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By taking advantage of a stability criterion established recently, the critical temperature Tc is
reckoned with help of the microscopic parameters, characterising the normal and superconducting
electrons, namely the independent-electron band structure and a repulsive two-electron force. The
emphasis is laid on the sharp Tc dependence upon electron concentration and inter-electron coupling,
which might offer a practical route toward higher Tc values and help to understand why high-Tc

compounds exhibit such remarkable properties.

PACS numbers: 74.25.Bt,74.25.Jb,74.62.Bf

The BCS theory[1], despite its impressive success, does
not enable one to predict[2] superconductivity occurring
in any metallic compound. Such a drawback ensues from
an attractive interaction, assumed to couple electrons to-
gether, which is not only at loggerheads with the sign of
the Coulomb repulsion but in addition leads to question-
able conclusions to be discussed below. Therefore this
work is intended at investigating the Tc dependence upon
the parameters, characterising the motion of electrons
correlated together through a repulsive force, within the
framework of a two-fluid picture[3] to be recalled below.

The conduction electrons comprise bound and inde-
pendent electrons, in respective temperature dependent
concentration cs(T ), cn(T ), such that c0 = cs(T ) + cn(T )
with c0 being the total concentration of conduction elec-
trons. They are organized, respectively, as a many bound
electron[4] (MBE) state, characterised by its chemical
potential µ(cs), and a Fermi gas[5] of Fermi energy
EF (T, cn). The Helmholz free energy of independent
electrons per unit volume Fn and EF on the one hand,
and the eigenenergy per unit volume Es(cs) of bound
electrons and µ on the other hand, are related[5, 6], re-
spectively, by EF = ∂Fn

∂cn

and µ = ∂Es

∂cs

. Then a stable
equilibrium is conditioned[7] by Gibbs and Duhem’s law

EF (T, cn(T )) = µ(cs(T )) , (1)

which expresses[6] that the total free energy Fn + Es is
minimum provided ∂EF

∂cn

+ ∂µ
∂cs

> 0. Noteworthy is that
∂µ
∂cs

< 0 has been shown to be a prerequisite for per-
sistent currents[7], thermal equilibrium[4], the Josephson
effect[8] and a stable[3] superconducting phase. Likewise,
Eq.(1) reads[4, 7] for T = Tc

EF (Tc, c0) = µ(cs = 0) = εb/2 , (2)

with εb being the energy of a bound electron pair[4]. Note
that Eqs.(1,2) are consistent with the superconducting
transition being of second order[6], whereas it has been
shown[4] to be of first order at T < Tc (⇒ EF (T, c0 −
cs) 6= µ(cs)), if the sample is flown through by a finite
current.

The binding energy[4] of the superconducting state
Eb(T < Tc) has been worked out as

Eb(T ) =
∫ Tc

T

(Cs(u) − Cn(u)) du ,

with Cs(T ), Cn(T ) being the electronic specific heat of a
superconductor, flown through by a vanishing current[4]
and that of a degenerate Fermi gas[5]. A stable phase
(⇒ Eb > 0) requires Cs(Tc) > Cn(Tc), which can be
secured[3] only by fulfilling the following condition

∂EF

∂cn

(Tc, c0) = − ∂µ

∂cs

(0), ρ′(EF (Tc, c0)) > 0 , (3)

with ρ (ǫ) , ǫ being the independent electron density of
states and one-electron energy, respectively, and ρ′ = dρ

dǫ
.

Since the remaining analysis relies heavily on
Eqs.(2,3), explicit expressions are needed for
EF (Tc, c0), ∂EF

∂cn

(Tc, c0), εb,
∂µ
∂cs

(0). Because the in-
dependent electrons make up a degenerate Fermi gas
(⇒ T << EF /kB with kB being Boltzmann’s constant),
applying the Sommerfeld expansion[5] up to T 2 yields

EF (Tc, c0) = EF (0, c0) − ρ′

ρ

(πkBTc)2

6

∂EF

∂cn
(Tc, c0) =

(

ρ + ρ′′ (πkBTc)2

6

)−1 , (4)

with ρ = ρ(EF (0, c0)), ρ′ = dρ
dEF

(EF (0, c0)), ρ′′ =
d2ρ
dE2

F

(EF (0, c0)). As for εb,
∂µ
∂cs

(0), a truncated Hubbard

Hamiltonian HK , introduced previously[9–11], will be
used. The main features of the calculation[4] are sum-
marised below for self-containedness.

