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Abstract

We present a one-line closed form expression for the three-parameter
breather of the nonlinear Schrödinger equation. This provides an analytic
proof of the time period doubling observed in experiments. The experi-
mental check that some pulses generated in optical fibers are indeed such
generalized breathers will be drastically simplified.
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1 Introduction

The complex amplitude of many nonlinear media displays two generic
features. The first one is to obey an evolution equation (first order in the
time variable t) with a (linear) dispersion term (second order in the space
variable x) and the simplest nonlinearity preserving the phase invariance
of A,

iAt + pAxx + q|A|2A = 0, pq 6= 0, p, q real. (1)

The second feature, observed in the “focusing” régime (pq > 0) of this
nonlinear Schrödinger equation (NLS), is the “modulational instability”
(MI) [1], also known as Benjamin-Feir instability: an initial plane wave
grows exponentially, then saturates and decreases to its original state,
with only a shift of its phase. This MI has enormous applications, which
we now recall.

In the ocean, deep water waves are suitably described by the focusing
NLS [2], where one observes “bright” solitons. Sailors have also reported
the sudden occurence of huge waves (“freak” or “rogue” waves) which
disappear as quickly as they appeared, and these solutions of very high
amplitude and energy can also be described by NLS [3]. However, exper-
imental setups able to reproduce this rare observation are quite difficult.
As to the “defocusing” régime (pq < 0), it is more adapted to shallow
water waves, where only “dark” solitons occur.

The situation is quite different in Bose-Einstein condensation (BEC),
where the wave function of the condensate obeys the Gross-Pitaevskii
equation, a three-dimensional analogue of NLS. It has been proven ana-
lytically [4] that MI is the mechanism which generates wave functions of
soliton type in a Bose-Einstein condensate, a prediction confirmed by the
experimental observation [5] of MI in a cigar-shaped BEC.

But nowadays the main playground of MI no more water waves nor
even BEC but nonlinear optics, for two reasons. The first one is the huge
recent progress in manufacturing optical fibers with prescribed physical
properties (refractive index, etc), making experiments easier, cheaper and
easily reproducible. The second reason is more fundamental: as opposed
to a three-dimensional BEC, a fiber is quasi one-dimensional and thus
well described by the NLS, t being the propagation distance and x the
transverse coordinate. For instance, one has succeeded [6, 7] to generate
rogue waves in optical fibers, an achievement with potentially important
industrial applications. Nonlinear optics has become an excellent field to
perform an experimental check of the beautiful analytic description of MI,
which we first recall.

Indeed, the later stages of MI can be computed exactly, resulting in
a two-parameter1 bright soliton localized in space and periodic in time,
whose asymptotic behaviour as |x| → +∞ is the plane wave e−iω0t, see
(24) below. This achievement of Kuznetsov [8] was obtained in plasma
physics where the Langmuir waves are appropriately described by the fo-
cusing NLS. Changing the sign of one parameter converts this soliton to
another quite important physical solution, localized in time and periodic

1The scaling invariance (x, t, A) → (kx, k2t, kA) of NLS reduces this number by one.
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in space, known as the Akhmediev breather [9], see (25) below. Finally,
using a quite simple Ansatz, Akhmediev, Eleonskii and Kulagin [10] ex-
trapolated the Kuznetsov soliton to a three-parameter breather solution,
in which Aeiω0t is elliptic2 in x and quasi-elliptic in t.

In a recent experiment [12] with an optical fiber, this breather was
observed by matching the three arbitrary parameters with experimental
data, showing a “good” agreement, however during only two quasi-periods
of t. The difficulty did not arise from the sophisticated experimental setup
but from “the complexity of this class of solutions” [13]. Indeed, its current
analytic representation [10, (3), (22), (24)–(25)] does not clearly separates
the elliptic dependence on x and quasi-elliptic dependence on t, despite
several later attempts [14] [15] [16] [17], forcing the authors to expand the
amplitude in Fourier series of x and to retain only the first two coefficients.

