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ABSTRACT

The Ambisonics format is a powerful audio tool de-
signed for spatial encoding of the pressure field. An
under-exploited feature of this format is that it can be
directly extracted from virtual acoustics simulations.
Finite Difference Time Domain (FDTD) simulations are
particularly adapted as they simplify greatly the prob-
lem of extracting spatially-encoded signals, and enable
real-time processing of the simulated pressure field. In
this short contribution, we first write a time domain
representation of the ambisonic channels, in terms of
spatial derivatives of the acoustic field at the receiver
location, and formulated as a set of ordinary differen-
tial equations. We show that in general, the natural cor-
responding discrete recursive integration yields a pro-
hibitive polynomial drift in time. We then describe a
real-time filtering strategy which stabilizes this numer-
ical integration; in the discrete-time setting of FDTD
simulations, this real-time filtering process features
very low computational costs, avoiding the latency as-
sociated with large convolutions and frequency-domain
block processing of previous approaches.

1. INTRODUCTION

Volumetric wave-based acoustic simulation through the fi-
nite difference time domain (FDTD) method was proposed
in the early 1990s [1–3], and follows from the framework
developed in the context of electromagnetic field simula-
tion by Yee [4], and from much earlier work in finite dif-
ference methods for the wave equation [5].

The extraction of spatially-encoded signals from such
simulations is a major ongoing interest. See, e.g., [6,7]. In
a recent paper [8], a simplified framework for time domain
spatial encoding for wave-based simulation has been pre-
sented, based on earlier representations of spatial encod-
ing in the context of soundfield recording [9, 10]. One of
the major difficulties of this approach is the need for high-
order time integrators, leading to potential polynomial drift
in spatially-encoded output signals. The focus of this pa-
per is on the design of such time integrators which can be
used in a flexible dynamic setting (i.e., avoiding the need
for frequency domain processing, and allowing for moving

receiver positions over the course of a simulation).
In Section 2, a locally-defined time-domain representa-

tion of ambisonic encoding is presented. In Section 3, we
describe FDTD methods used to numerically simulate the
pressure field and compute spatial derivatives of the latter.
In Section 4, we call attention to a pathological behaviour
(temporal drift) of the simulated sound field, and describe
a viable integrator design to suppress such drifts. In Sec-
tion 5, we present some simulation results and concluding
remarks appear in Section 6.

2. SPATIAL SOUND FIELD ENCODING

In this section, we briefly recall a definition of time-domain
ambisonic encoding, as presented in [8], related to results
from spatial soundfield encoding in [9]. Such a represen-
tation, which requires access to the field locally at the en-
coding location, is well-suited for implementation in time-
domain wave-based virtual acoustics simulation.

2.1 Ambisonic Channels

The time evolution of the acoustic field is assumed satisfied
by the free-field wave equation:

∆p(r, t) =
1

c2
∂2t p(r, t) (1)

where here, p(r, t) is the acoustic pressure as a function of
spatial coordinate r ∈ R3 and time t ≥ 0. ∂t represents
partial differentiation with respect to t, and ∆ is the 3D
Laplacian operator. c is the wave speed.

Taking the temporal Fourier transform of (1), we obtain
the free-field Helmholtz equation:

∆p̂(r, ω) = −ω
2

c2
p̂(r, ω) (2)

A general solution of (2) can be expressed in terms of an
integral of plane waves over all directions

p̂(r, ω) =

∫
S2

â(γ, ω)ei
ω
c γ·rdΩ (3)

where S2 is the unit sphere of the usual 3 dimensional
space, γ is a 3-vector of unit length, and dΩ is the sur-
face differential element. â is the complex wave amplitude
density in direction γ. See [8] for further details.
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Additionally, recall that the set of real spherical har-
monics Yl,m(β, α) = Yl,m(γ), l = 0, . . . ,∞ m =
−l, . . . , l is an orthonormal basis of the space of (square in-
tegrable) functions over the sphere S2. Examples of spher-
ical harmonics are presented in the appendix.

