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ABSTRACT

Acoustic coatings are of primary importance when inves-
tigating the vibro-acoustic behavior of submerged cylin-
drical shells. These coatings can be applied on the entire
circumference of the shell, or only on a certain stretch or
a given angular domain. The latter configuration induces
in the models a coupling of the shell circumferential or-
ders, thus resulting in much heavier computation costs. To
tackle this issue, it is suggested to simulate the vibroacous-
tic behavior of the partially coated submerged shell by us-
ing subtractive modeling. The principle of the method is
to model the partially coated submerged shell, from the
model of the fully coated submerged shell to which we re-
move a given part of the coating. In order to test its validity
and its robustness to model errors, the method was at first
applied to the academic case of the decoupling of Euler-
Bernoulli beams. Several beam models were considered
for the subtraction (analytical, FEM). The numerical re-
sults were compared to analytical calculations. Through
this study, the method’s sensibility to model errors was in-
vestigated and the results allow to give a first validation
of the method. The results of this research will allow us
extending the principle of subtractive modeling to a three-
dimensional system through the study of the scattering of
a plane wave by a rigid sphere.

1. INTRODUCTION

Sub-structuring methods in vibroacoustics and structural
acoustics have been widely investigated over the last
decades in order to overcome the frequency limitations
of numerical methods. Sub-structuring methods based on
impedance concepts give the possibility to couple sub-
systems which characteristics can be determined by differ-
ent means (analytical, numerical, experimental) to assess
the vibroacoustic behavior of complex structures [1].

The receptance method is a sub-structuring method
based on transfer function concepts that was first intro-
duced by Firestone as an analogy between mechanical a
electrical systems [2]. It was then used by Bishop and
Johnson [3] to obtain the receptances, the principal modes
and the frequency equations of systems that consist in two
sub-systems linked at a single or several co-ordinates. For
linear problems, this method was extended to sub-systems
coupled along surfaces by Ouisse et al [4], through the con-
cept of Patch Transfer Functions (PTF). These surfaces can

either be a junction between a structure and a fluid domain
or a junction between two fluid domains, and are divided
into patches to calculate the transfer functions. Meyer et
al [5] proposed a sub-structuring approach called the Con-
densed Transfer Function (CTF) method, which is a gen-
eralization of the PTF method to vibro-acoustic partition-
ing with line or surface junctions. This method was devel-
opped in order to take into account non-axisymmetric in-
ternal structures in the study of stiffened cylindrical shells.

In this article, a reverse formulation of the receptance
method (corresponding to the CTF method for point cou-
pling) is proposed to study the decoupling of dynamic
problems. The inversion of the coupling problem was first
derived by Soedel and Soedel [6] to remove unwanted parts
of an automotive suspension system when measuring its
transfer functions. Here, the reverse receptance method
is used to study the decoupling of Euler-Bernoulli beams.
The objective is to derive the receptance of a beam, con-
sisting in two beams uncoupled at a single coordinate, and
for which the receptances are known (figure 1).
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Figure 1. Decoupling of beams.
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2. PRINCIPLE OF THE REVERSE RECEPTANCE
METHOD

For linear systems, the receptance represents the ease of
motion of the structure when subjected to a harmonic point
force. Let a linear mechanical system be excited by such
a force, with a given amplitude F , enabling the system to
take up a steady motion of frequency ω. The point of ap-
plication of the force has the displacement

x = Xeiωt (1)

As the equations of motion are linear, this may be writ-
ten

x = αFei(ωt+φ) (2)

The quantity α represents the “direct receptance” at x,
as the displacement is taken at the point of application of
the force. If the displacement is taken at some point of
the system other than the point of application of the force,
then α will be defined as “cross receptance”. Hence, the
cross receptance corresponding to a displacement at point
n caused by a force applied at point m will be

αnm =
Xn

Fm
(3)

One has to keep in mind that αnm is a complex value,
taking into account the phase shift between the force and
the displacement. Based on Maxwell reciprocity principle,
receptances are symetric, which means that αnm = αmn.

Let us consider the coupling problem presented on fig-
ure 2. We want to derive the receptances µ of the beam
(m) from the receptances α and β of the beams (a) and
(b) (respectively). The beam (a) is excited at point 1 by a
harmonic longitudinal force of amplitude F1, and accord-
ing to the Euler-Bernoulli beam theory, shear deformations
are neglected. The coupling forces at point 2 also have to
be taken into account when evaluating the displacements
of beams (a) and (b).