The independent electron motion is described by the
Hamiltonian Hd

Hd =
∑

k,σ

ǫ(k)c+
k,σck,σ .

ǫ(k), k are the one-electron energy (ǫ(k) = ǫ(−k)) and a
vector of the Brillouin zone, respectively, σ = ± is the
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electron spin and the sum over k is to be carried out over
the whole Brillouin zone. Then c+

k,σ, ck,σ are creation and
annihilation operators on the Bloch state |k, σ〉

|k, σ〉 = c+
k,σ |0〉 , |0〉 = ck,σ |k, σ〉 ,

with |0〉 being the no electron state. The Hamiltonian
HK reads then

HK = Hd +
U

N

∑

k,k′

c+
k,+c+

K−k,−cK−k′,−ck′,+ ,

with N >> 1, U > 0 being the number of atomic sites,
making up the three-dimensional crystal, and the Hub-
bard constant, respectively. Note that the Hamiltonian
used by Cooper[12] is identical to HK=0, but with U < 0.

HK sustains[4] a single bound pair eigenstate, the en-
ergy εb(K) of which is obtained by solving

1
U

=
1
N

∑

k

1
εb(K) − ε(K, k)

=
∫ tK

−tK

ρK(ε)
εb(K) − ε

dε. (5)

±tK are the upper and lower bounds of the two-electron
band, i.e. the maximum and minimum of ε(K, k) =
ǫ(k)+ǫ(K−k) over k, whereas ρK(ε) is the corresponding
two-electron density of states, taken equal to

ρK(ε) =
2

πtK

√

1 −
(

ε

tK

)2

.

The dispersion curves εb(K) are plotted in Fig.1.
Though Eq.(5) is identical to the equation yielding the
Cooper pair energy[12], their respective properties are
quite different :

• the data in Fig.1 have been calculated with U > 0,
rather than U < 0 favoured by Cooper[12] and
BCS[1], because, due to the inequality[4] U ∂µ

∂cs
<

0, choosing U < 0 entails ∂µ
∂cs

> 0, which has
been shown not to be consistent with persistent
currents[7], thermal equilibrium[4], the Josephson
effect[8] and occurence[3] of superconductivity. As
a further consequence of U > 0, εb(K) shows up
in the upper gap of the two-electron band struc-
ture (⇒ εb(K) > tK) rather than in the lower
gap (⇒ εb(K = 0) < −tK) in case of the Cooper
pair[12]. Nevertheless the bound pair is thermody-
namically stable, because every one-electron state
of energy < EF (Tc, c0), is actually occupied, so
that, due to Pauli’s principle, a bound electron
pair of energy εb(K) = 2EF (Tc, c0), according to
Eq.(2), cannot decay into two one-electron states
ǫ(k) < EF , ǫ(K − k) < EF ;

• a remarkable feature in Fig.1 is that εb(K) → tK

for U → tK/2, so that there is no bound pair for
U < tK/2 (accordingly, the dashed curve is no

longer defined in Fig.1 for Ka
π

< .13), in marked
contrast with the opposite conclusion drawn by
Cooper[12], that there is a Cooper pair, even for
U → 0. This discrepancy results from the three-
dimensional Van Hove singularities, showing up
at both two-electron band edges ρK (ε → ±tK) ∝
√

tK − |ε|, unlike the two-electron density of states,
used by Cooper[12] which is constant and thence
displays no such singularity. Likewise the width
of Cooper’s two-electron band is equal to a Debye
phonon energy 2tK=0 = ωD ≈ 30meV << EF ≈
3eV . Hence the resulting small concentration of
superconducting electrons, cs(T =0)

c0

≈ ωD

EF

≈ .01,
entails that London’s length should be at least 10
times larger than observed values[13–16];

• at last Cooper’s assumption U < 0 implies εb/2 6=
EF (Tc), which is typical of a first order transition
but runs afoul at all measurements, proving con-
versely the superconducting transition to be of sec-
ond order (⇒ εb/2 = EF (Tc) in accordance with
Eq.(2)).

