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ABSTRACT

The non-intrusiveness and low cost of ultrasonic tech-
niques are motivating the development of new means to-
wards the detection of osteoporosis and other bone defi-
ciencies. Bones are porous media saturated by a viscous
fluid, and could thus be well characterized by the Biot
model. The main purpose of this work is to present an in
vitro methodology for bone identification, adopting a sta-
tistical Bayesian inference technique using ultrasonic re-
flected signals at normal incidence on human femoral bone
samples.

1. INTRODUCTION

Osteoporosis affects the bone density and microstruc-
ture [1], reducing bone quality and increasing the risk of
fractures. The bone mass density (BMD) can be evalu-
ated by X-Ray absorptiometry, but the BMD alone does
not fully account for fracture risks [2]. There is thus a
need to refine the characterization of bones, to help bet-
ter understand the onset of bone aging and deterioration,
and improve the detection of bone diseases.

Biot’s theory relates the microstructural and mechani-
cal properties of poroelastic media to their acoustic behav-
ior [3–9].

Using the Biot model, coupled with a model for the dis-
sipation occurring within the pores, one can relate the mi-
crostructural and mechanical properties of the bone to its
acoustic response. It then becomes possible to attempt an
inverse problem, where the observation of a certain quan-
tity (here an ultrasonic signal reflected by the bone sample)
is used to infer the values of the parameters of interest.

Ultrasonic reflected waves are considered in this work
at almost normal incidence on porous samples immersed
in water. Only reflected waves are considered because
in some cases, the observation of a transmitted wave is
impossible due to the high dissipation of waves within
the bone samples. A Bayesian inference approach is per-
formed to update our state of belief (in the form of prob-
ability density functions) on the model parameters, which
consist of the classical Biot parameters (density, Young’s
modulus, Poisson’s ratio etc) and the intrinsic microstruc-
ture properties of the Horoshenkov pore model (mean pore

size and standard deviation).
The model is recalled in Section 2. The experimental

configuration used to obtain the ultrasonic reflected sig-
nals and the statistical Bayesian inference problem are suc-
cinctly introduced in Section 3. The inference method is
then applied on experimental measurements of different
bone samples extracted from human femoral head samples
in Section 4. A conclusion is drawn in Section 5.

2. MODELING

In this work, we use Biot’s alternative formulation [10],
and take into account the additional visco-inertial dis-
sipation that occurs within the pores, as developed by
Horoshenkov [11]. The main reason for the use of the
Horoshenkov model in the present work is the need for a
set of identified parameters that are easily understandable
by the medical community (i.e., the mean pore radius is
potentially clearer than the viscous characteristic length of
the Johnson-Koplik-Dashen (JKD) pore model [12], often
used in the acoustic community). We then follow Niskanen
et al. [13] for the calculation of the reflection coefficient of
the material (consisting in all successive reflected waves :
a first reflected wave that has not travelled within the ma-
terial, and a succession of waves that have made it to the
other end of the sample before coming back).

Biot’s coupling equations are given in the harmonic do-
main as

ω2ρfw + ω2ρu = −∆ · σ,
ω2ρfu+ ω2ρ̃eqw = ∆ · p, (1)

where p is the pressure field, σ is the total stress tensor,
u is the solid phase displacement field, w is the relative
displacement field between the phases. The angular fre-
quency writes ω = 2πf , with f the frequency in Hz; ρf
is the ambient fluid density and ρ = (1 − φ)ρs + φρf is
the density of the bulk medium, with ρs the density of the
calcified tissue and φ the porosity. The equivalent density
of the fluid phase ρ̃eq is a complex frequency dependent
quantity that takes into account visco-inertial effects within
the fluid phase inside the pores. The equivalent density is
taken in this work as the one of Horoshenkov [12], based
on the rational (Pad) approximation approach [14] and
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on the hypothesis that the pore size follows a log-normal
distribution and that the pores have a circular shape. In
the case where the above approximations are valid, the
Horoshenkov model for viscous dissipation writes

ρ̃eq =
ρf
φ
α̃(ω), (2)

where the dynamic tortuosity α̃ is defined as

α̃(ω) = α∞

[
1 +

1

jω̄
F̃ (ω)

