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ABSTRACT

Speaker counting is the task of estimating the
number of people that are simultaneously speak-
ing in an audio recording. For several audio pro-
cessing tasks such as speaker diarization, separa-
tion, localization and tracking, knowing the num-
ber of speakers at each timestep is a prerequisite,
or at least it can be a strong advantage, in addi-
tion to enabling a low latency processing. In a
previous work, we addressed the speaker counting
problem with a multichannel convolutional recur-
rent neural network which produces an estimation
at a short-term frame resolution. In this work, we
show that, for a given frame, there is an optimal
position in the input sequence for best prediction
accuracy. We empirically demonstrate the link
between that optimal position, the length of the
input sequence and the size of the convolutional
filters.

1. INTRODUCTION

Speaker counting —estimating the evolving num-
ber of speakers in an audio recording— is a cru-
cial stage in several audio processing tasks such
as speaker diarization, localisation and tracking.
It can be seen as a subtask of speaker diariza-
tion, which estimates who speaks and when in a
speech segment [1,2]. This task has been poorly
addressed in the speech processing literature as a
problem on its own, in a majority of the source
separation and localisation methods, the number
of speakers is often considered as a known and es-
sential prerequisite [3—6] or estimated by cluster-

10.48465/fa.2020.0766

829

ing separation/localisation features [7,8]. Speaker
counting becomes even more difficult when sev-
eral speech overlap, therefore it reveals particu-
larly useful for tracking, as it can help the diffi-
cult problem of detecting the appearance and dis-
appearance of a speaker track along time [9].

In the literature of source counting, single-
channel parametric methods rely on ad-hoc pa-
rameters to infer the number of speakers [10,
11]. Multichannel approaches exploit spatial in-
formation to better discriminate speakers. Clas-
sical multichannel methods are based on eigen-
value analysis of the array spatial covariance ma-
trix [12-14], but cannot be used in underdeter-
mined configurations. Clustering approaches in
the time-frequency (TF) domain enable to over-
come this restriction [15-19]. Nevertheless, they
often turn out to be poorly robust to reverberation;
moreover, they often require the maximum num-
ber of speakers as the input parameter.

More recently, deep learning has been applied
to the audio source counting problem. In [20],
a convolutional neural network is used to clas-
sify single-channel noisy audio signals into three
classes : 1, 2 or 3-or-more sources. In [21], the
authors compare several neural network architec-
tures with long short-term memory (LSTM) or
convolutional layers, and also tried classification
and regression paradigms. They extended their
work in [22] with a single-channel convolutional
recurrent neural network (CRNN) predicting the
maximum number of speaker occurring in a 5-
second audio signal. Recently, we proposed an
adaptation of this CRNN with multichannel in-
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put features to predict the number of speakers at
a short-term precision on reverberant speech sig-
nals [23].

In this paper, we extend our work in [23] by
providing an empirical analysis of the speaker
counting CRNN with regards to the sequence-to-
one output mapping. We demonstrate that, for the
best prediction on a given frame, there is an opti-
mal choice of the decoded label within an output
sequence, depending on convolutional and recur-
rent parameters. Past information is needed to let
the LSTM converge and a few overhead frames
also help for best accuracy.

2. SPEAKER COUNTING SYSTEM

The method used in this paper is the same as in
[23], but we shortly recall the main lines in this
section.

2.1 Input features

To provide spatial information to the network,
we use the Ambisonics representation as a mul-
tichannel input feature. The main advantages of
the Ambisonics format are its ability to accu-
rately represent the spatial properties of a sound-
field,while being almost independent from the mi-
crophone type. The Ambisonics format is pro-
duced by projecting an audio signal onto a basis of
spherical harmonics. For practical use, this infi-
nite basis is truncated which defines the Ambison-
ics order : here, we provide first-order Ambison-
ics (FOA) to the network, leading to 4 channels.
For a plane wave coming from azimuth 6 and ele-
vation ¢, and bearing a sound pressure p, the FOA
components are given in the STFT domain by: !

W(t, f) s 1
Xt f)| _ |V3cosOcos¢
Y(t, f)| ~ |V3sinfcoso p(t, f). (D
Z(t. ) V3sin ¢

where ¢t and f denote the STFT time and fre-
quency bins, respectively.

The phase of p(t, f) is considered a redun-
dant information across the channels,thus we only
use the magnitude of the FOA components. By

' We use the N3D Ambisonics normalization standard [24].
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Figure 1: Architecture of the counting neural net-
work, similar to [23].

stacking them, we end up with a tridimensional
tensor X € RNexFXI with N, frames, F fre-
quency bins and I channels as an input feature
for the neural network. We use signals sampled
at 16 kHz, a 1,024-point STFT (hence F' = 513)
with a sinusoidal analysis window and 50% over-
lap. The parameter IV, takes several values during
our experiments, see Section 3.