In this article, we provide a one-line closed form expression for this
three-parameter solution, see Eq. (16), and perform a full classification of
the solutions of the Ansatz of Ref. [10], thus uncovering a new solution,
Eq. (33), elliptic in x and trigonometric in t, together with its degeneracy.
The present three-parameter closed form makes it possible to check the
agreement on a much larger number of quasi-periods of t, and therefore
to determine more accurately the nonlinear range of validity of MI as
sketched in [13]. Another puzzling phenomenon observed in Ref. [12],
namely a time period twice the one expected, is naturally explained by
our three-parameter solution.

2 The generic solution

Ref. [9] assumes a constraint between A and Ā, defined by three real
functions ϕ(t), δ(t) and Q(x, t),

{

sinϕ(t) Re(A)− cosϕ(t) Im(A) + δ(t) = 0,
cosϕ(t)Re(A) + sinϕ(t) Im(A)−Q(x, t) = 0.

(2)

Since A = (Q/δ + i)(δeiϕ) is single-valued [18, 19], both terms Q/δ and
δeiϕ are single-valued, while Q, δ and eiϕ may be multivalued. Because of
the absence of methods to handle multivaluedness, the strategy is there-
fore to only consider δeiϕ, its complex conjugate and Q/δ.

Remark. The real and imaginary parts of A are,

A = [Q− δψ + i(Qψ + δ)]/
√

1 + ψ2, ψ = tanϕ. (3)

Let us first recall the result of [10], then proceed to the explicit depen-
dence on x and t. By elimination of A, the system to be solved is made
of two coupled real PDEs for Q(x, t) [10, Eqs. (4)–(5)],

{

Qt + qδQ2 − ϕ′δ + qδ3 = 0,

pQxx + qQ3 + (qδ2 − ϕ′)Q− δ′ = 0,
(4)

2We never use the ambiguous term “periodic” for elliptic solutions, but always either “dou-
bly periodic” alias “elliptic” (example: Jacobi dn, Weierstrass ℘), or “quasi-doubly periodic”
alias “quasi-elliptic” alias “elliptic of the second kind” in Hermite’s terminology [11, tome I
p. 227, tome II p. 506] (example: the solution H(t, a) of Lamé equation (10)).
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and the second equation admits the first integral h(t),

(Qx 6= 0) : h = pQx
2 + qQ4/2 + (qδ2 − ϕ′)Q2 − 2δ′Q. (5)

The integrability of (4)1 and (5) defines the ODEs,

{

ϕ′′ + 4qδδ′ = 0, h′ + 2δδ′ϕ′ − 2qδ3δ′ = 0,

δ′′ + δϕ′2 − 2qδ3ϕ′ + 2qδh+ q2δ5 = 0.
(6)

This system admits three real first integrals ω0, k1, k2,

{

qδ2 = 2z, ϕ′ = −4z − ω0, qh = 2(3z2 + ω0z + k2),

(z′ 6= 0) : z′
2
= −4(4z + ω0)

2z2 − 16k2z
2 + 4k1z,

(7)

characterized by the three nonzero roots of z′,

{

ω0 = −2(z1 + z2 + z3), k1 = 16z1z2z3,

k2 = (z1 + z2 + z3)
2 − 2(z21 + z22 + z23).

(8)

In the generic case Qxzk1 6= 0 (nongeneric cases are detailed in section
3), the product δ2 is an elliptic function [10, Eq. (13)] which in the notation
of Weierstrass3 takes the quite simple form (ia is real),

(k1 6= 0)



























z =
k1

℘(t)− ℘(a)
, ℘(a) = −ω

2
0 + 4k2

3
, ℘′(a) = −8ik1,

g2 = (4/3)
[

(ω2
0 + 4k2)

2 + 24k1ω0

]

,

g3 = (8/27)
[

(ω2
0 + 4k2)

3 + 36k1(ω0(ω
2
0 + 4k2) + 6k1)

]

,

∆(t) ≡ g32 − 27g23 = −212k21
×
[

16k32 + 8ω2
0k

2
2 + ω4

0k2 + 36ω0k2k1 + ω3
0k1 + 27k21

]

.

