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ABSTRACT

In this paper, we evaluate the performance of independent
low-rank matrix analysis (ILRMA) for short signals. IL-
RMA is a state-of-the-art blind source separation (BSS)
technique based on the assumption that sources are sta-
tistically independent and their spectrograms can be ap-
proximately expressed as low-rank matrices. Because IL-
RMA estimates many parameters such as demixing matri-
ces, spectral bases, and source activations, it requires ob-
servations of sufficient length for stable estimation. Thus,
the performance of ILRMA could degrade when the avail-
able signals are short. Toward overcoming this problem,
we apply ILRMA to a short mixture and investigate the
dependence of the performance on the signal length.

1. INTRODUCTION

Blind source separation (BSS) is a technique of estimating
the source signals from a mixture of sources using only
the observed signals without any other information. BSS
is useful for many applications such as acoustic event de-
tection and hearing-aid devices. As a state-of-the-art BSS
method, independent low-rank matrix analysis (ILRMA)
has recently been proposed [1]. In ILRMA, a low-rank ma-
trix model of the spectrogram obtained from each source
is assumed. ILRMA can be interpreted as a method that
unifies auxiliary-function-based independent vector anal-
ysis (AuxIVA) [2] and multichannel non-negative matrix
factorization (MNMF) [3–10]. ILRMA can achieve better
performance than AuxIVA and is more stable than MNMF.
In ILRMA, many parameters such as demixing matrices,
spectral bases, and source activations must be estimated.
Thus, it is considered that ILRMA requires sufficiently
long observations for stable estimation.

However, in some cases, BSS must be applied to sig-
nals of insufficient length. For example, in online BSS,
a well-used approach is to divide the observed signal into
several short-length blocks to satisfy the assumption of a
time-invariant system, and then update the demixing ma-
trices in every block [11–16]. In this case, the length of
each block can be 1 or 2 s. In this paper, as a prelimi-
nary investigation to realize online real-time ILRMA, we
evaluate the performance of ILRMA for short signals and
examine its dependence on the parameters setting, such as
the STFT length and the number of bases, to achieve better
separation.

The rest of this paper is organized as follows. In Sec-
tion 2, we formulate the multichannel BSS problem and
describe conventional ILRMA. In Section 3, we show the
experimental results and discuss them. Finally, in Sec-
tion 4, we present our conclusions.

2. BACKGROUND

2.1 Formulation

LetK andM be the numbers of sources and microphones,
respectively. In this paper, henceforth, we consider the de-
termined case, K = M . We respectively define the STFT
representations of the source, observed, and estimated sig-
nals as

sfτ =
[
s1,fτ · · · sk,fτ · · · sK,fτ

]> ∈ CK×1, (1)

xfτ =
[
x1,fτ · · · xk,fτ · · · xK,fτ

]> ∈ CK×1, (2)

yfτ =
[
y1,fτ · · · yk,fτ · · · yK,fτ

]> ∈ CK×1, (3)

where f ∈ {1, . . . , F}, τ ∈ {1, . . . , T}, and k ∈
{1, . . . , K} are the indices of frequency bins, time frames,
and channels, respectively, and > denotes the vector/matrix
transpose. When the STFT window is sufficiently longer
than the impulse response, we can represent the observed
signal xfτ as

xfτ = Afsfτ , (4)

where Af ∈ CK×K is a mixing matrix. If Af is invertible,
we can define the demixing matrix as

Wf =
[
w1,f · · · wK,f

]H
= A−1f , (5)

where wk,f ∈ CK×1 (k = 1, . . . , K) are the demixing
vectors and H denotes the Hermitian transpose. Therefore,
the estimated signal yfτ can be represented as

yfτ = Wfxfτ . (6)

2.2 ILRMA

As introduced earlier, ILRMA is a determined BSS tech-
nique unifying IVA and NMF. In ILRMA, the demix-
ing matrices are updated under the assumption that the
complex spectrogram of the kth source is approximately
represented as the product of two non-negative matrices,
Bk ∈ RF×L+ and Hk ∈ RL×T+ , where Bk and Hk are
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Figure 1: Overview of source separation in ILRMA (e.g.,
K = 2).

the basis and activation matrices, respectively, and R+ de-
notes the set of non-negative real numbers. To estimate
the source model parameters Bk and Hk, we consider the
following complex Gaussian distribution as the generative
model of the kth source:

p(ȳ1,τ , . . . , ȳk,τ ) =
∏
k,f

1

πrk,fτ
exp

(
−|yk,fτ |

2

rk,fτ

)
, (7)

rk,fτ =
∑
l

bk,f` hk,`τ , (8)

where rk,fτ is its variance, ȳk,τ is the estimated vector that
consists of all frequency components defined as ȳk,τ =[
yk,1τ · · · yk,Fτ

]>
; bk,f` ∈ R+ and hk,`τ ∈ R+ are

the (f, `)th element of Bk and (`, τ)th element of Hk, re-
spectively; and ` ∈ {1, . . . , L} denotes the index of the
bases. Figure 1 gives an overview of ILRMA.

Next, by using the demixing model Eq. (6) and the
source model Eq. (7), and calculating the negative log-
likelihood of the observed signals while omitting con-
stants, we obtain the objective function of ILRMA as

J (W, B, H) =
∑
k,f,τ

[
|wH

k,fxfτ |2

rk,fτ
+ log rk,fτ

]
− 2T

∑
f

log|detWf |, (9)

where W, B, and H are the tensors composed of all
Wf , Bk, and Hk, respectively.

