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ABSTRACT

The main relationship of statistical energy analysis is
the so-called coupling power proportionality (CPP) which
states that the mean power exchanged between two subsys-
tems is proportional to the difference of their modal ener-
gies. A very important condition for the validity of CPP
is that the vibrational field must be perfectly diffuse in all
subsystems. This is a special state of vibration for which
the vibrational energy is homogeneously and isotropically
distributed. There are two ways to obtain a diffuse field.
Firstly, if the excitation is composed of many uncorrelated
forces on the whole plate (like rain-on-the-roof), then the
field is forced to be diffuse. Secondly, if the excitation is
a single point force and the geometry of subsystem is an
ergodic billiard, then homogeneity and isotropy of the vi-
brational field are a priori enforced. However, even when
diffuseness of the field is enforced by ergodicity, certain
special lines called Crandall lines present a higher level of
energy. On these lines, rays interfere constructively, lead-
ing to an enhancement of the vibrational energy. We show
that if the coupling between the two plates is fixed on one
of these lines of high energy, the CPP slightly differs from
the theorical value predicted by SEA. Numerical simula-
tions are provided to support these results.

1. INTRODUCTION

Statistical energy analysis is a statistical theory of sound
and vibration developed by Lyon and co-workers in the
sixties to estimate the vibroacoustic response of structures
in the high frequency range [1, 2, 3]. Equations of statisti-
cal energy analysis are based on an energy balance in each
subsystem. The principe is to analyse the exchanges of vi-
brational energies between each subsystems [4, 5, 6, 7, 8].
The main result of SEA is the coupling power proportion-
ality (CPP) which states that the mean power exchanged
between two subsystems is proportional to the difference
of modal energies.
However there exists some assumptions to apply success-
fully SEA [9]. One of the most restrictive assumption is
the diffusivity of the vibrational field. A vibrational field
is diffuse if it is ergodic (homogeneous and isotropic) [10].
However, for certain simple structures there exists some
specials regions (called Crandall lines) where rays inter-

fere constructively, leading to an enhancement of vibra-
tional level of energy [11].
In this study, we highlights the importance of diffuse field
assumption in SEA even if subsystems are geometrically
ergodic. For this purpose, we calculate the coupling power
proportionality (CPP) for different configurations. Then,
these results are compared to a reference calculation ob-
tained with numerical simulation.

2. STATISTICAL ENERGY ANALYSIS

Statistical energy analysis consists in subdividing complex
systems into simple subsystems (like plates or beams) and
studying the exchange of vibrational energies. We consider
a system composed of two coupled subsystems coupled by
a spring. The vibrational source apply on the first plate is
random and have a flat spectrum in the band ∆ω centred
on ω.
The modal density of plate i defined as the number of
modes per unit circular frequency ω (rad/s) is

ni =
Ai

4π

√
mi

Di
(1)

where mi is the mass per unit area, Ai the plate area, and
Di the bending stiffness. Then, the number of resonant
modes in the frequency bands ∆ω is Ni = ni∆ω.
The coupling power proportionality states that the the ex-
changed power < Pij > is proportional to the difference
of vibrational energies < Ei > and < Ej >.

Pij = βij(
Ei

ni
− Ej

nj
) (2)

The conductivity factor βij verifies reciprocity βij = βji.
For two plates coupled by a spring the conductivity factor
is given by Mace [12]

βij =
K2

32πω2
√
miDimjDj

(3)

with K the stiffness of the coupling spring.

3. DIFFUSE FIELD AND CRANDALL LINES

3.1 Ray dynamics

To ensure the validity of SEA, vibrational field has to be
diffuse in subsystems. In other words, each rays has to ex-
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plore each point of the plate in each directions during its
travel. Then, rays passes through the entire phase space.
Figure 1a presents a ray path in a rectangular plate excited
by a single point with high directivity. On each edge, the
incidence can only take two values of opposite signs and
so the angular momentum can take four values as can be
observed from figure 1b. About the position space, a ray
explore the entire domain and the probability density func-
tion is uniform. Therefore, the vibrational field in a rectan-
gular plate is homogeneous but not isotropic.

(a)

(b)

Figure 1: (a) Ray propagation in rectangular plate; (b)
Poincare’s section

However, a point force sends rays in all directions with
a uniform density probability so isotropy is enforced into
the vibrational field. Figure 2 shows maps of energy level
(dB, ref = mean value) and probability density distribution
of energy level in the rectangular plate excited with a ran-
dom noise centred on the octave 4 kHz. The vibrational
field of a rectangular plate excited with a point force is ho-
mogeneous and isotropic and so the field is diffused in the
plate.

However, even is the field look diffuse, there is a en-
hancement of the level of energy on four ’special’ lines
called Crandall lines.

3.2 Crandall lines

For certain simple configurations, like a rectangular plate,
there exist lines with an enhancement of the vibration lev-
els. Crandall lines has been reported for the first time by
Crandall in 1978. These lines can be highlighted using
sand spread on the plate.

Let us consider a rectangular plate excited with random
noise. At a general point in the plate, rays interfere inco-
herently so the response is uniform. Along these specials

Figure 2: Distribution of energy density level for the rect-
angular plate. The cross indicates the force position.

lines, rays interfere constructively and the vibration level is
3/2 times the background level. At the intersection of the
lines, the energy density is 9/4 times the background level
as shown on figure 3. It is easy to predict the presence of
these lines of enhance response using a reverberation field
method of analysis.