Based on the superposition principle, for the coupled
system, the displacements of beams (a) and (m) are given
by

Xa
1 = Xm

1 = α11F
a
1 + α12F

a
2

Xa
2 = Xm

2 = α21F
a
1 + α22F

a
2

(4)

As no external force is applied on beam (b), only the
coupling force at point 2 is to take into account

Xb
2 = β22F

b
2 (5)

For the uncoupled system, quantities α and β remain
unchanged. The displacement continuity and force equi-
librium between beams (a) and (b) at point 2 give the fol-
lowing equations {

Xa
2 = Xb

2

F a2 + F b2 = 0
(6)

From system 6, we can derive the displacements of
beam (m) as a function of the receptances of beams (a)
and (b) and force F1
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Figure 2. Coupling of beams.

Xm
1 =

(
α11 −

α2
21

α22 + β22

)
F1, Xm

2 =
α21β22
α22 + β22

F1

(7)
The first two receptances of beam (m) directly appear

in equation 7

µ11 = α11 −
α2
21

α22 + β22
, µ21 =

α21β22
α22 + β22

(8)

To evaluate the third receptance of beam (m), µ22, the
external force must be applied at coupling point 2, and the
same calculations as previously must be done. The result
is the following

µ22 =
α22β22
α22 + β22

(9)

Now that the coupling problem has been solved, the de-
coupling problem can be studied (figure 1). The objective
is now to derive the receptances of beam (a), knowing the
receptances of beams (b) and (m).

The unknowns are now α11, α12 and α22, and they can
be obtained by inverting the system of equations composed
of equations 8 and 9.


α11 =

µ11(µ22−β22)−µ2
12

µ22−β22

α12 = − µ12β22

µ22−β22

α22 = − µ22β22

µ22−β22

(10)

In the next section, these equations will be tested on
beams for which receptances have be calculated with dif-
ferent methods (analytical, finite elements modeling).
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3. NUMERICAL STUDY

3.1 Test case parameters

To illustrate the method presented above, let us consider
the beams shown on figure 1 for which the mechanical
characteristics and dimensions are given in the table 1.

Parameter Notation Value Unit
Young modulus E 210 GPa
Poisson coefficient ν 0.3 -
Density ρ 7800 kg/m3

Structural damping coeff. η 0.02 -
Celerity of long. waves ct 3220 m/s
Length of beam (a) La 2 m
Length of beam (b) Lb 0.5 m
Length of beam (m) Lm 2.5 m
Section of the beams S 0.052 m2

Point of application of F1 L1 1 m

Table 1. Mechanical characteristics and beams dimen-
sions.

As mentioned in section 2, there are different ways to
compute the receptances of the beams. The first possibility
is to derive them analytically, using the forced wave de-
composition described by Guyader [7]. The receptances
are then expressed using the wavenumber k, the Young
modulus E and the geometry of the beams. The analyti-
cal receptances will serve as a reference calculation for the
decoupling.

The second possibility is to create numerical models
of the beams, and compute the receptances using the Fi-
nite Element Method (FEM). The beams are modeled us-
ing beam elements with the section indicated in table 1.
Harmonic responses are calculated for frequencies lying
between 10 Hz and around 5 000 Hz, with 500 values log-
arithmically spread over the domain, in order to describe
properly the resonances and anti-resonances of the system.
The size of the mesh is chosen to be equal to 0.1m in order
to satisfy the criterion of 6 elements per wavelength (which
is commonly used for the convergence of such problems),
and to have a regular number of elements along the beams.
With these conditions satisfied, the highest computation
frequency reaches 5 367 Hz. The structural dampling co-
efficient is accounted for as a complex factor in the Young
modulus value.

Several combinations of receptances are possible to
study the decoupling of the beams (m) and (b), in order
to compare the results with the analytical receptances of
beam (a). At first, the analytical receptances can be used
for both of the beams, in order to validate the equations
of system 10. It is also possible to use for both beams the
receptances calculated with the FEM method to validate
the decoupling numerically. The last possibility is to use
a combination of analytical and FEM receptances for the
decoupling calculation. In the following sections, the re-
sults will be presented for the hybrid configuration : the
receptances of beam (m) will be computed analytically,

while the receptances of beam (b) will be calculated with
the FEM method. This choice is justified by the final objec-
tive of the subtractive modeling, which is to model the par-
tially coated submerged shell, from the model of the fully
coated submerged shell to which we remove a given part of
the coating. In this situation, the model of the fully coated
submerged shell will be taken from litterature, while the
removed part of the coating will be modeled by FEM.

