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We present a one-line closed form expression for the three-parameter breather of the nonlinear Schrödinger equation. This provides an analytic proof of the time period doubling observed in experiments. The experimental check that some pulses generated in optical fibers are indeed such generalized breathers will be drastically simplified.

Introduction

The complex amplitude of many nonlinear media displays two generic features. The first one is to obey an evolution equation (first order in the time variable t) with a (linear) dispersion term (second order in the space variable x) and the simplest nonlinearity preserving the phase invariance of A, iAt + pAxx + q|A|2 A = 0, pq = 0, p, q real.

(
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The second feature, observed in the "focusing" régime (pq > 0) of this nonlinear Schrödinger equation (NLS), is the "modulational instability" (MI) [START_REF] Bespalov | Filamentary structure of light beams in nonlinear liquids[END_REF], also known as Benjamin-Feir instability: an initial plane wave grows exponentially, then saturates and decreases to its original state, with only a shift of its phase. This MI has enormous applications, which we now recall.

In the ocean, deep water waves are suitably described by the focusing NLS [START_REF] Zakharov | Stability of periodic waves of finite amplitude on the surface of a deep fluid[END_REF], where one observes "bright" solitons. Sailors have also reported the sudden occurence of huge waves ("freak" or "rogue" waves) which disappear as quickly as they appeared, and these solutions of very high amplitude and energy can also be described by NLS [START_REF] Akhmediev | Waves that appear from nowhere and disappear without a trace[END_REF]. However, experimental setups able to reproduce this rare observation are quite difficult. As to the "defocusing" régime (pq < 0), it is more adapted to shallow water waves, where only "dark" solitons occur.

The situation is quite different in Bose-Einstein condensation (BEC), where the wave function of the condensate obeys the Gross-Pitaevskii equation, a three-dimensional analogue of NLS. It has been proven analytically [START_REF] Konotop | Modulational instability in Bose-Einstein condensates in optical lattices[END_REF] that MI is the mechanism which generates wave functions of soliton type in a Bose-Einstein condensate, a prediction confirmed by the experimental observation [START_REF] Everitt | Observation of a modulational instability in Bose-Einstein condensates[END_REF] of MI in a cigar-shaped BEC.

But nowadays the main playground of MI no more water waves nor even BEC but nonlinear optics, for two reasons. The first one is the huge recent progress in manufacturing optical fibers with prescribed physical properties (refractive index, etc), making experiments easier, cheaper and easily reproducible. The second reason is more fundamental: as opposed to a three-dimensional BEC, a fiber is quasi one-dimensional and thus well described by the NLS, t being the propagation distance and x the transverse coordinate. For instance, one has succeeded [START_REF] Solli | Optical rogue waves[END_REF][START_REF] Yeom | Rogue waves surface in light[END_REF] to generate rogue waves in optical fibers, an achievement with potentially important industrial applications. Nonlinear optics has become an excellent field to perform an experimental check of the beautiful analytic description of MI, which we first recall.

Indeed, the later stages of MI can be computed exactly, resulting in a two-parameter1 bright soliton localized in space and periodic in time, whose asymptotic behaviour as |x| → +∞ is the plane wave e -iω 0 t , see [START_REF] Kawata | Inverse scattering method for the nonlinear evolution equations under nonvanishing conditions[END_REF] below. This achievement of Kuznetsov [START_REF] Kuznetsov | Solitons in a parametrically unstable plasma[END_REF] was obtained in plasma physics where the Langmuir waves are appropriately described by the focusing NLS. Changing the sign of one parameter converts this soliton to another quite important physical solution, localized in time and periodic in space, known as the Akhmediev breather [START_REF] Akhmediev | Modulation instability and periodic solutions of the nonlinear Schrödinger equation[END_REF], see [START_REF] Yan-Chow | The perturbed plane-wave solutions of the cubic Schrödinger equation[END_REF] below. Finally, using a quite simple Ansatz, Akhmediev, Eleonskii and Kulagin [START_REF] Akhmediev | Exact first-order solutions of the nonlinear Schrödinger equation[END_REF] extrapolated the Kuznetsov soliton to a three-parameter breather solution, in which Ae iω 0 t is elliptic2 in x and quasi-elliptic in t.

