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ABSTRACT

The classical guitar is a popular string instrument in which

the sound results from a coupled mechanical process. The

oscillation of the plucked strings is transferred through the

bridge to the body which acts as an amplifier to radiate

the sound of the guitar. In this contribution, a numerical

model of a classical guitar is presented. Alongside the nu-

merical modeling, experiments are carried out. The numer-

ical model might be used as virtual prototype to simulate

the influence of varying parameters like different bracing

patterns or new geometries or to compare different gui-

tars. The numerical finite element model of the guitar con-

sists not only of the guitar body and the neck of the guitar,

but also the influence of the air inside the guitar body is

taken into account. Furthermore, the struts to reinforce the

soundboard and the back of the guitar are included, and or-

thotropic material properties are considered. The numer-

ical models are compared to experimental measurements

and unknown parameters are estimated using experimen-

tal data in a model updating scheme. Experimentally, the

vibration of the guitar is examined by means of an experi-

mental modal analysis. An experimental setup being capa-

ble of determining eigenmodes and eigenfrequencies in a

high spatial resolution is presented. For the measurements

a scanning laser Doppler vibrometer is used and the guitars

are excited via impulses using an electrodynamical shaker.

1. INTRODUCTION

The classical guitar is a popular string instrument in which

the sound results from a complex transient process begin-

ning with the oscillation of a plucked string that is then

coupled with the guitar body that radiates the sound to the

surrounding air. To better understand this transient pro-

cess, not only measurements shall be carried out, but also

a finite element (FE) model shall be created that is able to

approximate the vibration of the guitar. The oscillation of

a single string is examined in a previous work [1]. The ex-

isting literature already includes finite element models of

guitars in a high level of detail with well measured mate-

rial properties of the instrument [2]. Also the influence

of the air inside the guitar body is examined [3]. Fur-

thermore, a model updating procedure has been applied to

soundboards of string instruments to identify the material

parameters [4].

In this contribution the guitar body is examined without

any influence from forces of the strings with the goal to

create an FE model that approximates the eigenfrequencies

and eigenmodes of a real guitar. For this reason, an exper-

imental modal analysis is carried out to gather knowledge

of the eigenfrequencies and the eigenmodes of the partic-

ular examined guitar. This particular examined guitar is

then modeled in a high level of detail and the eigenmodes

and eigenfrequencies of the model are compared with the

ones identified in the experiment. A model updating pro-

cedure is proposed to identify the only coarsly known ma-

terial properties of the guitar. This article is divided in

an experimental and a numerical part. Section 2 contains

the description of an experimental setup to conduct exper-

imental modal analyses on guitars and the identification of

modal parameters for one particular guitar model. In Sec. 3

a numerical FE model is developed and a model updating

scheme is presented and applied to the particular guitar ex-

amined in the experimental modal analysis.

2. EXPERIMENTAL MODAL ANALYSIS

In the following, the experimental setup and the parame-

ter identification procedure to identify the modal parame-

ters of a classical guitar is described. In this investigation

a Yamaha GC-12 guitar with cedar top and classical Tor-

res bracing pattern is examined. This model is chosen for

its design consisting of all solid woods whose composi-

tion can be found on the Yamaha homepage 1 . The modal

analysis of the guitar body is carried out with the strings

unmounted to identify the eigenfrequencies and the eigen-

modes as well as the damping and the transmission behav-

ior of the system.

2.1 Experimental Setup

The experimental setup shown in Fig. 1 consists of the gui-

tar mounted with rubber bands and springs on an aluminum

frame, as well as an electrodynamical shaker and a laser

Doppler vibrometer (LDV). Generally, it is possible to

mount any classical guitar on the frame as the attachment

of the springs and rubber bands is possible independently

of the geometry of a particular guitar. Moreover, the de-

sign of the setup makes it easily possible to turn the guitar

around and thereby measure the vibration on the front as

well as on the back of the guitar. Preliminary experiments

and simulations with an FE model showed that determin-

ing the oscillation on the soundboard, the fretboard and the

1 https://www.yamaha.com/en/
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Figure 1. Setup to conduct an experimental modal analysis of the guitar with approximately free boundary conditions.

Front and back of the guitar can be measured.

back of the guitar is necessary to make sure that the iden-

tified modes can be clearly distinguished from each other.

For this reason the oscillation of the guitar is measured on

a total of 245 points, 101 points of which are placed on

the back of the guitar and 144 on the soundboard and the

fretboard. This results in roughly 3 cm space between two

measured points which is considered a good spacial reso-

lution for eigenmodes up to 1000 Hz. The velocity at these

predefined points on the guitar is measured with a Polytec

PSV-500 scanning LDV which allows the measurement of

the different points on the guitar without moving the LDV.