2.2 Outputs

Speaker counting is considered as a classification
problem with 6 classes, from 0 to 5 concurrent
speakers. For the given frame, the target is en-
coded as a one-hot vector y of size 6, and the
softmax function is used for the output layer. For
inference, the prediction is the highest probability
of the output distribution.
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2.3 Network architecture

‘We use the same architecture as in [23], illustrated
in Figure 1. A first bloc is composed of 2 convo-
lutional layers with 64 and 32 filters respectively,
followed by a max-pooling layer, and another 2
convolutional layers with 128 and 64 filters re-
spectively, also followed by a max-pooling layer.
The filter support size K (the size in both time and
frequency axis) is varied as a part of the analysis
in Section 3.

The max-pooling operation only applies to the
frequency axis to keep the temporal dimension
unchanged, allowing a frame-based decision. The
following layer is composed of a LSTM used in
a sequence-to-sequence mapping mode (see [23]
for more details), leading to an output of dimen-
sion N; x 40. Finally each temporal vector of di-
mension 40 goes through the 6-unit softmax out-
put layer that produces the probability distribution
for each class. Therefore, this pipeline enables the
network to compute a probability distribution for
each frame.

2.4 Data

To train and test the neural network, we use syn-
thesized speech signals comprising between 1 and
5 speakers who begin and end to talk at random
times. The speech signal of each speaker is indi-
vidually convolved with spatial room impulse re-
sponse (SRIR) generated using the image-source
method [25]. Then the individual wet speech sig-
nals are mixed together and a diffuse noise is
added. The reader can find more details on the
mixture generation algorithm in [23]. We end up
with a total of 25 hours of speech signals for train-
ing and 0.42 hours for validation and test. Note
that SRIR, speech and noise signals used for vali-
dation and test are never encountered during train-
ing.

3. PERFORMANCE ANALYSIS

In this section we evaluate the performance of the
CRNN on the test set depending on the values of
two parameters : the position n of an analyzed
frame within a sequence of length NV; and the sup-
port size of the convolutional filters K.
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The sequence-to-sequence nature of the LSTM
layer we use provides us a way to predict the most
probable class for each frame in an input sequence
of N; frames. However, the amount of informa-
tion available for predicting a distinct frame de-
pends on its position n within the N;-frame se-
quence. For instance, if n = 0 (first frame in the
sequence), the prediction relies only on its con-
tent in the spectrogram plus the content of neigh-
boring frames (because of the size of the convo-
lutional layers), whereas for n = N, (last frame
in the sequence), the prediction can fully benefit
from the recurrent nature of the LSTM, by gath-
ering information from all the previous frames in
the sequence. This leads to the hypothesis that
a prediction for a frame in the beginning of a se-
quence will be less accurate than a prediction for a
frame further away in the sequence. To assess this
hypothesis, we compute the accuracy of the pre-
diction of all frames in the test set by forcing those
frames to be in a same given position n within the
input sequence.

3.1 Effect of frame position

Figure 2 shows the average accuracy of the CRNN
on the test set, depending on the position 7 in the
sequence for the prediction of each frame and for
several values of K. Each color corresponds to
a value of V¢, with one curve showing the accu-
racy per position n, and one horizontal line show-
ing the average accuracy on all positions. The re-
sults are in extent of [23]. We see that the CRNN
is able to achieve an accuracy between 58% and
75%, which is a good result in noisy and rever-
berant environment, with up to 5 speakers in the
signal. As in [23], we notice a trend that the aver-
age accuracy increases with the length of the se-
quence, but the framewise results show that the
CRNN can even do better that the average perfor-
mance if we avoid frames at the beginning and at
the end.

Interestingly, all curves follow a similar trend:
the accuracy increases with n, then we observe
a floor (except for N; = 10), then the accuracy
decreases when n reaches IN;. The first inter-
pretation we can draw is that the LSTM layer
needs a certain amount of information (several
timesteps) to converge and output an optimal pre-
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Figure 2: Average framewise speaker counting accuracy of the proposed CRNN, as a function of the
position of the decoded frame in the /N;-sequence, for several values of NV, and convolutional filter size.
The horizontal bars indicated the average accuracy over the frame positions.
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diction (hence the floor). This optimal prediction
is within about 69% and 75% accuracy, depend-
ing on the experiments.