In a recent experiment [START_REF] Vanderhaegen | Observation of doubly periodic solutions of the nonlinear Schrödinger equation in optical fibers[END_REF] with an optical fiber, this breather was observed by matching the three arbitrary parameters with experimental data, showing a "good" agreement, however during only two quasi-periods of t. The difficulty did not arise from the sophisticated experimental setup but from "the complexity of this class of solutions" [START_REF] Conforti | Doubly periodic solutions of the focusing nonlinear Schrödinger equation: recurrence, period doubling, and amplification outside the conventional modulation-instability band[END_REF]. Indeed, its current analytic representation [10, (3), ( 22), ( 24)- [START_REF] Yan-Chow | The perturbed plane-wave solutions of the cubic Schrödinger equation[END_REF]] does not clearly separates the elliptic dependence on x and quasi-elliptic dependence on t, despite several later attempts [START_REF] Akhmediev | First order exact solutions of the nonlinear Schrödinger equation in the normal dispersion regime[END_REF] [15] [START_REF] Mihalache | Exact solutions of the nonlinear Schrödinger equation for the normal-dispersion regime in optical fibers[END_REF] [START_REF] Kwok | A class of doubly periodic waves for nonlinear evolution equations[END_REF], forcing the authors to expand the amplitude in Fourier series of x and to retain only the first two coefficients.

In this article, we provide a one-line closed form expression for this three-parameter solution, see Eq. ( 16), and perform a full classification of the solutions of the Ansatz of Ref. [START_REF] Akhmediev | Exact first-order solutions of the nonlinear Schrödinger equation[END_REF], thus uncovering a new solution, Eq. (33), elliptic in x and trigonometric in t, together with its degeneracy. The present three-parameter closed form makes it possible to check the agreement on a much larger number of quasi-periods of t, and therefore to determine more accurately the nonlinear range of validity of MI as sketched in [START_REF] Conforti | Doubly periodic solutions of the focusing nonlinear Schrödinger equation: recurrence, period doubling, and amplification outside the conventional modulation-instability band[END_REF]. Another puzzling phenomenon observed in Ref. [START_REF] Vanderhaegen | Observation of doubly periodic solutions of the nonlinear Schrödinger equation in optical fibers[END_REF], namely a time period twice the one expected, is naturally explained by our three-parameter solution.

The generic solution

Ref. [START_REF] Akhmediev | Modulation instability and periodic solutions of the nonlinear Schrödinger equation[END_REF] assumes a constraint between A and Ā, defined by three real functions ϕ(t), δ(t) and Q(x, t), sin ϕ(t) Re(A) -cos ϕ(t) Im(A) + δ(t) = 0, cos ϕ(t) Re(A) + sin ϕ(t) Im(A) -Q(x, t) = 0.
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Since A = (Q/δ + i)(δe iϕ ) is single-valued [START_REF] Chudnovsky | Painlevé property and multicomponent isospectral deformation equations[END_REF][START_REF] Conte | The Painlevé handbook[END_REF], both terms Q/δ and δe iϕ are single-valued, while Q, δ and e iϕ may be multivalued. Because of the absence of methods to handle multivaluedness, the strategy is therefore to only consider δe iϕ , its complex conjugate and Q/δ. Remark. The real and imaginary parts of A are,

A = [Q -δψ + i(Qψ + δ)]/ 1 + ψ 2 , ψ = tan ϕ. (3) 
Let us first recall the result of [START_REF] Akhmediev | Exact first-order solutions of the nonlinear Schrödinger equation[END_REF], then proceed to the explicit dependence on x and t. By elimination of A, the system to be solved is made of two coupled real PDEs for Q(x, t) [10, Eqs. ( 4)-( 5)],