3
2

9
4

Figure 3: Relative mean-square velocity distribution for
rectangular plate. The cross indicates the force position.

4. NUMERICAL SIMULATION

We now examine the validity of the coupling power pro-
portionality (CPP) for different cases to check if Crandall
lines affect the CPP.

4.1 Presentation of the different cases

The system studied is composed of two rectangular plates
coupled with a spring as shown in figure 4.

Three different simulations are carried out, with three
different attachment point of the spring on the first plate,
to check whether or not the CPP is verified. In the first
case, the spring is fixed on ’general’ point, out of Crandall
lines. In the second case, the spring is fixed on a Crandall
line and finally , in the third case the spring is fixed at the
intersection of two Crandall lines. The other side is fixed
to the centre on plate 2.

4.2 Parameters of simulation

Both of the plates are made of steel (E0=210 Gpa,
ρ=7800 kg.m−3, µ=0.3 and η=0.001) The spring stiff-
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Figure 4: Two plates connected by a spring. Plate 1 is
excited with a random excitation. Crandall lines are repre-
sented with dashed lines.

ness is K=1.10−5N.m−1. Plate 1 is excited by a point
force with a band of frequency of an octave centred on
ωc=2π×4000 rad.s−1. Both plates are 0.841 m wide and
a length of 1.189 m. The thickness oh the plate 1 is 2mm
and 2.5mm for the plate 2.

5. RESULTS AND COMMENTS

Figure 5 present the ratio β of exchanged power calculated
respectively from Eq.3 and by the reference calculation
in the case of two coupled rectangular plates for different
attachment position of the spring on plate 1. The first four
points represents case A, the following four for case B and
the last four points for case C. Let’s analyse the results for
these three cases.

(A) Spring attached near the center of the plate 1.
In this case, there are no enhancement of vibrational en-
ergy and so β1,2SEA is found to be in good agreement with
β1,2REF .

(B) Spring attached on a Crandall line. In this case,
the vibration level is 3/2 times the background level and
so the expected value is 10log( 3

2 ) ≈ 1.76 superior to the
case (A). Dashed line of figure 5 represents this expected
value. The results (spring position 5 to 8) shown are in
agreement with this prediction.

(C) Spring attached at the intersection of two
Crandall lines. In this case, the vibration level is 9/4
times the background level and so the expected value is
10log( 9

4 ) ≈ 3.52 superior the case (A). Dotted line of
figure 5 represents this expected value. Again, results
(spring position 9 to 12) of the calculation are in fine
agreement with the prediction.

Figure 5: Comparison of energy transfer predicted by sta-
tistical energy analysis and reference calculation for differ-
ent position of spring attachment on plate 1.

6. CONCLUSION

In statistical energy analysis, diffuse field is an important
assumption. However, we have shown that even for an er-
godic system, there is an enhancement of the vibrational
energy on Crandall lines and so the field is not perfectly
diffused. Then, CPP slightly differs from the theorical
value predicted by SEA.

7. REFERENCES

[1] R. Lyon, Statistical Energy Analysis. 1995.

[2] R. Lyon, Statistical Energy Analysis of Dynamical Sys-
tems. 1975.

[3] R. H. Lyon and G. Maidanik, “Power Flow between
Linearly Coupled Oscillators,” The Journal of the
Acoustical Society of America, vol. 34, pp. 623–639,
May 1962.

[4] A. Le Bot, Foundation of Statistical Energy Analysis in
Vibroacoustics. Jan. 2015.

[5] T. D. Scharton and R. H. Lyon, “Power Flow and En-
ergy Sharing in Random Vibration,” The Journal of the
Acoustical Society of America, vol. 43, pp. 1332–1343,
June 1968.

[6] D. Tufano and Z. Sotoudeh, “Overview of coupling
loss factors for damped and undamped simple oscil-
lators,” Journal of Sound and Vibration, vol. 372,
pp. 223–238, June 2016.

[7] A. Le Bot, “Derivation of statistical energy analysis
from radiative exchanges,” Journal of Sound and Vi-
bration, vol. 300, pp. 763–779, Mar. 2007.

[8] D. E. Newland, “Calculation of power flow between
coupled oscillators,” Journal of Sound and Vibration,
vol. 3, pp. 262–276, May 1966.

10.48465/fa.2020.0272 249 e-Forum Acusticum, December 7-11, 2020



[9] T. Lafont, N. Totaro, and A. Le Bot, “Review of
statistical energy analysis hypotheses in vibroacous-
tics,” Proceedings of the Royal Society A: Mathemat-
ical, Physical and Engineering Sciences, vol. 470,
p. 20130515, Feb. 2014.

[10] H. Li, N. Totaro, L. Maxit, and A. Le Bot, “Ergodic
billiard and statistical energy analysis,” Wave Motion,
vol. 87, pp. 166–178, Apr. 2019.

[11] A. J. Langley, P. H. Taylor, and C. J. E. Ffowc-
swilliams, “Chladni patterns in random vibration,” p. 9.

[12] B. Mace and L. ji, “The statistical energy analysis of
coupled sets of oscillators,” Proceedings of The Royal
Society A: Mathematical, Physical and Engineering
Sciences, vol. 463, pp. 1359–1377, May 2007.

10.48465/fa.2020.0272 250 e-Forum Acusticum, December 7-11, 2020


