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ABSTRACT 

For the simulation of railway tunnels in an anisotropic 
horizontally layered medium a combined approach with 
boundary and finite elements is presented. To reduce the 
numerical efforts it assumed that the structure is straight 
and infinitely long. In this case, a Fourier transformation 
about the longitudinal coordinate reduces the 
dimensionality. In the 2.5D approach, a sequence of 2D 
simulations is needed instead of one large simulation in 3D 
[1]. The soil is simulated by the boundary element method. 
The structure is divided into finite elements in 2.5D. In 
first attempt an analytic solution for a thin plane shell 
element was used to simulate the tunnel shell [2-5]. The 
derivation of a plane triangular element for an isotropic 
medium for the super structure and the tunnel wall, and a 
point element for the rail in the 2.5D domain are derived. 
The derivation is based on a modification of Plancherel’s 
theorem. This theorem leads to a coupling of the positive 
and negative wave numbers. A derivation with respect to 
the negative wave number side leads to a set of linear 
equations that depend on the unknowns at the positive 
wave number side. 

1. INTRODUCTION 

The idea of the project is to allow the simulation of 
vibrations from railway tunnels in a layered anisotropic 
medium. The problem is split into two parts. In the first 
part is a boundary element method that simulates the 
vibrations in a horizontally layered anisotropic medium in 
2.5D. In this part, the tunnel is simulated as a hole in the 
layered medium. 

The second part is the simulation of the tunnel structure 
and the superstructure from the base to the rail using a 
finite element approach in 2.5D. 

The final step is the coupling of the finite element part 
with the boundary element part. This done by coupling the 
nodal displacements and the stresses at the interface. 

2. DERIVATION OF A FEM ELEMENT 

2.1 Potential for an isotropic medium 
Eqn. (1) presents the potential  in the frequency domain 
for an isotropic medium in 3D. The displacement in the 
orthogonal directions x, y, z are ux, uy, uz.  and  are the 
Lame’s material parameter  is the mass density and  is 
the angular frequency. A is the area of the element in the 
y-z plane. The load on the element is given by qx, qy, qz. 
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Eqn. (2) presents a modification of Plancherel’s theorem. 
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With this theorem, it is easy to transform the potential to 
the frequency wavenumber domain. The coordinate x is 
transformed to the wavenumber kx. A symmetric version 
is given in Eqn. (3). 
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Variation is done with respect to the nodal displacement 
depending on the negative wavenumber –kx. The result are 
linear equations that depend on the unknown nodal 
displacements depending on the positive wavenumber +kx. 

2.2 Derivation of finite elements in 2.5D 

A triangular element is developed. Fig. 1 gives the 
definition of the nodes of the element. A standard element 
is defined in Fig. 2 to generalize the equations. The shape 
functions are linear and identical for the displacements ux, 
uy, uz. Eqn. (4) defines the shape functions Ni and the nodal 
displacements u 
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The shape functions are linear and scaled to one at one 
node and to zero at the other two nodes. For the 
standardized geometry, the shape functions are defined in 
Eqn. (5). 

1 1 2 2 3 3 1 2N , N , N 1     (5) 

 
Figure 1.Geometry of the triangular element. 

 
Figure 2. Standardized geometry of the triangular 
element. 

For the original geometry, the definition in Eqn. (6) holds. 
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Two times the area of the triangular element is given in 
Eqn. (7). 

1 2 2 1 3 1 1 3 2 3 3 22A y z y z y z y z y z y z     (7) 

In the 2.5D case, we need the integrals about two shape 
functions and one shape function with a derivative and 

about two derivatives. The derivatives of the linear shape 
function leads to constant expressions. The integrals are 
defined in Eqn. (8) using the standardized geometry. 
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For the coupling of the stresses with the boundary 
pressures on the element, the following lengths in Eqn. (9) 
and integrals in Eqn. (10) are needed. 
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These equations allow deriving the elemental forces in 
dependency of the unknown displacements. 

3. COUPLING FEM WITH BEM 

The coupling of FEM and BEM is two sided. The pressure 
loads from BEM a used as a load along the side of the 
element that couples with the boundary element. The nodal 
displacements of the BEM and the coupled nodes FEM 
element are the same and therefore both share the same 
degrees of freedom (DOFs). 

4. CONCLUSIONS 

A method is presented to simulate the vibrations in a 
layered soil caused by railway traffic in a tunnel. 
Especially the interfaces lead to reflections that can 
increase the vibration level far away from the tunnel. In the 
conventional models, these interfaces are not included, 
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because a classical BEM does not allow for a layered 
medium. 
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