Qt + qδQ 2 -ϕ ′ δ + qδ 3 = 0, pQxx + qQ 3 + (qδ 2 -ϕ ′ )Q -δ ′ = 0, (4) 
and the second equation admits the first integral h(t),

(Qx = 0) : h = pQx 2 + qQ 4 /2 + (qδ 2 -ϕ ′ )Q 2 -2δ ′ Q. ( 5 
)
The integrability of (4)1 and ( 5) defines the ODEs,

ϕ ′′ + 4qδδ ′ = 0, h ′ + 2δδ ′ ϕ ′ -2qδ 3 δ ′ = 0, δ ′′ + δϕ ′2 -2qδ 3 ϕ ′ + 2qδh + q 2 δ 5 = 0. ( 6 
)
This system admits three real first integrals ω0, k1, k2,

qδ 2 = 2z, ϕ ′ = -4z -ω0, qh = 2(3z 2 + ω0z + k2), (z ′ = 0) : z ′2 = -4(4z + ω0) 2 z 2 -16k2z 2 + 4k1z, (7) 
characterized by the three nonzero roots of z ′ ,

ω0 = -2(z1 + z2 + z3), k1 = 16z1z2z3, k2 = (z1 + z2 + z3) 2 -2(z 2 1 + z 2 2 + z 2 3 ). (8) 
In the generic case Qxzk1 = 0 (nongeneric cases are detailed in section 3), the product δ 2 is an elliptic function [10, Eq. ( 13)] which in the notation of Weierstrass3 takes the quite simple form (ia is real),

(k1 = 0)              z = k1 ℘(t) -℘(a) , ℘(a) = - ω 2 0 + 4k2 3 , ℘ ′ (a) = -8ik1, g2 = (4/3) (ω 2 0 + 4k2) 2 + 24k1ω0 , g3 = (8/27) (ω 2 0 + 4k2) 3 + 36k1(ω0(ω 2 0 + 4k2) + 6k1) , ∆ (t) ≡ g 3 2 -27g 2 3 = -2 12 k 2 1 × 16k 3 2 + 8ω 2 0 k 2 2 + ω 4 0 k2 + 36ω0k2k1 + ω 3 0 k1 + 27k 2 1 . (9) 
Let us next determine simultaneously δe iϕ and δe -iϕ , not by the multivalued quadrature ϕ ′ dt as usually done, but as the two complex conjugate solutions of a real second order ODE. The phase invariance of NLS only allowing the contribution of ϕ ′ , not of ϕ, by elimination of z one easily obtains the Lamé equation of index n = 1,

d 2 dt 2 -(2℘(t) + ℘(a)) δ -1 e ∓i(ϕ+ω 0 t) = 0. ( 10 
)
Its two independent solutions are generically,

δ -1 e ∓iϕ = -q/k1e ±iω0t H(t, ±a), (11) 
with the definition [11, tome II p. 506],

H(t, a) = e -ζ(a)t σ(t + a)/(σ(a)σ(t)). (12) 
At this point, Ref. [START_REF] Akhmediev | Exact first-order solutions of the nonlinear Schrödinger equation[END_REF] chooses to integrate the x-elliptic ODE (5) with t-dependent coefficients. It is more efficient to integrate the t-Riccati ODE (4)1 with x-independent coefficients, and this will allow us to uncover a new solution, Eq. (33). Indeed, an affine transformation on Q(x, t) maps the equation (4)1 to a canonical Riccati equation,

(z = 0) : Q(x, t)/δ(t) = y(x, t)/(2z) + z ′ /(8z 2 ) , ∂ty + y 2 -(3/4)℘(t) = 0, (13) 
equivalent to a particular Lamé equation of index n = 1/2, whose solution is [20, §20 p. 104] [11, tome II p. 482],

y = ∂t log ℘ ′ (t/2) -1/2 4 k1F (x) + ℘(t/2) -℘(a) .
The real-valued function √ k1F (x) is defined by,

pF ′2 + P (F ) = 0, P (F ) ≡ F 4 + ω0F 2 -2 k1F -k2, (14) 
and evaluates to (all √ signs are allowed),

