of 3.00 GPa 
reported in the manufacturer’s technical datasheet (Tab. 
2). The accuracy of this reference data is however also 
uncertain. 
 

Young’s modulus (GPa) 
(technical datasheet) 

Young’s modulus (GPa) 
(proposed method) 

3.00 (minimum) 3.54 

Table 2. Comparison between elastic modulus reported by 
IRPEN Policril technical datasheet and the one calculated 
with the presented method.   

5. PRELIMINARY EXTENSION TO NON-
HOMOGENEOUS MATERIALS 

A preliminary investigation into the applicability of this 
method for non-homogeneous materials has also been 
made. The measurement process described in section 4 
was repeated on a panel of ‘foamcore’ (or ‘foamboard’), a 
material which is commonly used as support for 
photographic prints or architectural scale models. A panel 
of foamcore is made up of a sandwich structure, which 
core is polystyrene foam clad with a layer of paper facing 
on either side, providing a significant structural stiffness 
when compared to foam as standalone (Fig. 9).  

Unfortunately, the obtained data resulted to be much 
noisier than to those measured on the acrylic sheet, 
providing low levels of confidence for the evaluation of 
the elastic modulus. This might be attributed to the more 
complex structure of the material, which introduces a 
sensible deviation from the assumption of isotropic and 
homogeneous material. Moreover, it may also be assumed 
that a greater internal damping of foamcore has affected 
the modal behaviour of the sample, leading to low levels 
of signal-to-noise ratio for the dominant wavenumber to be 
captured by the LDV. This suggests that improvement is 

Figure 9. Example of foamboard sheets, showing the 
sandwich structure with inner polystyrene foam core and 
two outer layers of paper (source: www.indiamart.com).  

Figure 7. Plot of measured  versus wavenumber and 
frequency. (a) normalised unfiltered values where  
is bending wavenumber trend expected for Young’s 
Modulus reference value , and   is high-
pass filter cut-off frequency. (b)  high pass filtered 
following red line in (a), and re-normalised. 

Figure 8. Linear regression of phase speed over the 50-
500 Hz frequency range:  measured values of , 

  fitting line . 

(a) 

(b) 
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needed in order to extend the method as well as to non-
homogeneous materials. 

6. CONCLUSIONS 

The method for the determination of the elasticity modulus 
presented in this paper has been shown to work for 
homogeneous and isotropic materials, providing a good 
correlation of the obtained values against numerical 
simulations and manufacturer’s data. 

This method offers the advantage of being non-destructive 
on the material under test, as well as of not requiring the 
use of any mean of excitation or attached sensors such as 
shakers and piezoelectric accelerometers. In such a 
manner, any additional loading upon the sample is 
minimised leaving unaltered its mass and stiffness, 
therefore avoiding interference on the vibrational field and 
facilitating the in-situ characterization of lightweight 
structural elements. 

With regards to data acquisition and processing, 
developments will be implemented on the automatic 
selection of  windowing and optimised frequency ranges 
for the linear regression of wave speed values. 

Further experimental work includes analysis of the outlier 
trend seen in Fig. 7a, with the aims to investigate the 
possible cause and extract any extra data it might offer. 

Finally, future investigation should validate and update the 
method for the analysis of non-homogeneous and arbitrary 
shaped plates too. 
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