The excitation of the guitar is realized via a modified

electrodynamical shaker that acts like an automatic im-

pulse hammer. During measurement the shaker is triggered

by a function generator with a short trigger signal which

leads to a single hammering motion of the shaker. A soft

rubber tip is used to avoid possible damage to the guitar

under test and the contact force is measured by a ICP sen-

sor. Throughout the experiment the position of the shaker

remains at a constant position on the guitar. Preliminary

experiments revealed that the impact on the guitar is very

reproducible and excites the guitar body well up to fre-

quencies around 1000 Hz [5].

2.2 Parameter Identification

In general, many different approaches for the experimen-

tal modal analysis exist and have been applied to musical

instruments. Here, the complex mode indicator function

(CMIF) in combination with the enhanced frequency re-

sponse function (EFRF) is used for the modal analysis due

to its advantage of making use of the fine spatial resolution

of the measurements. In the following, the chosen method

for the parameter identification shall be briefly explained.

A thorough description of the method can be found in [6].

In the performed experiment the force input to the sys-

tem is measured at one point and the velocity output of the

system is measured at 245 points. Accordingly, the ma-

trix of mobilities Y (ω) is used to realize the parameter

identification with the modal analysis. From the matrix of

mobilities the CMIF is calculated through a singular value

decomposition at each considered frequency which results

in

Re (Y (ω)) = U (ω)Σ (ω)V (ω)
H
, (1)

where U (ω) is the matrix of left singular vectors, V (ω) is

the matrix of right singular vectors and Σ (ω) is the matrix

of singular values. The superscript H denotes the Hermi-

tian of a matrix. For each reference (input position) k one

singular value can be calculated and these singular values

at the considered frequencies then form the CMIF

CMIF k (ω) = Σk (ω) with k = 1, 2, · · · ,K, (2)

where K is the total number of references. For the con-

ducted experiment this simplifies to one curve as K = 1
for only one reference. The resulting CMIF which con-

tains peaks for all modes existing in the data is displayed

in Fig. 2 and is used to identify the eigenfrequencies of the

system. In the low frequency range up to 18 Hz the eigen-

frequencies related to the rigid body modes due to the soft

support of the guitar can be found. This is appropriately far

away from the first eigenfrequency of the guitar at 89 Hz so

that the influence of the support can be neglected.

After identifying the eigenfrequencies ωr in the CMIF

the left singular vectors ur (ωr) and the right singular vec-

tors vr (ωr) at these eigenfrequencies are used to transform

the matrix of mobilities into a modal domain and form an

enhanced frequency response function (EFRF)

Y r (ω) = uT
r Y (ω)vr (3)

for each mode. Note that the left singular vectors ur (ωr)
are already quite good approximations for the mode shapes

of the system. The EFRFs for each mode have the advan-

tage that, with a sufficient spacial resolution of the mea-

surements, a curve for each mode is created without any

influence of the neighboring modes. Therefore, basic sin-

gle degree of freedom parameter identification techniques
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Figure 2. Complex mode indicator function calculated

from the experimentally measured mobilities.

are applicable to identify the modal parameters for each

mode seperately with the EFRF. In the presented case the

multi-point peak fitting method is applied on the EFRFs to

identify the modal parameters [7, 8].

With the identified modal parameters it is then possi-

ble to reconstruct the EFRFs as single degree of freedom

systems

Y rrec(ω) =
rA(ω)

ω2
r − ω2 + 2iωrωζr

, (4)

where rA(ω) are the modal constants and ζr are the modal

damping coefficients. These reconstructed EFRFs then are

transformed back into the physical domain and summed up

to reconstruct the matrix of mobilities

Y rec (ω) =

R∑
r=1

urY rrec (ω)v
T
r , (5)

where R is the number of identified modes in the con-

sidered frequency range. The reconstructed mobilities

can then be directly compared to the measured mobilities

and reveal immediately whether the approximation of the

modal parameters is sufficiently good.

In Fig. 3 the reconstruced mobility is compared to the

measured mobility in three different points. The first two

positions are on the soundboard of the guitar, the first one

on the bottom and the second one above the bridge around

the middle of the soundboard. The third compared node is

approximately in the middle on the back of the guitar. All

three reconstructed mobilities approximate their measured

counterparts very well and hence, the parameter identifi-

cation can be rated as successful. Nevertheless, there are

three possible modes visible in at least one of the plots

which are not identified as such in the CMIF at around

105 Hz, around 700 Hz and around 770 Hz. These modes

might be either very close to another more dominant mode

or are not well excited at the chosen position for the excita-

tion. Both problems could be solved by including multiple

excitation points to the parameter estimation [6].
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Figure 3. Three measured mobilities in comparison to

the related reconstructed mobilities from the experimental

modal analysis (top: soundboard bottom, middle: above

the bridge, bottom: middle of the back).