                     F = √ z1 + √ z2 + √ z3 - 2 p ( √ z2 + √ z3)( √ z3 + √ z1)( √ z1 + √ z2) ℘(x, G2, G3) -℘(b, G2, G3) , ℘(b) = - z1 + z2 + z3 + 3( √ z2 √ z3 + √ z3 √ z1 + √ z1 √ z2) 3p , k1 = 4 √ z1 √ z2 √ z3, G2 = (ω 2 0 -12k2)/(12p 2 ), G3 = (ω 3 0 + 36ω0k2 + 54k1)/(6p) 3 , ∆ (x) ≡ G 3 2 -27G 2 3 = 2 -16 p -6 k -2 1 ∆ (t) . (15) 
To summarize, the complex amplitude is,

       A = 16 √ k1 ℘ ′ (t/2, g2, g3) P (V ) F (x) -V (t) + dP (V ) 4dV + i × -k1/qe -iω0t / H(t, a), V (t) = (℘(a, g2, g3) -℘(t/2, g2, g3))/(4 k1), (16) 
with P (V (t)) and F (x) defined in ( 14) and [START_REF] Mihalache | Exact solutions of nonlinear Schrödinger equation for positive group velocity dispersion[END_REF], a in [START_REF] Akhmediev | Modulation instability and periodic solutions of the nonlinear Schrödinger equation[END_REF], and H(t, a) in [START_REF] Vanderhaegen | Observation of doubly periodic solutions of the nonlinear Schrödinger equation in optical fibers[END_REF], and its complex conjugate results from the change (i, a) → (-i, -a).

This amplitude (16) depends on three arbitrary real constants ω0, k1, k2 and is elliptic in x. The ratio two between the t's in ℘(t/2) and in H(t, a) makes the quasi-t-periods of A(x, t)e iω 0 t twice the periods of ℘( * , g2, g3), thus proving the period doubling observation [START_REF] Vanderhaegen | Observation of doubly periodic solutions of the nonlinear Schrödinger equation in optical fibers[END_REF].

Remarks.

1. The generality of ( 16) is worth being emphasized. This unique formula (the advantage of Weierstrass notation) covers both signs of the discriminant: ∆ (t) < 0 ("B-type" solutions, one nonzero real zj), ∆ (t) > 0 ("A-type" solutions, three nonzero real zj), it involves no multivalued expression and even applies to both NLS régimes (focusing, defocusing).

3. To be physically admissible, the amplitude ( 16) must obey two constraints. The first one δ 2 (t) > 0 is: pz3 > 0 [10, p. 811] and pz1, pz2 positive or complex conjugate, with bounds 0 < pz(t) < the smallest positive pzj. The second one Q/δ real, which was painful to implement [10, p. 811], is equivalent to √ k1F (x) real, i.e. the transposition to the four zeroes √ z1 + √ z2 + √ z3 of F ′ (x) of the constraints on the zeroes 0, z1, z2, z3 of z ′ (t). The bounded solutions of this focusing régime result from ( 16) by applying to the origins of x and t a shift of either zero or a nonreal half-period, depending on the common sign of the two discriminants ∆ (x) , ∆ (t) , see formulae [21, 16.8,18.4.1].

Nongeneric solutions

They are defined by either Qx = 0 (inexistence of h(t)) or z ′ (t) = 0 (inexistence of k1) or z(t) = 0 (undefined link (13) between Q and y) or k1 = 0 (independence of (13) on z) or ℘ ′ (a) = 0 (linear dependence of the two solutions ( 11) of ( 10)) or ∆ (t) = 0 (degeneracy of elliptic functions to either trigonometric functions or rational functions). Because Eq. ( 13) was not considered in [START_REF] Akhmediev | Exact first-order solutions of the nonlinear Schrödinger equation[END_REF], the nongeneric case k1 = 0 will yield the new solution Eq. (33).