]
, (3)

with

F̃ (ω) = 1−P+P

√
1 +

M2

2P 2
jω̄, ω̄ = ωρf

k0α∞
µφ

, (4)

P = 4
M2

2βPφΛ2
, M2 = 8

k0α∞
φΛ2

. (5)

The parameters used in this model are the classical JKD
ones [12], and relate to the microstructure of the porous
sample: porosity φ, tortuosity α∞, permeability k0 and
characteristic viscous length Λ. Using the hypotheses of a
log-normal pore distribution and a circular pore shape, it is
possible to use only three parameters, namely the porosity
φ, mean pore size s̄ and pore size standard deviation σs
(normalized by log(s̄)), instead of four. The relationships
between JKD and Horoshenkov model parameters are [15,
16]

φ = φ, α∞ = e4(σs log 2)2 ,

k0 =
s̄2φ

8α∞
e−6(σs log 2)2 , Λ = s̄e−

5
2 (σs log 2)2 ,

βP =
4

3
e4(σs log 2)2 .

The presence of coupling between the fluid and solid
phases in Eq. 1 is evidenced by the relationship between
the total stress tensor σ and the pressure field p, which
reads, for an isotropic porous material (at the wavelength
scale), as

σ = 2Nε+ (λcξ − αBMζ) I,
p = M (ζ − αBξ) , (6)

whereN is the shear modulus, ε is the strain tensor, I is the
identity matrix, (ξ is θ in Ref. [13]) and ζ = −∇ ·w. The
Biot-Willis coefficient αB (α in Ref. [17, Eq. 28]) writes,
after simplifications,

αB = 1− Kb

Ks
, (7)

where Kb is the bulk modulus of the porous frame and
Ks is that of the solid constituent of the material. The
shear modulusN , the Young’s modulus and Poisson’s ratio
of the solid Es, νs and the bulk skeletal frame Eb, νb are
related to the bulk moduli by

Ks =
Es

3 (1− 2νs)
, Kb =

Eb
3 (1− 2νb)

, N =
Eb

2 (1 + νb)
.

(8)
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Figure 1: Experimental setup for ultrasonic measurements
in a water tank

It is known [17, Eq. 28] that αB is constrained by φ <
αB , i.e., Kb < (1− φ)Ks.

In Eq. 6, λc is an elastic parameter defined as

λc = λ+ α2
BM, (9)

with λ the first Lamé’s coefficient of the elastic frame, and

M =

[
αB +

(
Ks

Kf
− 1

)
φ

]−1
Ks, (10)

with Kf the bulk modulus of the intra-pore fluid (water
here, in which thermal effects can be neglected).

The analytical calculation in the frequency domain of
the reflection coefficient R(ω) of a bone sample is done
by solving the system (1) and associated boundary con-
ditions [18, Chap. 6]. We follow, as was done in
Ref. [13, 19], the state vector formalism that makes it pos-
sible to write the motion equations as an ordinary differ-
ential equation, coupled to a global matrix approach to a
solution for the Biot equations [20, 21]. Physical fields are
expressed as a function of wave amplitudes, thus naturally
introducing the transmission and reflection coefficients in
the matrix representation. These coefficients are then ex-
tracted after the solving of a linear system, conveniently
expressed with a sparse matrix easy to inverse at all fre-
quencies simultaneously.

3. BAYESIAN INFERENCE

3.1 Experimental method

Experiments are performed in water using one Panametrics
A 303S plane piezoelectric transducers of diameter 1 cm,
with a 500 kHz central frequency. 400 V pulses are pro-
vided by a 5058PR Panametrics pulser/receiver, amplified
to 90 dB, filtered above 10 MHz and averaged over 1000 it-
erations. A schematic of the experiment is shown in Fig. 1.
The size of the ultrasound beam is small compared with
the size of the specimens. The liquid initially in the pore
space (blood and marrow) is removed from the bone sam-
ple and substituted by water. The bone samples, machined
from the cancellous parts of a femoral head, are constantly
immersed in liquid to prevent them from drying, which
can alter their properties [22]. Due to possible manufac-
turing defects and positioning uncertainties, the angle of

10.48465/fa.2020.0228 3112 e-Forum Acusticum, December 7-11, 2020



incidence θ of the pressure wave (displayed in Fig. 1) is
taken as an additional unknown.