In total 32 eigenmodes are identified in the frequency

range between 0 and 1000 Hz with modal damping ratios

between 0.5 % and 1.5 %. Six exemplary modes are shown

in Fig. 4 which are in good agreement with existing liter-

ature, see for example [9]. For each mode the front and

the back of the guitar are displayed and the sign of the

displacement is chosen so that the oscillation is visible as

seen from the front. The visible mesh is the mesh of points

that are measured during the experiment. These modes are

used in the following as reference to compare against nu-

merically calculated ones.
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Figure 4. Six modes of the experimental guitar calculated with the modal analysis.

3. FINITE ELEMENT MODEL

In the following the numerical model of the experimen-

tally examined guitar is described. Modeling and simu-

lation are carried out in the commercial software Abaqus

and all numerical details can be found in the Abaqus ref-

erence [10]. The FE model is created through a reverse

engineering process measuring the existing guitar by hand

and with the help of X-Ray pictures. The material param-

eters are taken from literature and then updated in a model

updating scheme.

3.1 Modeling Procedure

The geometry of the classical guitar is measured by means

of X-Ray pictures and mechanical tools and then modeled

in Abaqus in a very high level of detail. Screenshots show-

ing the geometric model can be seen in Fig. 5. All parts of

the guitar have been modeled including not only the guitar

body with the neck and the fretboard but also all parts and

struts inside the guitar body. For the structural parts either

volume elements (C3D8) or shell elements (S4) are used.

The shell elements are a reasonable choice for the sound-

board, the back and the sides of the guitar body as these

parts satisfy the condition that these parts’ length and width

are much greater than their thickness. Besides the parts

of the structure, the air inside the guitar body is modeled

with acoustic elements (AC3D8) and hence, the coupling

between the air and the structure is taken into account. Fur-

thermore, a layer of acoustic infinite elements (ACIN3D4)

is applied to the soundhole surface to model a sufficiently

accurate boundary condition at the soundhole. In Fig. 5 the

mesh is not visible as it is too fine to be displayed accord-

ingly. However, the model consists of 332604 elements

and a convergence analysis has been carried out to make

sure that it is meshed fine enough to expect converged re-

sults.

The use of different material properties is highlighted in

Fig. 5 by the use of distinct colors for each material. The

soundboard is made of solid western redcedar while the

back, sides as well as the neck and the head are made of

solid mahogany. Moreover, the fretboard material is ebony

and the bridge is made of rosewood. The struts and other

parts inside the guitar body are assumed to be spruce. For

all materials the material properties are taken from existing

literature in a first step [11]. As stated in previous works, it

is necessary to model the full anisotropic material behavior

of all the different kinds of wood and the grain direction

has to be determined carefully [2, 12].

Because wood is a natural material it is expected that

the material parameters vary by a significant amount be-

tween different instruments. Thus, the numerical model is

not expected to behave precisely like the experimentally

examined guitar right away with the material parameters

taken from the literature. Nonetheless, these parameters

are a good starting point for a model updating procedure in

which the material parameters are optimized with respect

to a predefined objective function. In total, there are 50

material parameters to identify as there are five different
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Figure 5. Finite element model of the guitar. The colors visualize the different materials of the guitar and the most right

picture displays the simplified air volume inside the guitar.

kinds of wood used in the guitar and each material has got

a density as well as three Young’s moduli, three Poisson

Ratios and three shear moduli. As identifying 50 param-

eters via numerical optimization is a very demanding task

computationally, it makes sense to carry out a sensitivity

analysis to find the parameters with the largest influence

on the mode shapes and the eigenfrequencies. Such a sen-

sitivity analysis has been carried out in an existing work

for a violin [12]. In this publication it is stated that for a

constant moisture content in the wood the Young’s moduli

and the shear moduli are the most influential parameters

regarding their influence on the eigenfrequencies.

Following this advice, in the first step of the model up-

dating approach the mode shapes shall be optimized with

respect to the Young’s moduli along the grain EL and the

shear moduli GLT and GLR to match the mode shapes cal-

culated in the experimental modal analysis. The parame-

ters are varied through factors which can vary between 0.5

and 1.5 for each parameter, hence the material parameters

should stay in a realistic interval. Furthermore, the shear

moduli for each material are varied through the same fac-

tor and, thus, there are in total 10 optimization variables.