Degeneracies of the generic solution

They are characterized by Qxδ ′ k1 = 0, ℘ ′ (a)∆ (t) = 0. When ℘ ′ (a) = 0, then a is a purely imaginary half-period ω ′ , the multipliers4 of H(t, ω ′ ) are (-1, 1) but k1 is zero, which is forbidden. Fortunately, the form invariance of the ODE for ℘ by halving one period changes ℘ ′ (a) to ℘ ′ (2a) ≡ 8i(k1 + ω0k2), now allowed to vanish. This "Landen transformation" [22, p. 39 

         ℘(t, g2, g3) ≡ ℘(t|ω, ω ′ ) → P(t, γ2, γ3) ≡ P(t|ω, 2ω ′ ), ℘(t) = P(t) + (e2 -e1)(e3 -e1)/(P(t) -e1), ℘ ′2 = 4(℘ -e1)(℘ -e2)(℘ -e3), e1 = (8k2 -ω 2 0 )/3, P ′2 = 4(P + 2e1)(P -ε2)(P -ε3), g2 = -4γ2 + 60e 2 1 , g3 = 8γ3 + 56e 3 1 , (17) 
makes both multipliers unity (i.e. H elliptic), yielding Jacobi functions as solutions to the Lamé ODE [START_REF] Akhmediev | Exact first-order solutions of the nonlinear Schrödinger equation[END_REF],

P(t) -ε2, P(t) -ε3. ( 18 
)
This leads to the two elliptic breathers in an algorithmic way, instead of the kind of magic derivation of Ref. [START_REF] Akhmediev | Exact first-order solutions of the nonlinear Schrödinger equation[END_REF], and the notation of Halphen

h a(x) = ℘(x, G2, G3) -Ea, h α(t) = P(t, γ2, γ3) -εα, ℘ ′ (x) 2 = 4℘ 3 -G2℘ -G3 = 4(℘ -Ea)(℘ -E b )(℘ -Ec), (19) 
allows one to unify them in a very symmetric expression. Characterized by the relation pz1 + pz2 = pz3 > 0 between the three roots of z ′2 in (7)3, their two singlevalued parts,

           δe iϕ = - ω0 q 1/2 ω0 h 1(t)e -iω 0 t h 1(t) h 3(t) + iω0 h 2(t) , Q δ = -ω 2 0 µ h 2(t) h 2(x) + h 2 1 (t) h 3(t) h 3(x) ω0 h 1(t)[µ h 3(t) h 2(x) + h 2(t) h 3(x)] , k2 = (µ 2 -1) 2 ω 2 0 /2, k1 = -ω0k2, (20) 
yield the amplitude [9, Eq. ( 18)] [10, Eqs. ( 45), ( 59)]

             A = - ω0 q 1/2 (µ 2 -1) h α(t) h c(x) + iµω0 h b (x) h β (t) h c(x) + µ h γ (t) h b (x) e -iω 0 t ε β -εα (µ 2 -1) 2 = εγ -ε β -1 = εα -εγ µ 2 (2 -µ 2 ) = ω 2 0 , E b -Ec 2(µ 2 -1) = Ec -E b -µ 2 = Ea -Ec 2 -µ 2 = ω 2 0 2p , (21) 
with (α, β, γ) and (a, b, c) two independent permutations of (1, 2, 3). Its two arbitrary constants are (ω0, µ). The conversion to Jacobi notation [23, Appendix B] yields the two types A (∆ (t) > 0) and B (∆ (t) < 0). Next, ∆ (t) = 0 can be represented in terms of Ω as,

k1 = -Ω(Ω -ω0) 2 /2, k2 = -Ω(3Ω -ω0)/4, z ′2 = -64 (z -(Ω -ω0)/4) 2 (z + Ω/2) z. (22) 
The first degeneracy (k = 0),