All curves show almost the same important rise
at the beginning of the sequences: For example
for K = 3 and N; = 30, the accuracy goes
from around 60% for n = 0 to around 69% for
n = 6 which is a notable increase. Atn = 6
the accuracy begins to fall for N; = 10, whereas
it goes on rising for other values of N;. When
we go further in the sequence, the increase stabi-
lizes and reaches a floor, which is around n = 30
for N; = 50. Here, the LSTM seems to have
reached its optimal prediction power. So finally
we can correlate the length of the input sequence
to the overall accuracy with the simple reason
that the LSTM needs time to converge and ag-
gregate information to provide a better prediction.
This highlights the fact that in practice we need
a certain amount of past information to provide
the LSTM for higher accuracy of prediction. In
the following paragraph, we comment on the de-
crease of accuracy after the optimal floor.

3.2 Effect of convolutional filter size

Another interesting element in the curves is the
drop of accuracy in the last values of the decoded
frame position n, when it gets close to N;. This
drop of accuracy occurs for all N; values. For
example for K 3 and NV 10, accuracy
gradually goes from best accuracy 69.85% for
n = 6 to 67.03% for last frame position n = 9.
For N; = 30 it goes from a maximum value of
73.19% for n = 25 to 68.50% for last frame po-
sition n = 29. In fact, for K = 3, it seems that
the peak in accuracy along the sequence appears
at the frame position n = N; — 5 for all NV; ex-
cept for N; = 10, and for the next positions the
accuracy falls.

If we do the same analysis for K = 5, the drop
seems the happen a bit earlier at position Ny — 9,
except for NV, 10 for which the convergence
seems to condition the increase of accuracy here.
For K = 7 the phenomenon is less similar among
the different values of N;: for Ny = 30 the drop
begins at position n = N; — 10 and for N; = 50
it begins at position n = N, — 16. Yet we see
that the position where the accuracy starts to drop
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seems to be correlated to the size of the convolu-
tional filters.

In fact this is due to the use of padding in the
convolutional layers: For a filter size K = 3, the
spectrograms are padded with one frame of ze-
ros when the filter is applied on an edge frame
(n = 0orn = Ny — 1), so that we keep the tem-
poral dimension through all layers. This padding
followed by the convolutional operation gives an
edge frame with less information (since the con-
volution includes the void information added with
padding) for the next convolutional layer, and this
one will apply the same operation and so on until
the 4'" and last convolutional layer.

So after this layer the padding operation has
added 1 void frame 4 times at the end of the spec-
trogram which explains the drop of accuracy 4
frames before the end of the sequence, due to the
lack of information. This can also be calculated
for K = 5: the filter size forces a padding op-
eration of 2 void frames for each of the 4 convo-
lutional layers, which leads to 2 x 4 = 8 void
frames at the end of the spectrogram before enter-
ing the LSTM layers. We again obtain the posi-
tion n = N; — 9 for which the accuracy begins to
drop. An empirical formula can then be drawn to
compute the optimal position 1, of the analyzed
frame for best accuracy :

Nopt = Nt —2K +1 (2)

For K = 7, the formula gives an optimal position
n = Ny — 13 before the drop in accuracy begins.

Note that this result is not perfectly observed in
the curves. In particular for NV, = 10, this padding
effect is balanced by the rise of accuracy due to
the LSTM convergence when accumulating infor-
mation across successive frames. That is why for
example, for K = 5 and N; = 10, the drop be-
gins at n = Ny — 4 because at that position the
convergence is still in progress.

3.3 Online vs. accuracy tradeoff

The above analysis showed two aspects within the
graphs :

e The LSTM needs time to converge, so that
for a good speaker counting accuracy we
need to provide a certain amount of past in-
formation.

e-Forum Acusticum, December 7-11, 2020



e The peak of performance is obtained for
a position several frames before the end
of the sequence, because after the convo-
lutional layers the last frames suffer from
padding. The number of overhead frames
needed for best accuracy is % x 4 where
K is the size of the convolutional filters.
It gives the optimal position of the ana-
lyzed frame from the end of the sequence,
as padding would lower accuracy in a fur-
ther position.

Therefore for best speaker counting perfor-
mance, a CRNN needs past information as well
some overhead, depending on the recurrent and
convolutional parameters.

4. CONCLUSION

In this paper we propose an analysis of the count-
ing accuracy of a CRNN, depending on the po-
sition of the analyzed frame within the input se-
quence and depending on the size of the convo-
lutional filters. We show that the LSTM indeed
needs several steps to converge and provide the
best possible accuracy. But although this conver-
gence theoretically reaches its maximum at the
end of the sequence, we witness a drop in accu-
racy towards the end of the sequence which is ex-
plained by zero-padding in the cascaded convo-
lutional layers, which still enables us to provide
a framewise prediction for source counting. The
use of convolutional filters needs some overhead
in the sequence. So there is a tradeoff between
real-time prediction of the number of speakers
and the accuracy this prediction.
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