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ABSTRACT

In order to jointly predict the acoustic and thermal proper-
ties of fibrous materials, a joint modelling approach relat-
ing their microstructural parameters to their macroscopic
properties is developed. This original approach can be ap-
plied for vegetal wools increasingly used in green build-
ings field.

1. EXTENDED ABSTRACT

Biobased fibrous insulation materials, such as vegetal
wools, that belong to the green carbon sector, more specifi-
cally in green building fields, provide an effective response
in a sustainable way. Indeed, they are able to store atmo-
spheric carbon dioxide [1] and contribute to limiting the
impact on biodiversity. Moreover, they have a number of
multifunctional properties [2].

This potential is represented more particularly by
acoustic and thermal high level performances due to their
specific microstructure [3, 4].

In this context, an innovative acoustic and thermal joint
modelling approach has been developed as shown in Fig-
ure 1.

This approach is based on a micro-macro homogeni-
sation method. Only two input parameters are necessary
to obtain fibrous material properties: the fibrous material
open porosity φ and an equivalent fibre radius value Rfeq .

For the acoustic and the thermal conduction transfer
modelling, the macroscopic behaviour laws are established
by using the homogenisation of periodic media (HPM) [5].

However, HPM is used regardless of the chosen pe-
riodic representative elementary volume (PREV). There-
fore, numerical computations must be carried out to solve
the equations and to obtain solutions. So, in order to find
analytical solutions, it is possible to use a Self-Consistent
Method (SCM) based on a simplification of the PREV [6].
In the fibrous material case based on a cylindrical geom-
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Figure 1. The joint acoustic and thermal modelling ap-
proach for fibrous materials

etry representative of the fibres morphology, it is called
SCMcyl.

To do this, at microscopic scale, we considered a
generic cylindrical inclusion described by a cylinder of ra-
dius (R) and surface (∂R) as shown in Figure 2. The solid
phase is represented by a fibre of volume (Ωs) and a ra-
dius (βR). This radius is considered constant along its
entire length and, in first approximation, large in compar-
ison with the cylinder cross-section. This solid phase is
included in the fluid phase represented by an air cylinder
hollowed out in its center, with an external radiusR and an
internal radius βR.

Moreover, the SCM is based on the energy equivalence
between the cylindrical generic inclusion, representative
of the fibrous material physical and geometrical proper-
ties at microscopic scale, and the equivalent homogeneous
medium at the macroscopic scale.

For the acoustic properties modelling, SCMcyl is de-
veloped in a dynamic approach (function of frequency) [7].
As shown in the Figure 1, it leads to the determination
of both parameters, the dynamic densities ρ and the bulk
modulus K. Then, it is possible to obtain the intrinsic pa-
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Figure 2. Schematic representation of a fibrous medium
at macroscopic and microscopic scales by the periodic cell
Ω. Ωs and Ωf correspond to volumes of the solid and fluid
phases. Γ is the solid-fluid interface.

rameters of the materials, i.e. the characteristic impedance
Zc and the wave number k.

For the thermal properties modelling heat transfer con-
tributions are represented by a specific thermal conductiv-
ity: λcond for conduction and λrad for radiation. SCMcyl

is developed in a static approach for the conduction trans-
fer modelling [4]. In order to take the significant im-
pact of radiation transfer for materials with densities below
30 kg.m−3 into account, the Bankvall empirical modelling
approach is used [8]. It is also based on the both parame-
ters φ and Rfeq .
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Figure 3. SCMcyl modelling of acoustic absorption coef-
ficient for a flax wool

Finally, validation of this acoustic and thermal joint
modelling approach is carried out by comparing results
with vegetal wools experimental data, as shown in Figures
3 and 4 for a flax wool.
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