Considering that in a first step the mode shapes shall be

matched, the objective function

max
∀p∈P

(
min

i=1...N
max

j=1...M
MACij(p)

)
(6)

is proposed, where P = [0.5, 1.5]
10

, N is the number of

modes identified in the experiment and M is the number

of modes calculated in the numerical model. The term

MACij(p) is the modal assurance criterion (MAC) value of

the mode pair consisting of experimental mode i and nu-

merical mode j. The MAC values are calculated as

MACij =

∣∣ϕH
i ϕj

∣∣2
ϕH
i ϕiϕH

j ϕj
(7)

where ϕi is the mode shape of the experimental mode

i and ϕj is the mode shape of the numerical mode

j [6]. The parameter identification through numerical op-

timization is performed with the standard Matlab function

patternsearch where in each iteration firstly, the numer-

ical eigenmodes are calculated in Abaqus. Then, the MAC

Table 1. Initial values of the in the model updating scheme

updated parameters in GPa and the corresponding update

factors pEL and pG.

EL GLR GLR pEL
pG

Spruce 11.9 1.47 1.43 1.13 0.5

Cedar 8.47 0.74 0.73 1.5 1.5

Mahogany 10.7 0.94 0.63 1 0.75

Ebony 17.0 0.95 0.36 0.5 1.19

Rosewood 13.5 0.11 0.10 1.5 1.5

matrix between numerical and experimental modes is com-

puted and the objective function stated in Eq. (6) is evalu-

ated.

3.2 Simulation Results

In this section the results of the model updating scheme

are discussed and compared to the results of the experi-

mental modal analysis. In Tab. 1 the initial values of the

varied parameters from the literature and the correspond-

ing factors calculated in the model updating scheme are

displayed. First and foremost all parameters besides the

Young’s modulus of mahogany are varied by a significant

amount. Another striking fact is that six out of ten factors

reach one of the predefined limits.

Six modes calculated with the numerical model are dis-

played in Fig. 6. These modes correspond to the experi-

mentally identified modes in Fig. 4 and they are shown in

the same way as they are compared to the experimental

modes. That means, that the numerical modes are evalu-

ated at the nearest nodes to the in the experiment measured

nodes. Furthermore, the MAC matrix comparing these six

numerical modes with the experimental modes is shown

in Fig. 7. First and foremost, each of the six numerical

modes can be correlated clearly to its experimental coun-

terpart and moreover, the correlated modes are satisfyingly

similar. This is not only visible by comparing Fig. 6 with

Fig. 4 but also proven by high MAC values in Fig. 7. Four

out of the six modes yield MAC values around 0.9 which

is a very good result especially when taking into account

10.48465/fa.2020.0072 2159 e-Forum Acusticum, December 7-11, 2020



Figure 6. Six modes of the finite element model evaluated at the nearest nodes to the experimentally measured points on

the real guitar.
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Figure 7. Modal assurance criterion matrix as compar-

ison between the experimentally and numerically calcu-

lated modes displayed in Fig. 4 and Fig. 6.

that there is some amount of inaccuracy in finding the ex-

act same nodes in simulation and experiment. The other

two pairs of modes, (4, 4) and (6, 5), still yield MAC val-

ues around 0.7 and, therefore, are still well classifiable as

a match.

On the other hand some drawbacks still remain. Al-

though the eigenfrequencies of the numerical modes are

already close to the experimental ones, there still is around

10 % deviation between experimental and numerical eigen-

frequencies. In addition, the fifth and six mode in the sim-

ulation appear in the wrong order and especially the devia-

tion of 51 Hz between the sixth numerical eigenfrequency

and its experimental counterpart is quite high. Yet, the dif-

ferences of the frequencies are not surprising because the

objective function for the updating process only takes the

mode shapes into account but not the eigenfrequencies.

All in all the first step of model updating can be rated

a success as there is a very clear correlation between the

numerical model and the real guitar.

4. CONCLUSION

The goal of the paper was to create a numerical FE model

that approximates the modal behavior of a real guitar well

although the material parameters are only coarsly known

due to the natural variation of wood. For this reason an

experimental setup has been designed with which the os-

cillation of the guitar can be measured from both sides and

an experimental modal analysis has been performed for a

Yamaha GC-12 classical guitar. The reconstructed mobil-

ities by means of the experimental modal analysis showed

very good agreement with the measured mobilities and,

hence, the modal parameter identification yields very good

results.

Furthermore, the experimentally examined guitar has

been reverse engineered to create a finite element model
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with very high geometrical accuracy. The numerical model

includes all necessary parts including the bracing pattern

and all other parts inside the guitar body as well as the

air inside the guitar. The parts of the guitar are built with

five different kinds of wood and all the orthotropic material

properties of all of them have been included in the model.

Due to the variation of the material properties of wood

the material properties found in existing literature are only

starting values for a model updating scheme. A model up-

dating scheme has been applied to approximate the ma-

terial properties by performing a numerical optimization

with an objective function in which the mode shapes of

the numerical model are compared with the experimentally

identified ones. This procedure already resulted in a good

agreement of the mode shapes and eigenfrequencies be-

tween numerical model and experiment. Nevertheless fur-

ther work has to be put into the model updating to improve

the results of the numerical model.
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