The wave amplitude density â can be decomposed over
this basis as:

â(γ, ω) =

∞∑
l=0

l∑
m=−l

âl,m(ω)Yl,m(γ) (4)

The functions al,m(t), obtained through inverse time
Fourier transform of âl,m(ω), are called the ambisonic
channels of the sound field p (definitions may vary up to
multiplicative constants according to the author). They en-
code directional information of the sound field at time t at
the coordinate center r = 0.

2.2 Time-domain Encoding

A notable property of the spherical harmonics of lth order
Yl,m(γ), when expressed in terms of Cartesian coordinates
[γx, γy, γz]

T over the sphere (i.e. ||γ||2 = 1) is that they
can be uniquely extended as homogeneous polynomials
over the space R3, i.e. for all γ ∈ R3. We can thus define
differential operatorsDl,m by substituting [γx, γy, γz]

T for
∇ = [∂x, ∂y, ∂z]

T to obtain:

Dl,m = Yl,m(∇) (5)

which may be represented as

Dl,m =
∑
ξ∈Vl

σ
(ξ)
l,m∂

ξx
x ∂

ξy
y ∂

ξz
z (6)

where Vl is the set of non negative integer-valued 3-vectors
whose components sum to l and {σ(ξ)

l,m} a set of coeffi-
cients.

Using the orthonormality and homogeneity property of
the spherical harmonics Yl,m, one may show (see [8]) that

Dl,mp̂|(0,ω) =
( iω
c

)l
âl,m(ω) (7)

Taking the inverse time Fourier transform of (7), we obtain

1

cl

( d
dt

)l
al,m(t) = Dl,mp(0, t) (8)

Equations (8) serve as a starting point for implementation
in a discrete setting such as the FDTD framework.

3. FINITE DIFFERENCE TIME-DOMAIN
METHODS

FDTD simulation methods have been thoroughly studied
in the literature; Equations (1) and (8) are approximated
directly in the spatiotemporal domain through the use of
regular grids in discrete time. For the sake of simplicity,
we will only describe here the most basic FDTD scheme.

First, assume a regular Cartesian grid, of spacing X ,
indexed by integer-valued 3-vectors q = [qx, qy, qz]

T . The

grid function pnq represents an approximation of p(r, t) at
r = qX and t = nT . A two-step explicit scheme for the
wave equation (1) has the form

pn+1
q = 2pnq − pn−1q + λ2

∑
eν∈B

(pnq+eν − p
n
q) (9)

where B is the set of integer valued 3-vectors of length
1, λ = cT/X is the Courant number. According to the
Courant-Friedrichs-Lewy (CFL) condition [5], for scheme
(9),X and T must be chosen such that λ ≤ 1/

√
3 to ensure

numerical stability of (9).
Using the ansatz

pnq = ei(ω̃nT+k̃·q) (10)

in terms of numerical angular frequency ω̃ and wavenum-
ber k̃ leads to the numerical dispersion relation which links
ω̃ and k̃ = k̃γ, γ = [γx, γy, γz]

T by :

ω̃ =
2

T
sin−1

(
λ

√ ∑
ν=x,y,z

sin2
(
k̃γνX/2

))
(11)

Note that ω̃ 6= ck̃, contrary to the continuous dispersion re-
lation. This a purely numerical effect due to discretisation
error.

3.1 Spatial Finite Difference Operators

The general differential operators Dl,m defined in (5) may
be discretized using finite difference grid operators. First,
for ν = x, y, z, define the translation operators s±ν by
s±ν pq = pq±eν and

δ+ν =
1

X
(s+ν − 1), δ−ν =

1

X
(1− s−ν ) (12)

Setting ξ = 2M + α, α ∈ {0, 1}, one may define

δlν = (δ−ν )M (δ+ν )M+α (13)

which approximates (∂ν)l. Other designs are possible; we
choose this one for the sake of simplicity. One may then
approximate the differential operator Dl,m by

δl,m =
∑
ξ∈Vl

σ
(ξ)
l,mδ

ξx
x δ

ξy
y δ

ξz
z (14)

4. INTEGRATOR DESIGN

4.1 Basic Integrator Design

As in the discretization of spatial differential operators,
first define time-translation operators s±t a

n = an±1. A
first basic approach in integrating (8) consists in discretiz-
ing a time derivative d/dt by either

δ+t =
1

T
(s+t − 1) or δ−t =

1

T
(1− s−t ) (15)