(9)

Let us next determine simultaneously δeiϕ and δe−iϕ, not by the mul-
tivalued quadrature

∫

ϕ′dt as usually done, but as the two complex con-
jugate solutions of a real second order ODE. The phase invariance of NLS
only allowing the contribution of ϕ′, not of ϕ, by elimination of z one
easily obtains the Lamé equation of index n = 1,

(

d2

dt2
− (2℘(t) + ℘(a))

)

(

δ−1e∓i(ϕ+ω0t)
)

= 0. (10)

Its two independent solutions are generically,

δ−1e∓iϕ =
√

−q/k1e±iω0tH(t,±a), (11)

with the definition [11, tome II p. 506],

H(t, a) = e−ζ(a)tσ(t+ a)/(σ(a)σ(t)). (12)

At this point, Ref. [10] chooses to integrate the x-elliptic ODE (5) with
t-dependent coefficients. It is more efficient to integrate the t-Riccati ODE
(4)1 with x-independent coefficients, and this will allow us to uncover a

3To convert to the notation of Jacobi, see [21, §18.9.11, 18.10.8].
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new solution, Eq. (33). Indeed, an affine transformation on Q(x, t) maps
the equation (4)1 to a canonical Riccati equation,

{

(z 6= 0) : Q(x, t)/δ(t) = y(x, t)/(2z) + z′/(8z2),

∂ty + y2 − (3/4)℘(t) = 0,
(13)

equivalent to a particular Lamé equation of index n = 1/2, whose solution
is [20, §20 p. 104] [11, tome II p. 482],

y = ∂t log
[

℘′(t/2)−1/2
(

4
√

k1F (x) + ℘(t/2)− ℘(a)
)]

.

The real-valued function
√
k1F (x) is defined by,

pF ′2 + P (F ) = 0, P (F ) ≡ F 4 + ω0F
2 − 2

√

k1F − k2, (14)

and evaluates to (all
√

signs are allowed),











































F =
√
z1 +

√
z2 +

√
z3

− 2

p

(
√
z2 +

√
z3)(

√
z3 +

√
z1)(

√
z1 +

√
z2)

℘(x,G2, G3)− ℘(b,G2, G3)
,

℘(b) = −z1 + z2 + z3 + 3(
√
z2
√
z3 +

√
z3
√
z1 +

√
z1
√
z2)

3p
,

√

k1 = 4
√
z1
√
z2
√
z3,

G2 = (ω2
0 − 12k2)/(12p

2), G3 = (ω3
0 + 36ω0k2 + 54k1)/(6p)

3,

∆(x) ≡ G3
2 − 27G2

3 = 2−16p−6k−2
1 ∆(t).

(15)

To summarize, the complex amplitude is,















A =

{

16
√
k1

℘′(t/2, g2, g3)

[

P (V )

F (x)− V (t)
+

dP (V )

4dV

]

+ i

}

×
√

−k1/qe−iω0t/H(t, a),

V (t) = (℘(a, g2, g3)− ℘(t/2, g2, g3))/(4
√

k1),

(16)

with P (V (t)) and F (x) defined in (14) and (15), a in (9), and H(t, a) in
(12), and its complex conjugate results from the change (i, a) → (−i,−a).

This amplitude (16) depends on three arbitrary real constants ω0, k1, k2
and is elliptic in x. The ratio two between the t’s in ℘(t/2) and in H(t, a)
makes the quasi-t-periods of A(x, t)eiω0t twice the periods of ℘(∗, g2, g3),
thus proving the period doubling observation [12].

Remarks.