                     k 2 = 4(Ω -ω0)(3Ω -ω0), pK 2 = 3Ω -ω0, δe iϕ = Ω -ω0 2q 1/2 e -iΩt sin(kt/2) sin(k(t -t3)/2) , Q δ = k 2(Ω -ω0) (cotg(kt/2) + 6Ω -3ω0 + 3Ω cos(kt) 3Ω[α cosh(Kx) + cos(kt/2)] sin(kt/2) , cos(kt3) = -(2Ω -ω0)/Ω, sin(kt3) = ik/(2Ω) , (23) 
is the first iterate of the plane wave ( 27) by the Bäcklund transformation, it depends on two arbitrary real constants ω0, Ω restricted to 0 < Ω/ω0 < 1 by the reality of y(x, t). Depending on the signs of (K 2 , k 2 ), this mathematical solution defines four physical solutions: two unbounded in the defocusing régime, and two in the focusing régime: the Kuznetsov bright soliton solution [START_REF] Kuznetsov | Solitons in a parametrically unstable plasma[END_REF] [24, (6.10)] [25, (41a)], localized in space and periodic in time,

       A = -Ω/qe -iΩt × 1 - 2(1 -α 2 )Ω cos(kt/2) + i(k/2) sin(kt/2) Ω[α cosh(Kx) + cos(kt/2)] K 2 = 2Ω(1 -α 2 ), k 2 = -16Ω 2 α 2 (1 -α 2 ), 1 < α 2 , (24) 
and the breather solution of Akhmediev [9, Eq. ( 11)] localized in time and periodic in space,

       A = -Ω/qe -iΩt × 1 + 2(α 2 -1))Ω cosh(κt/2) + i(κ/2) sinh(kt/2) Ω[α cos(K ′ x) + cosh(κt/2)] K ′2 = -2Ω(1 -α 2 ), κ 2 = 16Ω 2 α 2 (1 -α 2 ), 0 < α 2 < 1. (25) 
A rigorous proof of their instability under small perturbations can be found in [START_REF] Alejo | The Akhmediev breather is unstable[END_REF].

The second degeneracy (k = 0, ω0 = 3Ω = 0) yields the Peregrine soliton [START_REF] Peregrine | Water waves, nonlinear Schrödinger equations and their solutions[END_REF], whose complex amplitude is rational in x and t,

A = - Ω q 1/2 1 + 4p 1 -2iΩt 2Ωx 2 -p(1 + (2Ωt) 2 ) e -iΩt . (26) 
whose large maximum amplitude 3 above its background makes it a simple prototype of rogue wave.

Nongeneric solutions

Q x z ′ = 0
If Qx = 0, the solution is a particular plane wave,

A = -ω0/qe -iω0t , (27) 
which is also the limit Ω → ω0 of both [START_REF] Kawata | Inverse scattering method for the nonlinear evolution equations under nonvanishing conditions[END_REF] and [START_REF] Yan-Chow | The perturbed plane-wave solutions of the cubic Schrödinger equation[END_REF].

If Qx = 0 and z = z0 = 0, one obtains a two-parameter particular "dark" one-soliton solution [28, (28)],

A = - 2p q 1/2 λ tanh(λ(x -ct)) + i c 2p e -iΩ0t , λ 2 = Ω0/(2p) -c 2 /(4p 2 ), Ω0 = ω0 + 2z0, (28) 
and its one-parameter rational degeneracy λ = 0,

A = - 2p q 1/2 1 x -ct + i c 2p e -iΩ0t , c 2 = 2pΩ0. ( 29 
)
Qx = 0 and z = 0 defines the envelope solution,

A = 2p/q dn(λx, mx)e -iω0t ω0 = pλ 2 (mx -2), k2 = p 2 λ 4 (mx -1), (30) 
and its degeneracy "bright" one-soliton solution [START_REF] Zakharov | Exact theory of twodimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media[END_REF],

k2 = 0 : A = 2p q 1/2 λ cosh(λx) e -iω0t , λ 2 = - ω0 p . (31) 
The other trigonometric degeneracy k2 = -ω 2 0 /4 is identical to the limit z0 = 0 of (28), and their common rational degeneracy is also the limit Ω0 → 0 of (29).