Setting l = 2N +α with α ∈ {0, 1}, we may then approx-
imate (d/dt)l by

δt,l = (δ+t )N+α(δ−t )N (16)
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We then obtain a discrete equivalent of (8) :

1

cl
δt,la

n
l,m = δl,mp

n
0 (17)

Other discretization designs are possible, we choose this
one for the sake of simplicity. (17) can be easily im-
plemented recursively; as an example, (17) becomes for
an−2,2:

an+1
−2,2 = 2an−2,2 − an−1−2,2+√

15/16πλ2(pne1 + pn−e1 − p
n
e2 − p

n
−e2) (18)

4.2 Solution Drift

The continuous ambisonic encoding equations (8) are sus-
ceptible to solution drift (polynomial, and of order l − 1
for an lth order signal al,m). This drift is an inherent prop-
erty of the encoding, and exhibits itself for sources in the
near field. Note that standard frequency domain encod-
ing in spatial sound recording also exhibits this effect (see,
e.g., [11]). Because FDTD methods essentially capture all
acoustic field information (near-field and far-field), the ap-
pearance of these drifts is to be expected in FDTD simula-
tions.

Indeed, in general the discrete encoding equations (17)
also yield such a polynomial drift in time. If not sup-
pressed, polynomial drift rapidly attains high numeri-
cal values which render the obtained ambisonic channels
al,m(t) unexploitable.

As examples, drift illustrations are given in Fig.1 and
Fig.2. The source considered is a broad-band Gaussian,
with standard deviation 7.5 × 10−5 s. The vector rs =
rsource − rreceiver describes the gap between source and
receiver and d = ||rs||2 is its length in meters.
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Figure 1: Linear drift in time.

Note however that these drifts are physical: they are
present in the real solutions of the physical system. More-
over, simulated drifts such as in Fig.1 and Fig.2 suffer
from virtually no numerical artifacts when compared to the
physical drifts from equations (8). Indeed, drifts are typi-
cally extremely low frequency signals, and the finite differ-
ence operators appearing in (17) behave (almost) exactly
as their differential operator counterparts from (8) for such
low frequency signals. This means that the simulated drifts
witnessed in Fig.1 and Fig.2 are not the consequence of nu-
merical effects. Actually, drifts are near-field effects that
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Figure 2: Quadratic drift in time.

manifest themselves as ”infinite bass boosts” in the fre-
quency domain, which have already been decribed in [12],
in the context of Ambisonics.

4.3 Filtering Strategy

In order to suppress the drifts, we design high-pass Butter-
worth filters which will stamp out low frequencies. Digital
Butterworth filters are causal, IIR filters which can easily
be implemented recursively and thus used to filter simula-
tion outputs in real time, that is during the simulation.

We first design them in the s-domain. A high-pass But-
terworth filter of order b and cutoff frequency ωc has a sim-
ple gain function :

Gb(ω) =
1√

1 +
(
ωc
ω

)2b (19)

The variable ω = 2πf denotes angular frequency. But-
terworth filters of order b are maximally flat in the pass-
band (no ripples) and have a roll-off of 20× b dB/decade.
We then apply a simple integrator of order l to obtain the
desired analog integrator

Ib,l(ω) =
Gb(ω)

ωl
=

1

ωl
√

1 +
(
ωc
ω

)2b (20)

A Bode plot comparing Ib,l(ω) with a perfect integrator is
presented in Figure 3.

Note that (20) imposes that b > l in order to have
Ib,l(ω) → 0 when ω → 0, i.e. to kill the low frequen-
cies. We also recover that Ib,l(ω) ∼ 1/ωl when ω >> ωc
(actually, true for very reasonable ω, see Fig.3) : Ib,l(ω)
behaves as an order l integrator for high frequencies.

