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Introduction

In this paper, we consider a scalar reaction-diusion equation

∂tu = ∂xxu + f (u), t > 0, x ∈ R, (1.1) 
where f ∈ C 2 is of the monostable type, i.e.

f (0) = f (1) = 0 , f ′ (0) > 0 > f ′ (1), and f (s) > 0 for s ∈ (0, 1).

(1.2)

Equation (1.1) will be supplemented together with the initial condition u(t = 0, •) ≡ u0 ∈ C 0 (R; [0, 1]), (1.3) where u0 satises that there exists X0 > 0 such that inf x≤-X 0 u0(x) > 0 = sup x≥X 0 u0(x).

(1.4)

Notice that, by a comparison principle, there holds that u(t, x) ∈ (0, 1) for all t > 0 and x ∈ R, so that it can be assumed without loss of generality that ∥f ′ ∥∞ + ∥f ′′ ∥∞ < +∞.

Such an equation is well-known to admit a family of traveling waves [START_REF] Aronson | Nonlinear diusion in population genetics, combustion and nerve propagation[END_REF], whose minimal speed c * satises c * ≥ 2 f ′ (0), and is also the spreading speed of solutions of (1.1) with initial data (1.3)-(1.4); we will recall below what is meant by spreading speed. In particular, equation (1.1) is often used as a model for invasion phenomena in physics, ecology and population dynamics.

The constant 2 f ′ (0), or linear speed, arises from replacing f (u) in (1.1) by f ′ (0)u its linearization at 0. Under the additional assumption that u → f (u) u is decreasing for u > 0, (1.5) which is usually refered to as the Fisher or KPP case, then it is actually known that c * = 2 f ′ (0) [START_REF] Aronson | Nonlinear diusion in population genetics, combustion and nerve propagation[END_REF]. However, the converse is not true and, without assumption (1.5), this equality may or may not hold.
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A typical example is fa(u) = u(1 -u)(1 + au), (1.6) where a ≥ 0. Notice that the KPP assumption (1.5) is satised if a ≤ 1. On the other hand, the minimal wave speed is given by the following formula [START_REF] