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Modelling of a closed acoustical space by
boundary reconstruction approach

Goran Pavic!
' LVA Laboratoire Vibrations Acoustique, INSA-Lyon, France

ABSTRACT

A common way to model the sound field in a closed space relies on the assumption of a diffuse sound field. In cases of
pronounced modal behavior, typical of small spaces / low frequencies, the simplified diffuse model fails. Analytical modal
solutions exist for spaces of primitive geometry and fully reflective boundaries, such as rectangular or spherical cavities.
The spaces of complex geometry can be modelled by FEM, mirror image, tracing, diffusion and similar approaches. The
present work uses a semi-analytical technique where the acoustical field is represented as a sum of two fields: 1) the primary
field created by the original sound source(s) in an infinite space and 2) the secondary field created by the reflections from
boundaries. The secondary field is composed of a large number of elementary solutions, each corresponding to a simple
source radiating in an infinite space. The secondary sources are located outside the region occupied by the acoustical
volume concerned. The field within this volume is obtained by matching the strengths of secondary sources to the field of
primary source in order to achieve the desired boundary conditions at the contour surface of the modelled acoustical
volume. The theoretical formulations of this technique are accompanied by several examples involving variations in the
shape and boundary conditions of the acoustical space.
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ABSTRACT

A sound field synthesis technique using auxiliary sources
for the modelling of closed cavity of arbitrary shape and
boundary conditions has been investigated already. The
technique suffers from two drawbacks which cannot be
overcome by applying known physical principles: neither
the type nor the positions of auxiliary sources can be
made known in advance. In the present paper an adaptive
multipole is used as the auxiliary source. When coupled
to an auto-search algorithm convenient auxiliary source
positions could be identified.

The theoretical basis of this technique, named the
Boundary Reconstruction Approach (BRA), is illustrated
by an example involving variations in the degree and
number of multipoles of the auxiliary sources.

1. INTRODUCTION

The simplest way to model the sound field in a closed
space relies on the assumption of a diffuse sound field,
[1-2]. In cases of pronounced modal behavior, typical of
small spaces and/or low frequencies, the simplified
diffuse model fails. Simple analytical solutions exist for
spaces of primitive geometry and fully reflecting walls,
such as rectangular cavities. Absorbing boundaries can be
modelled analytically by somewhat complex approaches,
such as described e.g. in [3-4]. The spaces of complex
geometry can be modelled by FEM, mirror image,
tracing, diffusion and similar approaches.

In [5] Cremer has investigated the modelling of sound
radiation from a vibrating body by using a superposition
of spherical waves. The basic idea was to mimic the
vibrating surface by a superposition of sound waves from
simple sources located within the body contour. While
this initial work concerned a cylindrical shape, Heckl has
later demonstrated that the method itself can be used for
bodies of arbitrary shape, [6].

Using the same basic idea the modelling of radiation
into a free space was replaced by the modelling of sound
generation within a closed cavity of arbitrary shape, [7].
This paper could serve a reference text on the subject.

2. THE BR APPROACH

The present work uses the same base modelling as used
in [7]. The acoustical field in a cavity is represented as a
sum of two fields: 1) the primary field created by the
original sound source(s) in an infinite space and 2) the
secondary field created by the reflections from cavity
boundaries. The secondary field is composed of a number
of elementary fields, each corresponding to a simple
source radiating into an infinite space. The secondary
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sources are located outside the region occupied by the
cavity. The field within this volume is obtained by
matching the strengths of secondary sources to the field
of primary source(s) in order to achieve the desired
boundary conditions at the contour surface of the cavity.