3.2 Bayesian inference

In the context of statistical inverse problems, the Bayesian
inference framework consists in recasting the model pa-
rameters of interest as random variables associated with
probability densities encompassing the information one
has on the parameters [23, Chap. 8]. A new experimen-
tal data vobs is observed (here a reflection coefficient), and
this information updates our state of knowledge. vobs is the
realization of a multivariate random variable Υobs. The de-
gree of knowledge about the true value of the parameters
Q = (φ,Kb, . . .), with realizations q, is represented by the
marginal posterior density π(q|vobs). This new quantity of
interest is written, using Bayes theorem,

π(q|vobs) =
π(vobs|q)π0(q)

π(vobs)
. (11)

In the previous equation, L(q) ≡ π(vobs|q) is the likeli-
hood function, representing the probability that the experi-
ence be observed, given a particular set of model parame-
ters; π0(q) is the prior probability, representing all the in-
formation obtained on q prior to the new observation (i.e,
earlier measurements on the sample, or general knowledge
of some of the bone properties such as its mineral density).
Finally, π(vobs) is a scaling constant not calculated in prac-
tice. Details on the likelihood and prior modeling are given
in Refs. [13, 19].
Contrary to our previous work [19], we now use a fre-
quency domain information to build the likelihood. It
writes, when considering a Gaussian error representing the
measurement uncertainties,

π(vobs
i |q) = π< · π=, (12)

with

π< =

n∏
i=1

1√
2πσ2

<,i

e−|<(vobs
i −Ri(q))|2/2σ2

<,i

and a similar definition for π=, where n = 50 is the num-
ber of discrete frequencies where the reflection coefficient
was measured, and Ri(q) is the numerical reflection coef-
ficient. The noise parameter σ<,i (resp. σ=,i) is a standard
deviation of the assumed Gaussian distribution of errors
on the real part (resp. imaginary part). This parameter is
included in the inference process, but a single value σ is
assumed at all frequencies and for both real and imaginary
parts, since they have the same order of magnitude in most
cases.

Contrary to the work of [13], only the reflection coeffi-
cient is used, not the transmission coefficient. The objec-
tive of this work is to evaluate the type of knowledge that
can be extracted from this quantity only.

4. RESULTS

A numerical method is used in order to sample directly
from the posterior density of interest π(q|vobs), as detailed

in previous work [19]. The strategy relies on the use of an
evolutive Markov Chain Monte Carlo of Laloy et al. [24],
shown to be efficient in sampling complex multimodal pos-
terior densities. This multimodality, which was shown
in [19], is a sign of ill-posedness: multiple solutions to the
inverse problem exist. The parameters that are identified
in this work, as well as the bounds of the uniform prior
densities used during the inference, are given in Tab. 1.
It was only possible to gain information on certain of the
above properties, using only ultrasonic reflected signals.
The general identification result, in the form of posterior
probability densities (pdf), is shown in Fig. 2a, Fig. 3a and
Fig. 4a for samples M1,M2,M3. For each sample Mi,
only the porosity φ, mean pore size and standard devia-
tion σ̄, σs, and skeletal frame Young modulusEb are given.
These are the parameters that could be inferred in the ma-
jority of the cases. No real gain of information could be
obtained on the other parameters (except the noise param-
eter σ, the angle of incidence and sample thickness, which
are of less interest to this study and are thus not shown).

Using the inferred parameters and their uncertainties,
it is possible to recalculate the associated reflection coeffi-
cient, and to convoluate it with the incident signal (actually
an inverse Fourier transform on the product between spec-
trum of the incident wave and reflection coefficient). One
then obtains a reflected signal that can be compared to the
experimental value measured on the oscilloscope. These
are shown in Fig. 2b, Fig. 3b and Fig. 4b. A number of
N = 500 samples are extracted from the pdfs, and the re-
flected signals are calculated N times. This allows us to
plot uncertainties in Fig. 2b, Fig. 3b and Fig. 4b, where the
darker area corresponds to a credibility interval of 63%,
and the lighter area to a credibility interval of 95%, mean-
ing that 63% (resp. 95%) of the samples are contained
within.

