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ABSTRACT 

The wave decelerating structures with the propagation 

velocity gradually decreasing to zero at a finite interval 

theoretically provide complete absorption of the 

incoming wave without the use of absorbing substances. 

Due to the physical imperfections of the proposed 

vibrational black hole (VBH) designs, an absorbing 

material has to be added to effectively absorb waves. We 

consider the use of VBH as a matching structure that 

connects an element with high impedance to another 

element with low impedance and absorbing material. 

Using the set of exact solutions for parabolically 

sharpened rod, simple algorithm for recalculation of the 

elements of the impedance matrix of a transversal 

oscillating VBH rod, is suggested. 

1. INTRODUCTION 

Decelerating structures with a propagation velocity that 

gradually decreases to zero at a finite interval 

theoretically provide complete absorption of the 

incoming wave without the use of absorbing materials [1, 

2]. The time of waves propagation over such a structure is 

equal to infinity. The wave that enters the slowing 

structure will not reach its end in any finite time and, 

therefore, will not be reflected from it. This property 

resembles the behavior of light in a strong gravitational 

field near a cosmological black hole. In this regard, in 

acoustics, structures that slow down the speed of wave 

propagation and capture waves due can be called, 

depending on the type of waves, acoustic black holes 

(ABH), or vibrational black holes (VBH) [3]. The 

initially suggested constructions of VBH and ABH are 

shown in Fig.1. 

 

To date, there is an extensive literature on the theoretical 

and experimental study of  A/VBH. Intensive research on 

various aspects of this problem began after the papers 

[4,5]. Many works published before 2018 are noted, for 

example, in the review [6]. More recent works are usually 

also provided with a fairly clear description of the current 

state of the problem.  

In this paper, the decelerating structure of the VBH is 

considered from the point of view of matching 

acoustically rigid and acoustically soft structures. There 

are different methods for calculating the vibration of rods 

of variable cross-section: WKB-approximation [7, 8, 9], 

impedance matrices with using Riccatti equations  [10, 

11, 12], Rayleigh-Ritz approach with different sets of 

basic functions  [13, 14, 15] and numerical FEM methods 

[16]. Below impedance matrix calculations for the 

standard VBH - rod with parabolic profile - are 

developed. Exact solutions in the form of power functions 

are used [17]. 

 

2. EQUATIONS, MATRIX OF INNER 

IMPEDANCE,  ANALYTICAL SOLUTIONS  

The equation of transverse vibrations of a rod with 

variables along its axis of linear mass and flexural 

stiffness has the form in the approximation of the Euler-

Bernoulli model:  

0)"")(()( 2   xIExS                  (1) 

 is the density of the rod material, )(xS  is the cross – 

sectional area,  is the frequency, )(xI is the moment of 

inertia of the cross – section,   is the transverse 

displacement. 

The moment and cutting force acting on the cross section 

inside the rod are equal: 
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Then the internal impedance matrix is introduced )(xZ in 

section x , connecting bending moment )(xM and 

force )(xF with displacement   and slope '  in the same 

section [10]: 

)()()(')()( 1211 xxZxxZxM               (3) 

)()()(')()( 2221 xxZxxZxF  
             

(4) 

Formulas (1-4) fully describe the problem of converting 

the impedance matrix from one section of a non-uniform 

rod to any other section. 

Next, for certainty, we consider one of the possible 

distributions )(xS  and )(xI , which provide solutions in 

the form of power functions, discussed earlier in [3, 17]. 

  

Figure 1. Two examples of construction with 

slowing down the propagation velocity. VBH – on 

the left [1]; ABH – on the right [2]. 
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Specifically, we consider a parabolically sharpened rod 

(see left part of fig.1) [17] for which: 
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Substituting (5, 6) into (1), we get the following 

differential equation: 
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with nondimensional parameter 
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Here and further Ec
Y
  is the Young velocity of 

the longitudinal wave propagation in the rod, 
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The dimensionless parameter b  is proportional to the 

square of the frequency and is equal to the fourth power 

of the wave size of the original segment of the 

homogeneous rod at Lx  . 

We are looking for a solution (7) in the form of a power 

function:  
 )/()( Lxx                            (10) 

After substituting (10) into (7), an algebraic equation for 

the exponent   is obtained : 

0)3)(4)(1(  b                (11) 

The solutions to this equation are as follows [17]: 
2/1
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At 0b  (low frequencies), all roots (12) are real. 