1. The generality of (16) is worth being emphasized. This unique for-
mula (the advantage of Weierstrass notation) covers both signs of
the discriminant: ∆(t) < 0 (“B-type” solutions, one nonzero real
zj), ∆

(t) > 0 (“A-type” solutions, three nonzero real zj), it involves
no multivalued expression and even applies to both NLS régimes
(focusing, defocusing).

2. The argument doubling formula σ(2y) = −℘′(y)σ4(y) [21, 18.4.8] al-
lows one to express (16) with the unique argument t/2, i.e. t because
of the homogeneity of ℘.
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3. To be physically admissible, the amplitude (16) must obey two con-
straints. The first one δ2(t) > 0 is: pz3 > 0 [10, p. 811] and
pz1, pz2 positive or complex conjugate, with bounds 0 < pz(t) <
the smallest positive pzj. The second oneQ/δ real, which was painful
to implement [10, p. 811], is equivalent to

√
k1F (x) real, i.e. the

transposition to the four zeroes
√
z1 +

√
z2 +

√
z3 of F ′(x) of the

constraints on the zeroes 0, z1, z2, z3 of z′(t). The bounded solutions
of this focusing régime result from (16) by applying to the origins of
x and t a shift of either zero or a nonreal half-period, depending on
the common sign of the two discriminants ∆(x), ∆(t), see formulae
[21, 16.8,18.4.1].

3 Nongeneric solutions

They are defined by either Qx = 0 (inexistence of h(t)) or z′(t) = 0
(inexistence of k1) or z(t) = 0 (undefined link (13) between Q and y) or
k1 = 0 (independence of (13) on z) or ℘′(a) = 0 (linear dependence of the
two solutions (11) of (10)) or ∆(t) = 0 (degeneracy of elliptic functions
to either trigonometric functions or rational functions). Because Eq. (13)
was not considered in [10], the nongeneric case k1 = 0 will yield the new
solution Eq. (33).

3.1 Degeneracies of the generic solution

They are characterized by Qxδ
′k1 6= 0, ℘′(a)∆(t) = 0.

When ℘′(a) = 0, then a is a purely imaginary half-period ω′, the
multipliers4 of H(t, ω′) are (−1, 1) but k1 is zero, which is forbidden. For-
tunately, the form invariance of the ODE for ℘ by halving one period
changes ℘′(a) to ℘′(2a) ≡ 8i(k1 + ω0k2), now allowed to vanish. This
“Landen transformation” [22, p. 39] [21, 16.14.2]



















℘(t, g2, g3) ≡ ℘(t|ω,ω′) → P(t, γ2, γ3) ≡ P(t|ω, 2ω′),
℘(t) = P(t) + (e2 − e1)(e3 − e1)/(P(t)− e1),

℘′2 = 4(℘− e1)(℘− e2)(℘− e3), e1 = (8k2 − ω2
0)/3,

P ′2 = 4(P + 2e1)(P − ε2)(P − ε3),

g2 = −4γ2 + 60e21, g3 = 8γ3 + 56e31,

(17)

makes both multipliers unity (i.e. H elliptic), yielding Jacobi functions as
solutions to the Lamé ODE (10),

√

P(t)− ε2,
√

P(t)− ε3. (18)

This leads to the two elliptic breathers in an algorithmic way, instead of
the kind of magic derivation of Ref. [10], and the notation of Halphen

ha(x) =
√

℘(x,G2, G3)− Ea,hα(t) =
√

P(t, γ2, γ3)− εα,

℘′(x)
2
= 4℘3 −G2℘−G3 = 4(℘− Ea)(℘− Eb)(℘− Ec),

(19)

4Under addition of anyone of the two periods, a quasi-elliptic function is multiplied by a
constant factor, the multiplier.
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allows one to unify them in a very symmetric expression. Characterized
by the relation pz1 + pz2 = pz3 > 0 between the three roots of z′