Note that the bone samples come from different bones,
and it is thus not expected that the same properties be in-
ferred in each cases. However, for each sample, multiple
measurements have been done at different site location for
a repeatability study (shown in Fig. 2b, Fig. 3b and Fig. 4b,
where the line style for the experimental signal corre-
sponds to the results in Fig. 2a, Fig. 3a and Fig. 4a). Since
the reflected signals are not exactly the same at each mea-
surement location for a given sample, the inferred proper-
ties are not the same in all cases. This is partly explained
by the known inhomogeneities present in bone samples.

The main conclusions drawn from the results in Fig. 2,
Fig. 3 and Fig. 4 are that the identification is quite stable
relative to the input signals. For the multiple measurements
performed at different locations on each sample, the iden-
tified parameters are relatively close. While in some cases
the pdfs are bi-modal (see Fig. 3 for Eb), one of the modes
of the pdf is in the expected value range. The sensitivity of
the parameters relatively to the identification is best seen
with the pdfs having quite a restricted support, compared
with the initial supports given by the priors in Tab. 1. This
indicates that knowledge was extracted from the reflected
signals. This is particularly important, since these identi-
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E
(a) Posterior marginal densities for material M1 (b) Credibility intervals and experimental ultrasonic measurement for ma-

terial M1

Figure 2: Identification results for material M1. Measured reflected signals were acquired at two different locations on
the sample., each corresponding to a line style on the figure. The line type on both sub-figures correspond to the same
inference.
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E
(a) Posterior marginal densities for material M2 (b) Credibility intervals and experimental ultrasonic measurement for ma-

terial M2

Figure 3: Identification results for material M2. Measured reflected signals were acquired at three different locations on
the sample., each corresponding to a line style on the figure. The line type on both sub-figures correspond to the same
inference.
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E
(a) Posterior marginal densities for material M3 (b) Credibility intervals and experimental ultrasonic measurement for ma-

terial M3

Figure 4: Identification results for material M3. Measured reflected signals were acquired at two different locations on
the sample., each corresponding to a line style on the figure. The line type on both sub-figures correspond to the same
inference.
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Table 1: Prior bounds of the parameters for bone samples. The symbol – means unitless

θ L φ s̄ σs Ks ξs Eb/Ks ξb νb ρs Kf µf ρf

Unit rad mm – µm / GPa – GPa – – kg/m3 GPa mPa · s kg/m3

qmin −0.05 0.9L∗i 0.4 1.0 0 5 0 0.001 0 0.1 1.8 2.3 0.95 0.95
qmax 0.05 1.1L∗i 0.99 100 2 150 0.9 0.9 0.5 0.45 2.2 2.5 1.05 1.05

fied parameters could be promising in the detection of the
onset of bone diseases, if the method can be ported to in-
vivo measurements.

In all the cases treated in this work, the fit between the
time domain signals was good (see Fig. 2b, Fig. 3b and
Fig. 4b). While it is not a proof in itself that the identified
parameters are the ”correct” one, since there exists the pos-
sibility that part of the probability space was overlooked
by the MCMC algorithm, this is an indicator of fitness that
we can use to judge a solution. It has to be noted that the
Bayesian inference was performed on frequency domain
signals (reflection coefficient), and not on these time do-
main signals. Still, the main features of the signals are
well captured in most cases.

5. CONCLUSION

This article has introduced a general identification method
for in-vitro femoral head bone samples, based on ultra-
sonic reflected signals through bone samples saturated by
water. A statistical inference strategy has been used to
identify microstructural and mechanical properties of three
porous samples. The advantage of this method is that it
provides the uncertainty on the model parameters, and a
robust way to take into account prior knowledge on the dif-
ferent identified properties, if any. It was possible to prove
the robustness of the method by repeating the inference
process on different signals obtained on the same samples.
While ill-posedness was not an issue after regularization
of a single parameter (the bone density), some parameters
were not well identified due to their lack of sensitivity rel-
ative to the reflection coefficient. Still, the main parame-
ters of interest were successfully identified. Future efforts
should be dedicated to the taking into account of inhomo-
geneities in the width of the sample, to try and identify a
field of properties, instead of a single value. At the time of
the writing of this proceeding, an article has been submit-
ted to JASA to present more results on different samples,
and a numerical validation of the inference strategy.
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