Vibrations of the rod are in-phase at all points, there are 

no waves. In the other extreme case b  (high 

frequencies), (12) gives a pair of purely real (with a plus 

sign before the square root in (12)) and a pair of complex 

– conjugated (with a minus sign before the square root in 

(12)) roots. Complex roots correspond to propagating 

waves; real roots correspond to non-propagating waves. 

Thus, there is a complete analogy with a constant cross-

section rod, for which the complete set of solutions 

consists of two propagating and two exponentially 

damped waves. The critical value b  at which the 

imaginary component appears is equal to:  
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Accordingly, the critical frequency is equal to: 
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3. CALCULATION OF INPUT IMPEDANCE 

MATRIX 

Next, we solve the boundary value problem (fig.2). 

 

Figure 2. Truncated vibrational black hole 1 with 

impedance load at the end 2. L - the length of full VBH, l 

– the length of truncation. 

 

Parabolically sharpened rod 1 with the length L is cut in 

the section x=l. Some load 2 with impedance matrix Z(l) 

is attached to this section (shadowed rectangle in fig.2). It 

is necessary to calculate the impedance matrix Z(L) in the 

section Lx  .  

Let’s set the displacement and slope in the section Lx  : 

,)(  L ')('  L . 

We search the displacement field as the sum of four 

solutions - power functions (12) with exponents (12) 

[17]:  
jLxAx

j

j


 )/()(

4...1




                         (15) 

Let's rewrite all the exponents of the power functions (12) 

separately: 

;4
4

17

2

3
2/1

2








 b ;4
4

17

2

3
2/1

4








 b  

;4
4

17

2

3
2/1

1








 b .4
4

17

2

3
2/1

3








 b  

The exponent 2  (complex) corresponds to propagation in 

the negative axis direction (to the end ofBH) wave, the 

exponent 4 (purely real) corresponds to a wave, 

decaying in this direction. The exponent 1 (complex) 

corresponds to a wave propagating in the positive 

direction of the axis (from the end of the BH), the 

exponent 3 (purely real) corresponds to a wave decaying 

in this direction. 

Next, we use a dimensionless coordinate, normalized by 

length L : LxX / .The dimensionless coordinate of the 

end section is denoted by ./ Ll  After making the 

necessary differentiations in (2) and taking into account 

the power dependencies (5, 6) and (15), we obtain 

expressions for the moment and force through the wave 

amplitudes jA :  
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Next, we solve the following boundary value problem. In 

the initial section 1X , we set the displacement and 

the slope ')(',)(   LL : 


 4...1j

jA

                            

(18) 

'
1

4...1

 
j

jjA
L

                           

(19) 

In the end section X we set the impedance condition 

(3, 4) with impedance matrix )(Z : 
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The system of equations (18-21) for wave amplitudes
jA  

inside the BH is written in matrix form: 

ξAU                                  (22) 

Here, the matrix U is a set of coefficients at the 

amplitudes in the right part of the equations (18 – 21), 

A - the vector of wave amplitudes, TL )0,0,',( ξ - the 

vector of the right parts of the equations (18-21) (the 

upper index T is the transposition sign). 

The matrix elements of U are written below (the first 

subscript is the row number, the second subscript is the 

column number): 
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Equation (22) is solved by inverting the matrixU : 

ξUA  1

                                 
(23) 

After determining the wave amplitudes
jA , we are able 

to write an expression for the displacement field in the 

form (15) with known amplitudes and exponents. Then, 

substituting (15) in the expressions for the moment and 

force (2), we define them at any point in the BH, 

including in the initial section Lx  . Next, the impedance 

matrix in this section is calculated using the formulas (3, 

4): 

 )(')()( 1211 LZLZLM               (24) 
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Calculating the moment and force in the initial section at 

the specified values of displacement  and slope '  in the 

same section, we get an elements of the impedance 

matrix in the initial section: 
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The right-hand side of these equalities includes the values 

of the impedances in the section x=l=δ∙L through the 

values of momentum and force at x=L. As a 

consequence, this determines the relationship between the 

elements of the impedance matrix in the sections L and 

l=δ∙L. 

4. CONCLUSION 

The algorithm proposed above for recalculating the 

impedance matrix of a non-uniform rod with a special 

parabolic profile – VBH - includes only simple algebraic 

operations: calculation of power functions, inversion of 

the 4x4 matrix, and multiplication. This allows one to 

make quick calculations for selecting parameters of 

connected and connecting element without large 

computational costs. This algorithm can be useful for 

investigations of both vibration absorption and energy 

storage problems, where the general goal consists in 

efficient connecting the objects with very different 

impedances. 
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