The bound pair of energy εb(K) turns, at finite concen-
tration cs, into a MBE state, characterised by µ(cs). Its
properties have been calculated thanks to a variational
procedure[4], displaying several merits with respect to
that used by BCS[1] :

• it shows that µ(0) = εb/2;

• the energy of the MBE state has been shown to be
exact for |U | → ∞;

• an analytical expression has been worked out for
∂µ
∂cs

(K, cs = 0) as :

∂µ

∂cs

(K, cs = 0) = −
∫ tK

−tK

ρK (ε)

(εb(K)−ε)3 dε

2
(

∫ tK

−tK

ρK (ε)

(εb(K)−ε)2 dε
)2 . (6)

The Tc dependence on c0 will be discussed by assigning
to ρ(ǫ) the expression, valid for free electrons

ρ(ǫ) = η
√

ǫ − ǫb ⇒ c0 =
2
3

η (EF (0, c0) − ǫb)
3

2 , (7)

with η =
√

2m
3

2 V
π2~3 , whereas ǫb, m, V = 17Å3 stand for

the bottom of the conduction band, electron mass and
volume of the unit-cell, respectively. With help of Eq.(4),
Eqs.(2,3) can be recast into a system of two equations

EF (0, c0) − ρ′

ρ

(πkBTc)2

6 − εb(K)
2 = 0

(

ρ + ρ′′ (πkBTc)2

6

)−1

+ ∂µ
∂cs

(K, cs = 0) = 0
, (8)

to be solved for the two unknowns c0(Tc), tK(Tc) with Tc

being dealt with as a disposable parameter.



3

FIG. 1. Dispersion curves of tK as a dashed-dotted line and
of εb(K) as solid, dashed and dotted lines, associated with
various U values, respectively; those data have been obtained
with tK = t cos (Ka/2), where t, a are the one-electron band-
width and the lattice parameter, respectively.

To that end, starting values are assigned to U, tK ,
which gives access to εb(K), ∂µ

∂cs
(K, cs = 0)) and

thence to EF (0, c0) , ǫb and finally to c0, owing to
Eqs.(2,3,7). Those values of c0, tK are then fed into
Eqs.(8) to launch a Newton procedure, yielding the so-
lutions c0(Tc), tK(Tc). The results are presented in ta-
ble I. Since we intend to apply this analysis to high-Tc

compounds[17], we have focused upon low concentrations

c0 < 0.2, which entails, in view of Eqs.(4,7), that
∣

∣

∣

∂µ
∂cs

∣

∣

∣

takes a high value. This requires in turn εb(K) → tK

(see Eq.(6)) and thence[4] U → tK

2 , in agreement with
tK

U
≈ 2 in table I.

A remarkable property of the data in table I is that
c0, tK are barely sensitive to large variations of Tc, i.e.
|δc0| < 10−3, |δtK | < 10−5 for δTc ≈ 400K. This can be
understood as follows : taking advantage of Eqs.(2,4,7)
results into

2EF (0, c0)
εb(K)

− 1 =
π2

12

(

kBTc

∆(Tc)

)2

,

which, due to dtK

dTc
≈ 0, ∆(Tc) ≈ 1eV, Tc = 400K, yields

indeed δc0 = c0(400K) − c0(1K) ≈ 10−3, in agreement
with the data in table I. Such a result is significant in
two respects, regarding high-Tc compounds, for which c0

can be varied over a wide range :

• because of dc0

dTc

≈ 0, the one-electron band structure
can be regarded safely as c0 independent, which
enhances the usefulness of the above analysis;

• the large doping rate up to ≈ 0.2 is likely to give rise
to local fluctuations of c0, which, in view of the ut-
most sensitivity of Tc with respect to c0, will result

TABLE I. Solutions c0(Tc), tK(Tc), ∆(Tc) (∆(Tc) =
EF (0, c0(Tc)) − ǫb) of Eqs.(8); tK , ∆, U are expressed in eV ,
whereas the unit for c0 is the number of conduction electrons
per atomic site.

Tc(K) c0 tK ∆

1 0.10215 6 1.1976

400 0.10225 5.9999 1.1984

U = 3.39

Tc(K) c0 tK ∆

1 0.14897 2 1.5402

400 0.14906 1.9999 1.5407

U = 1.04

Tc(K) c0 tK ∆

1 0.19158 4 1.8214

400 0.19167 3.9999 1.8219

U = 2.2

into a heterogeneous sample, consisting in domains,
displaying Tc varying from 0 up to a few hundreds
of K. Thus the observed Tc turns out to be the
upper bound of a broad distribution of Tc values,
associated with superconducting regions, the set of
which makes up a percolation path throughout the
sample. However, if the daunting challenge of mak-
ing samples, wherein local c0 fluctuations would be
kept well below 10−4, could be overcome, this might
pave the way to superconductivity at room temper-
ature.