2
in (7)3,

their two singlevalued parts,






















δeiϕ =

(

−ω0

q

)1/2

ω0
h1(t)e

−iω0t

h1(t) h3(t) + iω0 h2(t)
,

Q

δ
=

−ω2
0µh2(t) h2(x) + h2

1(t) h3(t) h3(x)

ω0 h1(t)[µh3(t) h2(x) + h2(t) h3(x)]
,

k2 = (µ2 − 1)2ω2
0/2, k1 = −ω0k2,

(20)

yield the amplitude [9, Eq. (18)] [10, Eqs. (45), (59)]



























A =

(

−ω0

q

)1/2

(µ2 − 1)
hα(t) hc(x) + iµω0 hb(x)

hβ(t) hc(x) + µhγ(t) hb(x)
e−iω0t

εβ − εα
(µ2 − 1)2

=
εγ − εβ
−1

=
εα − εγ

µ2(2− µ2)
= ω2

0 ,

Eb −Ec

2(µ2 − 1)
=
Ec − Eb

−µ2
=
Ea − Ec

2− µ2
=
ω2
0

2p
,

(21)

with (α, β, γ) and (a, b, c) two independent permutations of (1, 2, 3). Its
two arbitrary constants are (ω0, µ). The conversion to Jacobi notation
[23, Appendix B] yields the two types A (∆(t) > 0) and B (∆(t) < 0).

Next, ∆(t) = 0 can be represented in terms of Ω as,

k1 = −Ω(Ω− ω0)
2/2, k2 = −Ω(3Ω− ω0)/4,

z′
2
= −64 (z − (Ω− ω0)/4)

2 (z + Ω/2) z.
(22)

The first degeneracy (k 6= 0),











































k2 = 4(Ω− ω0)(3Ω− ω0), pK
2 = 3Ω− ω0,

δeiϕ =

(

Ω− ω0

2q

)1/2

e−iΩt sin(kt/2)

sin(k(t− t3)/2)
,

Q

δ
=

k

2(Ω− ω0)
(cotg(kt/2)

+
6Ω− 3ω0 + 3Ω cos(kt)

3Ω[α cosh(Kx) + cos(kt/2)] sin(kt/2)

)

,

cos(kt3) = −(2Ω− ω0)/Ω, sin(kt3) = ik/(2Ω),

(23)

is the first iterate of the plane wave (27) by the Bäcklund transformation,
it depends on two arbitrary real constants ω0,Ω restricted to 0 < Ω/ω0 < 1
by the reality of y(x, t). Depending on the signs of (K2, k2), this math-
ematical solution defines four physical solutions: two unbounded in the
defocusing régime, and two in the focusing régime: the Kuznetsov bright
soliton solution [8] [24, (6.10)] [25, (41a)], localized in space and periodic
in time,















A =
√

−Ω/qe−iΩt

×
[

1− 2(1− α2)Ω cos(kt/2) + i(k/2) sin(kt/2)

Ω[α cosh(Kx) + cos(kt/2)]

]

K2 = 2Ω(1− α2), k2 = −16Ω2α2(1− α2), 1 < α2,

(24)
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and the breather solution of Akhmediev [9, Eq. (11)] localized in time and
periodic in space,















A =
√

−Ω/qe−iΩt

×
[

1 +
2(α2 − 1))Ω cosh(κt/2) + i(κ/2) sinh(kt/2)

Ω[α cos(K′x) + cosh(κt/2)]

]

K′2 = −2Ω(1− α2), κ2 = 16Ω2α2(1− α2), 0 < α2 < 1.

(25)

A rigorous proof of their instability under small perturbations can be
found in [26].

The second degeneracy (k = 0, ω0 = 3Ω 6= 0) yields the Peregrine
soliton [27], whose complex amplitude is rational in x and t,

A =

(

−Ω

q

)1/2 [

1 + 4p
1− 2iΩt

2Ωx2 − p(1 + (2Ωt)2)

]

e−iΩt. (26)

whose large maximum amplitude 3 above its background makes it a simple
prototype of rogue wave.