3.3 Nongeneric solutions Q x z ′ = 0 and k 1 = 0 One must distinguish k2(ω 2 0 + 4k2) zero or nonzero. For k2(ω 2 0 + 4k2) = 0, one obtains,

        
z -1 = 2a (cos(kt) -cos(kt1)) , sin(kt1) = -4i/(ak), y = ∂t log [F (x) sin(kt/4) + cos(kt/4)] , 8pF ′2 = 2ω0(F 2 + 1) 2 -a(k 2 /4)(F 4 -6F 2 + 1),

a 2 = - 16k2 (ω 2 0 + 4k2) 2 , k 2 = 4(ω 2 0 + 4k2), cos(kt1) = 8ω0 ak 2 , ( 32 
)
and the reality of z(t) restricts k2 to be negative.

To our knowledge, this is a new solution, depending on two constants ω0, k2. The reason why it was not found earlier is the choice of all authors to integrate the x-elliptic ODE (5) instead of the t-Riccati ODE (4)1, preventing k1 = 0 to be singled out. The physically admissible solutions, elliptic in x, exist in focusing and defocusing régimes but are not bounded. When -ω 2 0 /4 < k2 < 0, the amplitude Ae iω 0 t is periodic in time,

           A = - a qk2 1/2 k 2 16 sin(kt1/2) e -iω0t × ak 4 (cos(kt1) -1)[1 + F (x)c] + i[F (x) -c] F (x) + c , F (x) = c0 cs(λx, m) real, c = cotg(kt/4), (33) 
and, when k2 < -ω 2 0 /4, only periodic in x,

           A = a qk2 1/2 k 2 16 sinh(κt1/2) e -iω0t × aκ 4 (cosh(κt1) -1)[1 + G(x)c] + i[G(x) + c] -G(x) + c , G(x) = iF (x) real, c = coth(κt/4), κ 2 = -k 2 > 0. (34) 
The degeneracy k1 = 0, k2 = -ω 2 0 /4 = 0 of (33),

A = - 2p q K 2 1 - 2(2ω0t -i) sinh( 2ω0/px) + 2ω0t e -iω0t , (35) 
is the limit Ω → ω0 of the degeneracy ( 24) of ( 16), obtained by

Ω = ω0(1 -2ε 2 ), α = ε, k = -4iω0ε, cosh(Kx + iπ/2) = i sinh(λx), ε → 0, (36) 
and expanding sin and cos near kt = 0. Although we could not find (35) explicitly written somewhere, it is certainly not new, see for instance [START_REF] Kwok | Solitary waves on a continuous background[END_REF]. Last, the degeneracy k2 = 0 has a nonreal value of z(t).

Table 1 displays all solutions generated by (2).

Table 1: All solutions of the constraint (2). Each solution is separated by a single line from its degeneracies. Columns display: x and t-dependences of Ae iω0t (quasi-elliptic Q, elliptic E, trigonometric T, rational R, none 0), the arbitrary constants, the complex amplitude, the initial reference.

Q x z ′ (t) z k 1 x t arb Eq reference A = 0 = 0 = 0 = 0 E Q ω 0 k 1 k 2 (16) [10, (3) 
, ( 22), ( 24)-( 25)] 4 On constraints of higher degree Since those singularities of A and Ā which depend on the initial conditions are simple poles [START_REF] Chudnovsky | Painlevé property and multicomponent isospectral deformation equations[END_REF][START_REF] Conte | The Painlevé handbook[END_REF], the next constraint after (2) should be, (g2,1R 2 + 2g2,2RI + g2,3I 2 + g2,4Rx + g2,5Ix) +(g1,1R + g1,2I) + g0 = 0, R = Re(A), I = Im(A), (37) in which the real coefficients gNij... depend on t (and maybe on x). Indeed, the relevant degree is the singularity degree (two in (37)), not the polynomial degree, which is why the restrictive assumption [10, Eq. ( 61)] (g2,4 = g2,5 = 0) finds nothing new. The larger freedom of (37) should generate more solutions, this will be the subject of future work.