The Tc dependence upon U will be analysed with

ρ(ǫ) =
4
πt

√

1 −
(

1 − ǫ

t

)2

,

where 2t stands for the one-electron bandwidth. Our pur-
pose is to determine the unknowns tK(EF , Tc), U(EF , Tc)
with EF = EF (T = 0, c0) and c0 =

∫ EF

0
ρ(ǫ)dǫ. To

that end, Eq.(3) will first be solved for tK by replac-
ing ∂EF

∂cn

(Tc, c0), ∂µ
∂cs

(0) by their expressions given by
Eqs.(4,6), while taking advantage of Eq.(2). Then the
obtained tK value is fed into Eq.(5) to determine U . The
results are presented in Fig.2.

It can be noticed that there is no solution for c0 >
.75, because ∂EF

∂cn

(Tc, c0) ≈ 1
ρ

(EF (0, c0)) and ∂µ
∂cs

(0) > U
2

decrease and increase, respectively, with increasing c0, so
that Eq.(3) can no longer be fulfilled eventually. But the
most significant feature is that δU is almost insensitive
to large Tc variation, except for EF → 0, i.e. for EF close
to the Van Hove singularity, located at the bottom of the
band, which has two consequences :

• c0 cannot be varied in most superconducting ma-
terials, apart from high-Tc compounds, so that U
is unlikely to be equal to U(c0), indicated in Fig.2.
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FIG. 2. Plots of EF (Tc, c0), tK(Tc, c0), U(Tc, c0) calculated for
Tc = 1K and t = 3eV ; the unit for c0 is the number of conduc-
tion electrons per atomic site; δf with f = EF , tK , U is de-

fined as δf =

∣

∣

∣
1 −

f(300K,c0)
f(1K,c0)

∣

∣

∣
; the scale is linear for EF , tK , U

but logarithmic for δEF , δtK , δU .

Conversely, since high-Tc compounds allow for wide
c0 variation, c0 can be tuned so that U = U(c0);

• the only possibility for a non high-Tc material to
turn superconducting is then offered at the bot-
tom of the band, because δU becomes large due to
ρ′

ρ
(EF → 0) ∝ 1

EF

in Eq.(4). Such a conclusion,
that superconductivity was likely to occur in the
vicinity of a Van Hove singularity in low-Tc ma-
terials, had already been drawn[4] independently,
based on magnetostriction data.

It will be shown now that ρ(ǫ), ρK(ε) cannot stem from
the same one-electron band. The proof is by contradic-
tion. As a matter of fact ρ(ǫ) should read in that case

ρ(ǫ) =
4
πt

√

1 −
( ǫ

t

)2

.

Hence U > 0 entails, in view of Fig.1 and Eq.(2), that
there is εb

2 = EF > 0, which implies ρ′(EF ) < 0 in con-
tradiction with Eq.(3). Accordingly, since the two differ-
ent one-electron bands, defining respectively ρ(ǫ), ρK(ε),
display a sizeable overlap, they should in addition belong
to different symmetry classes of the crystal point group,
so that superconductivity cannot be observed if there are
only s-like electrons at EF or if the point group reduces
to identity. Noteworthy is that those conclusions had
already been drawn empirically[2].

The critical temperature Tc has been calculated for
conduction electrons, coupled via a repulsive force,
within a model based on conditions, expressed in
Eqs.(2,3). Superconductivity occurring in conventional
materials has been shown to require EF (Tc) being lo-
cated near a Van Hove singularity, whereas a practical
route towards still higher Tc values has been delineated
in high-Tc compounds, provided the upper bound of lo-
cal c0 fluctuations can be kept very low. The thermody-
namical criterions in Eqs.(2,3) unveil the close interplay
between independent and bound electrons in giving rise
to superconductivity. At last, it should be noted that
Eqs.(2,3) could be applied as well to any second order
transition, involving only conduction electrons, such as
ferromagnetism or antiferromagnetism.
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