3.2 Nongeneric solutions Qxz
′ = 0

If Qx = 0, the solution is a particular plane wave,

A =
√

−ω0/qe
−iω0t, (27)

which is also the limit Ω → ω0 of both (24) and (25).
If Qx 6= 0 and z = z0 6= 0, one obtains a two-parameter particular

“dark” one-soliton solution [28, (28)],

A =

(

−2p

q

)1/2 (

λ tanh(λ(x− ct)) + i
c

2p

)

e−iΩ0t,

λ2 = Ω0/(2p)− c2/(4p2), Ω0 = ω0 + 2z0,

(28)

and its one-parameter rational degeneracy λ = 0,

A =

(

−2p

q

)1/2(

1

x− ct
+ i

c

2p

)

e−iΩ0t, c2 = 2pΩ0. (29)

Qx 6= 0 and z = 0 defines the envelope solution,

{

A =
√

2p/q dn(λx,mx)e
−iω0t

ω0 = pλ2(mx − 2), k2 = p2λ4(mx − 1),
(30)

and its degeneracy “bright” one-soliton solution [29],

k2 = 0 : A =

(

2p

q

)1/2
λ

cosh(λx)
e−iω0t, λ2 = −ω0

p
. (31)

The other trigonometric degeneracy k2 = −ω2
0/4 is identical to the limit

z0 = 0 of (28), and their common rational degeneracy is also the limit
Ω0 → 0 of (29).
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3.3 Nongeneric solutions Qxz
′ 6= 0 and k1 = 0

One must distinguish k2(ω
2
0 + 4k2) zero or nonzero.

For k2(ω
2
0 + 4k2) 6= 0, one obtains,



















z−1 = 2a (cos(kt)− cos(kt1)) , sin(kt1) = −4i/(ak),
y = ∂t log [F (x) sin(kt/4) + cos(kt/4)] ,

8pF ′2 = 2ω0(F
2 + 1)2 − a(k2/4)(F 4 − 6F 2 + 1),

a2 = − 16k2
(ω2

0 + 4k2)2
, k2 = 4(ω2

0 + 4k2), cos(kt1) =
8ω0

ak2
,

(32)

and the reality of z(t) restricts k2 to be negative.
To our knowledge, this is a new solution, depending on two constants

ω0, k2. The reason why it was not found earlier is the choice of all authors
to integrate the x-elliptic ODE (5) instead of the t-Riccati ODE (4)1,
preventing k1 = 0 to be singled out. The physically admissible solutions,
elliptic in x, exist in focusing and defocusing régimes but are not bounded.
When −ω2

0/4 < k2 < 0, the amplitude Aeiω0t is periodic in time,























A =

(

− a

qk2

)1/2
k2

16 sin(kt1/2)
e−iω0t

×
ak
4
(cos(kt1)− 1)[1 + F (x)c] + i[F (x)− c]

F (x) + c
,

F (x) = c0 cs(λx,m) real, c = cotg(kt/4),

(33)

and, when k2 < −ω2
0/4, only periodic in x,























A =

(

a

qk2

)1/2
k2

16 sinh(κt1/2)
e−iω0t

×
aκ
4
(cosh(κt1)− 1)[1 +G(x)c] + i[G(x) + c]

−G(x) + c
,

G(x) = iF (x) real, c = coth(κt/4), κ2 = −k2 > 0.

(34)

The degeneracy k1 = 0, k2 = −ω2
0/4 6= 0 of (33),

A =

√

−2p

q

K

2

[

1− 2(2ω0t− i)

sinh(
√

2ω0/px) + 2ω0t

]

e−iω0t, (35)

is the limit Ω → ω0 of the degeneracy (24) of (16), obtained by

Ω = ω0(1− 2ε2), α = ε, k = −4iω0ε,
cosh(Kx+ iπ/2) = i sinh(λx), ε→ 0,

(36)

and expanding sin and cos near kt = 0. Although we could not find (35)
explicitly written somewhere, it is certainly not new, see for instance [30].