3.2 Results

In the following sections, results for the decoupling of
analytically computed (m) beam and FEM computed (b)
beam will be presented and discussed. The figures will
only show the direct receptance at the coupling point α22,
but the results for receptances α11 and α12 are somewhat
similar.
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Figure 3. Receptance α22 obtained by decoupling.

The receptance α22 obtained by decoupling between
beams (m) and (b) is presented on figure 3, plotted as a
function of frequency. The results show a good fit between
the two curves in the entire frequency range, with minor
deviations around 2 600 Hz. However, it can be interesting
to study the causes of these errors, in order to evaluate the
method’s sensibility to model errors.

3.2.1 Analysis of errors

Looking at the third equation of system 10, we have

α22 = − µ22β22
µ22 − β22

(11)

We can derive the small variations of α22 due to the
small variations of β22 and µ22. As the analytical calcu-
lation serves as a reference and the receptances of beam
(m) have been calculated analytically, there are no errors
on µ22, therefore

δα22 = − µ2
22

(µ22 − β22)
2 δβ22 (12)

Let’s define, for each frequency, the coefficient γ as the
ratio between β22 and µ22, so that β22 = γµ22. The error
on α22 now becomes
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δα22 = − 1

(1− γ)
2 δβ22 (13)

From equation 13, we can assume that there are two
main sources of errors on α22 : when the error on β22 is
high (which means that the numerical error of the model
are important), and when the receptances β22 and µ22 are
equal or close (γ = 1). From figure 3, as the error on α22

is the highest around 2600 Hz, we could assume that at
least one of the two conditions previously mentioned are
satisfied, which would explain the encountered errors. The
error on β22 is shown on figure 4, while the receptances
β22 and µ22 are plotted together on figure 5.

Figure 4. Error on β22.
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Figure 5. Comparison between β22 and µ22.

Having a look at figures 4 and 5, at frequencies around
2 600 Hz, the two critical conditions are indeed satisfied,
which explains the errors made at these frequencies. On
figure 4, we notice that the errors on β22 are significant
for the resonant frequency (around 5 300 Hz) and the anti-
resonant frequency (around 2 600 Hz). At other frequen-
cies where receptances of β22 and µ22 cross (i.e. 442 Hz),
there is no signficant error made on α22 as the error on

β22 is close to zero. Hence, limiting numerical errors on
β22 by applying a finer mesh on the FEM model will allow
avoiding errors on α22. As the beam is relatively small and
there aren’t many elements on the beam’s length, refining
the mesh won’t affect much the calculation time. However,
on more complex structures, one has to keep in mind that
this solution may severely increase the computation costs.

Alternatively, the errors will be small if β22 and µ22 will
be significantly different. Two cases have been studied in
this work and will be developped in the following sections.

3.2.2 Influence of the length of beam (b)

One could assume that the length of beam (b) plays a key
role on the error made on the receptances of beam (a)
when the decoupling is done. Indeed, with the length of
beam (m) unchanged, we could state that the longer the
beam (b) to be removed, the bigger its influence on the re-
ceptances of beam (m), and then the bigger the error on
the receptances of beam (a). Having a look at figure 5, we
can see that the receptance β22 follows the shape of µ22 on
the anti-resonance around 2 600 Hz.

Receptances β22 and µ22 are once again compared for
two differents lengths of beam (b) (Lb=0.3 m and Lb=1.2
m) in order to validate the previous statement (figure 6).
We can see that, indeed, when beam (b) is longer, its re-
ceptance β22 has several anti-resonances in common with
µ22, which will probably lead to more errors on α22, as
absolute errors on β22 are high at these frequencies.

Figure 6. Comparison of β22 and µ22 for different lengths
of beam (b)

Figure 7 shows that there are indeed more critical fre-
quency domains where the error on α22 is high when the
length of the beam to beam removed is more important.
We can conclude that the errors made on α22 are directly
linked to the anti-resonances of β22.