The secondary field which accounts for the reflections
from the boundaries could theoretically be obtained by a
superposition of a continuum of elementary sources, i.e.
by an infinite number of these, each of an infinitesimally
small strength. A numerical computation of the secondary
sources can be done by replacing the source continuum
with a finite number S of discrete sources, each of finite
strength. The unknown strengths of these sources can be
arranged in a SX1 strength vector Q. The acoustical state
at the contour surface of an otherwise infinite medium
has to be defined in a (large) number of discrete control
points C. This leads to the following matrix formulation
expressed in frequency domain:

(Tcs_ZHcs)Q=ZI/E)_})O (1)

Here T, stands for the transfer matrix between the vector
Q and the sound pressure at the control points C while
H,, stands for the transfer matrix between the vector Q
and the normal components of particle velocities at the
points C. Z represents the impedance matrix relating the
pressure and normal velocities at C while P, and ¥V stand
for pressure and normal velocities at C.

The unknown source strengths vector Q can be easily
obtained from (1) by inversion. If the matrices involved
in Eq. (1) are regular the sources in Q should fully satisfy
the boundary conditions defined by the impedance Z.
However these conditions apply only to the control points
C; in between these points the boundary conditions may
be exceedingly violated. The known remedy is to use
much more control points than auxiliary sources, C>S.
In such a case the matrices become non-square and the
computation is done by a convenient pseudo-inversion.

In the case of rigid boundaries, Z — o, the expression
(1) simplifies into:

H,0+V,=0 )

The objective is to get the strength vector Q. Once this
has been accomplished the sound pressure at an arbitrary
point within the cavity contour can be obtained simply by
adding the free-field pressure from the original source at
this point and that created by the secondary sources.

Any possible sharp edges of the modelled cavity may
represent conflicting requirements on the secondary
sound field created by the (remote) auxiliary sources. To
address this issue the authors have applied in [7] the
mirror-image technique to the modelled rectangular box
in order to find the positions of some of these sources.
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Such a source positioning cannot apply to cavities of
irregular shape. Thus the approach described suffers from
a key drawback, the one of finding suitable positions of
secondary sources. For cavities of oval shape such
positions are on a surface similar but larger of that of the
cavity. Figure 1 shows the frequency response of sound
pressure inside an air-filled hard-walled spherical cavity
of Im radius driven eccentrically at 0.3m by a point
source. The corresponding FEM result is shown for
comparison. The matching of the two results is very
good. Slight discrepancies rising with frequency originate
from the “stiffening” effect of the FE method.
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Figure 1. Sound pressure level in a spherical cavity.

3. THE ADAPTIVE MULTIPOLE

Each secondary source should satisfy two conditions: 1)
it should be acoustically transparent, i.e. it should not
scatter the sound field and 2) an analytical form of its
free field radiation law should be known. The simplest
source fitting these requirements is the monopole, as
used in [7]. The BR approach does not prescribe the type
of secondary source providing it remains acoustically
transparent. The monopole can be thus substituted by a
more complex source, a higher order multipole. One
example is a 4 Degree-of-Freedom (DoF) multipole: a
monopole added by three orthogonal dipoles. Taking that
a dipole can be approximated by two closely spaced
monopoles of equal strengths but opposite sign, a finite-
spacing multipole can be conceived as a cluster of M
closely spaced monopoles. The task of finding the
multipole M-DoF strengths becomes then equivalent to
finding the strength of each monopole in the cluster
using Egs. (1,2). One possible technique of identifying
the multipole positions consists of using a greedy search
scan of candidate positions as demonstrated in [8].

Fig. 2 shows the error of the search procedure in
dependence of the number of secondary sources. Three
types of multi-pole sources, 4-, 6- and 8-poles, were used
with the maximum number of DoF equal to 720. The
search was done over 1270 candidate positions around
the contour modelling a 1.8mx1.42mx1.26m rectangular
cavity of 2-2.5j normalised local-reacting impedance
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walls. The primary source was a group of 11 monopoles
at 200 Hz having the positions, amplitudes and phases
selected at random. The error is given as the normalised
difference of the attained and prescribed impedances
averaged over the 6858 control points. The final error is
seen to be less than 2% using the 8-pole sources. An
equivalent but uniform distribution of 720 ordinary
monopoles has produced an error of only -19.6dB. This
shows the benefits of the multipole search method.
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Figure 2. Computation error of the search procedure.
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