B = 0 = 0 = 0 = 0 E E ω 0 k 1 (21) [9, ( 18 

Conclusion and discussion

The present work, which makes explicit the three-parameter extrapolation of the NLS breather, explains the t-period doubling experimentally observed [START_REF] Vanderhaegen | Observation of doubly periodic solutions of the nonlinear Schrödinger equation in optical fibers[END_REF]. It should provide a much better precision in all the experiments on the phenomenon of modulational instability. The Lamé equation is fundamental in the solution of the constraint (2): (i) it leads to the compact expression [START_REF] Mihalache | Exact solutions of the nonlinear Schrödinger equation for the normal-dispersion regime in optical fibers[END_REF], (ii) it provides a natural derivation of the breather [START_REF] Abramowitz | Handbook of mathematical functions[END_REF], initially obtained by expert manipulations [START_REF] Akhmediev | Exact first-order solutions of the nonlinear Schrödinger equation[END_REF][START_REF] Akhmediev | First order exact solutions of the nonlinear Schrödinger equation in the normal dispersion regime[END_REF].

Since the Kuznetsov solution [START_REF] Kawata | Inverse scattering method for the nonlinear evolution equations under nonvanishing conditions[END_REF], identical in the complex plane to the Akhmediev breather [START_REF] Yan-Chow | The perturbed plane-wave solutions of the cubic Schrödinger equation[END_REF], is generated by the plane wave [START_REF] Peregrine | Water waves, nonlinear Schrödinger equations and their solutions[END_REF] via the

  0 k 2[START_REF] Kwok | Solitary waves on a continuous background[END_REF] [10, (54), (60)] 5 = 0 0 0 T 0 ω 0 (31) [29] [10, (46)] 6 = 0 = 0 = 0 0 E T ω 0 k 2 (33) New 7 = 0 = 0 = 0 0 T R ω 0(35)

  ][21, 16.14.2] 

The scaling invariance (x, t, A) → (kx, k

t, kA) of NLS reduces this number by one.

We never use the ambiguous term "periodic" for elliptic solutions, but always either "doubly periodic" alias "elliptic" (example: Jacobi dn, Weierstrass ℘), or "quasi-doubly periodic" alias "quasi-elliptic" alias "elliptic of the second kind" in Hermite's terminology [11, tome I p. 227, tome II p. 506] (example: the solution H(t, a) of Lamé equation[START_REF] Akhmediev | Exact first-order solutions of the nonlinear Schrödinger equation[END_REF]).

To convert to the notation of Jacobi, see[21, §18.9.11, 18.10.8].

The argument doubling formula σ(2y) = -℘ ′ (y)σ 4 (y)[21, 18.4.8] allows one to express[START_REF] Mihalache | Exact solutions of the nonlinear Schrödinger equation for the normal-dispersion regime in optical fibers[END_REF] with the unique argument t/2, i.e. t because of the homogeneity of ℘.

Under addition of anyone of the two periods, a quasi-elliptic function is multiplied by a constant factor, the multiplier.
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Bäcklund transformation (BT), it is natural to ask which seed generates the three-parameter solution [START_REF] Mihalache | Exact solutions of the nonlinear Schrödinger equation for the normal-dispersion regime in optical fibers[END_REF], an extrapolation of [START_REF] Kawata | Inverse scattering method for the nonlinear evolution equations under nonvanishing conditions[END_REF]. We conjecture that this could be the general traveling wave

with id real (again Lamé!) for two reasons: (i) Since the BT involves the integration of a linear differential system (the Lax pair) depending on the seed, this seed must be elliptic in x and t; (ii) The elliptic discriminants ∆ (x) , ∆ (t) of ( 16) have a never zero ratio, just like the elliptic discriminants of (38) have for ratio a power of c.
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