Last, the degeneracy k2 = 0 has a nonreal value of z(t).
Table 1 displays all solutions generated by (2).
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Table 1: All solutions of the constraint (2). Each solution is separated by
a single line from its degeneracies. Columns display: x and t-dependences of
Aeiω0t (quasi-elliptic Q, elliptic E, trigonometric T, rational R, none 0), the
arbitrary constants, the complex amplitude, the initial reference.

Qx z′(t) z k1 x t arb Eq reference

A 6= 0 6= 0 6= 0 6= 0 E Q ω0k1k2 (16) [10, (3), (22), (24)–(25)]
B 6= 0 6= 0 6= 0 6= 0 E E ω0k1 (21) [9, (18)]
C 6= 0 6= 0 6= 0 6= 0 T T Ωα (24) [8]
D 6= 0 6= 0 6= 0 6= 0 T T Ωα (25) [9, (11)]
E 6= 0 6= 0 6= 0 6= 0 R R ω0 (26) [27, (6.7)]
1 0 0 0 ω0 (27) [10, (37),(51)]

2 6= 0 0 6= 0 T T Ω0c (28) [28, (3)]
3 6= 0 0 6= 0 R R ω0 (29) [28]

4 6= 0 0 0 E 0 ω0k2 (30) [10, (54), (60)]
5 6= 0 0 0 T 0 ω0 (31) [29] [10, (46)]

6 6= 0 6= 0 6= 0 0 E T ω0k2 (33) New
7 6= 0 6= 0 6= 0 0 T R ω0 (35)

4 On constraints of higher degree

Since those singularities of A and Ā which depend on the initial conditions
are simple poles [18, 19], the next constraint after (2) should be,

(g2,1R
2 + 2g2,2RI + g2,3I

2 + g2,4Rx + g2,5Ix)
+(g1,1R+ g1,2I) + g0 = 0, R = Re(A), I = Im(A),

(37)

in which the real coefficients gNij... depend on t (and maybe on x). In-
deed, the relevant degree is the singularity degree (two in (37)), not the
polynomial degree, which is why the restrictive assumption [10, Eq. (61)]
(g2,4 = g2,5 = 0) finds nothing new. The larger freedom of (37) should
generate more solutions, this will be the subject of future work.

5 Conclusion and discussion

The present work, which makes explicit the three-parameter extrapola-
tion of the NLS breather, explains the t-period doubling experimentally
observed [12]. It should provide a much better precision in all the exper-
iments on the phenomenon of modulational instability.

The Lamé equation is fundamental in the solution of the constraint
(2): (i) it leads to the compact expression (16), (ii) it provides a natural
derivation of the breather (21), initially obtained by expert manipulations
[10, 14].

Since the Kuznetsov solution (24), identical in the complex plane to
the Akhmediev breather (25), is generated by the plane wave (27) via the
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Bäcklund transformation (BT), it is natural to ask which seed generates
the three-parameter solution (16), an extrapolation of (24). We conjecture
that this could be the general traveling wave

A =

(

−2p

q

)1/2
σ(ξ + d)

σ(ξ)
e
−iωt− ζ(d)ξ + i

c

2p
ξ
, ξ = x− ct,

(38)

with id real (again Lamé!) for two reasons: (i) Since the BT involves the
integration of a linear differential system (the Lax pair) depending on the
seed, this seed must be elliptic in x and t; (ii) The elliptic discriminants
∆(x), ∆(t) of (16) have a never zero ratio, just like the elliptic discriminants
of (38) have for ratio a power of c.
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(Springer Nature, Switzerland, 2020). https://doi.org/10.1007/978-
3-030-53340-3
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différentielles, Recueil des savants étrangers 28 (1884) 1–301.
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