Using a basic bilinear transform, we may translate (20)
from the analog s-domain to the digital z-domain. The
resulting IIR filter can be derived analytically and directly
implemented to build a recursive filter, that is through an
equation of the form :

ãn+1
l,m =

∑
i∈Sl,m,b

c
(i)
l,m,bã

n−i
l,m + δl,mp

n+1
q (21)

where ãnl,m denotes the desired filtered ambisonic chan-
nels, Sl,m,b is a known subset of the integers depending
only on l,m, b and {c(i)l,m,b}i∈Sl,m,b a set of coefficients
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Figure 3: Bode plots : solid line corresponds to Ib,l(ω) for
b = 6, l = 3, fc = 100 Hz; dashed line corresponds to the
Bode plot of a perfect integrator of order l = 3.

only depending on l,m, b, which can be derived analyti-
cally. Equation (21) yields (very) low computational costs
and is easily implementable.

Numerical simulation results show that ωc in (20) may
have to depend on l to yield acceptable results. This is
briefly discussed in section (5).

5. SIMULATION RESULTS

In this section, numerical simulation results are presented,
with sample rate 1/T = 44100 Hz, sound speed c =
344 m/s and Courant number λ = 1/

√
3. Equation (9) was

implemented in a free-field setting (transparent boundary
conditions), as well as filtered discrete encoding equations
(21). Source input is, as in section section (4.2), a broad-
band Gaussian, with standard deviation 7.5× 10−5 s.

5.1 Filter Outputs

Filter outputs ã are showed here for ambisonic orders l = 3
in Fig.4 and l = 4 in Fig.5. For well-chosen Butterworth
orders b and cutoffs fc, the drifts are rapidly removed.
Fig.3 (phase diagram) shows that, compared to a perfect in-
tegrator, a delay appears as b grows for frequencies higher
than the cutoff : this is noticeable in Fig.5. This delay
should be taken into account when decoding the ambisonic
channels, or compensated post-process.

Still, this shows that this filtering strategy is effective
and renders possible live Ambisonics outputs from FDTD
simulations.

5.2 Discussion on the choice of the cutoff frequencies

A first strategy for choosing the cutoff frequencies fc
would be to set fc = 20 Hz, for all orders. Indeed, the hu-
man hearing ranges from 20 Hz to 20 kHz, so virtually no
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Figure 4: Filtered quadratic drift : l = 3, b = 6, fc =
125 Hz.
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Figure 5: Filtered cubic drift: l = 4, b = 8, fc = 150 Hz

information would be lost. However, simulations show that
the chosen cutoff fc may have to increase as l grows. Fig.6
shows outputs for 7th order ambisonic channel a7,−1, with
a cutoff fc = 25 Hz. The left hand side figure is a zoom on
the right hand side one. One may clearly see the original
gaussian bump arriving (left figure). This small bump trig-
gers oscillations of very large amplitude when compared
to that of the gaussian impulse (right figure).

One solution would be trying to remove all near-field
effects by choosing a high enough cutoff. Nonetheless,
near-field effects are desirable since they are key in de-
scribing the proximity between source and receiver, and
thus should be exploited. Therefore an optimal balance
should be sought between removing drifts and depicting
source proximity.
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Figure 6: Inappropriate cutoff fc = 25Hz, for ambisonic
channel a7,−1.

The current strategy is an empirical cutoff frequency se-
lection. This is a viable strategy, though obviously subop-
timal and heavy to execute.

6. CONCLUDING REMARKS

The principal issue with extracting ambisonic channels
from wave-based simulations is the (physical) drift nat-
urally present in the encoded channels. Here, we pre-
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sented a simple filtering strategy which efficiently deals
with this drift, thus enabling real-time ambisonic extrac-
tion from wave-based simulations. We presented applica-
tions up to Ambisonics of order 4, which falls into the do-
main of High Order Ambisonics (HOA). From perceptual
considerations, these are known to render very high spa-
tial quality of reproduction when used with well designed
ambisonic decoders. Yet, this strategy can theoretically be
used up to any order, but necessitates more precise investi-
gations on the dependency between the cutoff frequencies
and the ambisonic orders.

7. APPENDIX

Table 1: Yl,m (γ) for l = 0, 1, 2.

m\ l 0 1 2

-2 · ·
√

15/4πγxγy

-1 ·
√

3/4πγy
√

15/4πγyγz

0
√

1/4π
√

3/4πγz
√

5/16π
(
2γ2z − γ2x − γ2y

)
1 ·

√
3/4πγx

√
15/4πγxγz

2 · ·
√

15/16π
(
γ2x − γ2y

)
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