2.2.1 Update of the spatial model

To minimize the objective function Eq. (9) with respect to
the demixing matrix Wf , we obtain the following func-
tion Q by extracting terms that are dependent on W from
Eq. (9):

Q(W, U) =
∑
k,f

wH
k,fUk,fwk,f −

∑
f

log|detWf |,

(10)

Uk,f =
1

T

∑
τ

1

2rk,fτ
xfτx

H
fτ , (11)

where Uk,f ∈ CK×K and U are the covariance matrix and
the tensor composed of all Uk,f , respectively. Henceforth,
we omit the frequency bin index f for simplicity.

By calculating ∂Q/∂wk = 0 (k = 1, . . . , K) and
rearranging it, we can obtain the following system of

quadratic equations:

wH
` Ukwk = δ`k (k, ` = 1, . . . , K), (12)

where δ`k is the Kronecker delta. Equation (12) is re-
ferred to as hybrid exact-approximate joint diagonalization
(HEAD) [17], and no closed-form solution for K ≥ 3 has
yet been found [18]. Instead of solving HEAD directly, we
minimize Eq. (10) with respect to only one demixing vec-
tor wm while keeping the other wk (k 6= m) fixed. In this
case, the problem can be solved in a closed-form as [2]

wm ← (WUm)
−1

em, (13)

wm ← wm(wH
mUmwm)

− 1
2 , (14)

where em ∈ RK denotes the canonical basis vector with
the mth element unity. This method is called iterative pro-
jection [1].

2.2.2 Update of the source model

By applying the auxiliary function method [19] to Eq. (9),
we can obtain the following multiplicative update rules for
the source model parameters Bk and Hk [1, 7]:

bk,f` ← bk,f`

[∑
τ |yk,fτ |

2
hk,`τ (

∑
`′ bk,f`′hk,`′τ )

−2∑
τ hk,`τ (

∑
`′ bk,f`′hk,`′τ )

−1

] 1
2

,

(15)

hk,`τ ← hk,`τ

[∑
f |yk,fτ |

2
bk,f`(

∑
`′ bk,f`′hk,`′τ )

−2∑
f bk,f`(

∑
`′ bk,f`′hk,`′τ )

−1

] 1
2

.

(16)

3. EXPERIMENTS

We conducted BSS experiments and evaluated the separa-
tion performance to investigate its dependence on the pa-
rameters of ILRMA, such as the signal length, the STFT
length, and the number of bases.

3.1 Experimental setup

We conducted experiments on speech signals. We
used a mixture speech of three speakers obtained
from the Japanese Newspaper Article Sentences (JNAS)
dataset [20]. The sampling rate was 16 kHz, the signal
length was 30 s, and the observed mixture speech was di-
vided into blocks of various lengths. For example, when
the block length was 1 s, we had 30 blocks of the signal,
each with a length of 1 s. Then, we applied ILRMA to
every block.

We used the pyroomacoustics Python pack-
age [21] to simulate a rectangular room and create con-
volutive mixtures. Figure 2 shows the room used for the
simulation and the locations of sources and the microphone
array. The reverberation time was approximately 200 ms.
There were three sound sources and three microphones.
The microphone array was uniformly linear with a spac-
ing of 2.83 cm.
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Figure 2: Setup of experiment.

Table 1: Parameters of the simulation.

Number of bases L 1, 2, . . . , 10
STFT length 64, 128, . . . , 1024
Frame shift of STFT Half overlap
Initial demixing matrices Wf Identity matrix
Number of iterations 100
STFT window function Hamming

Moreover, for numerical stability, we set the initial val-
ues of the source models Bk and Hk to 0.9Z+0.1I , where
Z and I are the matrix of values uniformly distributed over
[0, 1) and the matrix of ones, respectively. Table 1 shows
the other parameters.

3.2 Separation performance

We applied ILRMA to each block and calculated the aver-
age scale-invariant signal-to-distortion ratio (SI-SDR) im-
provements [22] for all blocks and sources. We set the
block length to 1 s, 2 s, and 5 s and conducted experiments.
Figure 3 shows the results.

On the whole, the separation performance improved
with increasing block length. Even when the block length
was 1 s, the separation performance did not significantly
degrade in terms of SI-SDR. Regarding the STFT length,
the SI-SDR decreased with increasing STFT length when
the block length was 1 s or 2 s, whereas SI-SDR increased
when it was 5 s. This was because when the block length
was short and the STFT was long, the number of frames of
the observed signal decreased to a number insufficient for
the estimation. In addition, the separation performance did
not significantly improve with increasing number of bases.
These results are consistent with those discussed in [1].

4. CONCLUSION

We evaluated the performance of ILRMA for short time
signals to investigate its dependence on the parameters in
ILRMA. More specifically, we performed a simulation
experiment in a reverberant environment for a mixture of
speech signals of three speakers. On the whole, the separa-
tion performance tended to increase with the STFT length
when the block length was 2 s or 5 s but decrease when
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(a) Block length: 1 [s]
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(b) Block length: 2 [s]
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Figure 3: Average SI-SDR improvements with speech sig-
nals for L = 1, 2, . . . , 10.

it was 1 s. Although the separation performance did not
strongly depend on the number of bases in the NMF source
models, the best average performance was obtained for
a single basis, for which the optimum STFT lengths for
block lengths of 1 s, 2 s, and 5 s were 64, 512, and 1024,
respectively. Even when the block length was 1 s, SI-SDR
was improved by approximately 4 dB. In our future work,
we will further investigate the separation performance in
a realistic environment. We will also apply the online up-
date algorithm of demixing matrices [15, 16] for AuxIVA
to ILRMA.
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