To validate the influence of the length of beam (b),
the evolution of the relative error between the receptances
α computed analytically and the receptances α computed
by decoupling between the beams (m) (analytically com-
puted) and (b) (computed with FEM modeling), as a func-
tion of the length of beam (b), is presented on figure 8. The
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Figure 7. Relative error on α22 for several lengths of beam
(b)

values displayed on figure 8 are mean values computed
over the whole frequency range. The length of beam (b)
was varied from 0.1 m to 1.4 m with increments of 0.1 m.
The global behavior of these curves confirms the asump-
tion made previously about the impact of the size of the
decoupled beam, as the error increases when the size of
the beam (b) is augmented. Another observation from fig-
ure 8 is that the receptance α11 is more sensitive to errors
than receptances α12 and α22, which may be explained by
the fact that the expression of α11 (equation 10) depends
on more parameters than α12 and α22

δα11 = − 1

(1− γ)
2 ·
(
µ12

µ22

)2

δβ22 (14)

The factor (µ12/µ22)
2 may explain the amplification of

the error made on α11 compared to α22 as observed in fig-
ure 8.

Figure 8. Influence of length of beam (b).

To put this analysis into the global perspective of this
study, we could assume that the principle of subtractive
modeling applied to the partially coated cylindrical shell

would be less sensitive to model errors if the part of the
coating that is to be removed remains small compared to
the size of the shell.

3.2.3 Influence of structural damping

One studies now the influence of the beam damping on
the decoupling results. Indeed, increasing the structural
damping could have beneficial effects on the stability of
the method, since it would reduce the amplitude of the
resonances and anti-resonances, thus leading to less fre-
quency ranges that would be impacted by the crossing of
receptances. Furthermore, regarding the final application
of the method, the coating applied on cylindrical shells is
made of viscoelastic materials, which have a much higher
structural damping coefficient than metal. Hence, the cal-
culations made previously were reiterated with a structural
damping coefficient of 0.2 (against 0.02 previously). The
geometrical parameters of the beams are the ones defined
in table 1.
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Figure 9. Influence of structural damping.

The receptance α22 obtained with a higher structural
damping coefficient is displayed on figure 9 and shows that
the reference curve and the decoupling curve fit almost per-
fectly. There are still minor errors around 3 000 Hz, which
are smaller than the ones we saw on figure 3 (the maxi-
mum error is 7 times smaller, and the relative error is twice
smaller for a mesh size of 0.1 m). It is still interesting to
study the influence of errors as in section 3.2. The two
main sources of errors (model error on β22 and crossings
between β22 and µ22) are presented on figure 10.

With the same geometrical and mechanical parameters
(except the structural damping coefficient) and the same
mesh size, it is interesting to note that the model errors
on β22 have been reduced by a factor 10. Also, in the
frequency range where the two receptances have the same
shape, the values of the receptances are not as close to each
other as they are on figure 5. This means that even when
the two critical conditions are satisfied, the error made on
α22 is limited, as can be seen on figure 11. The ampli-
tude of the relative error has a maximum of 0.16, which
is about ten times lower than the relative error computed
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Figure 10. Sources of errors with higher structural damp-
ing.

with a structural damping coefficient of 0.02, for the same
dimensions of the beams.

Figure 11. Relative error on α22 with a higher structural
damping coefficient.

The conclusion drawn in this section is thus encour-
aging in view of applying subtractive modeling with vis-
coelastic materials, for which the structural damping coef-
ficient is much higher than for steel.

4. CONCLUSION

The concept of subtractive modeling has been applied, as a
first step, to the decoupling of beams via the reverse recep-
tance method. The receptances of a beam (a) have been
calculated by removing a part (b) of the beam (for which
the receptances have been computed using a FEM model)
from a longer beam (m) (for which the receptances have
been computed analytically). These receptances have been

compared to the receptances of beam (a) computed ana-
lytically. The results of this first study show a good con-
vergence of the method, with some main sources of errors
that have been identified. Two conclusions can be drawn
from the results :

• the lower the size of the uncoupled structure will be,
the lower the errors in the model and thus in the de-
coupling.

• the higher the structural damping coefficient will be,
the lower the errors as the amplitudes of the reso-
nances are reduced.

In the perspective of applying the principle of subtrac-
tive modeling to the partially coated cylindrical shell, and
in order to study further the method’s sensibility to model
errors, the principle of subtractive modeling will be ex-
tended on a three-dimensionnal study : the scattering of
a plane wave by a rigid sphere, using the CTF method [5].
Analytical and numerical results showing good agreement
for this test case will soon be released.
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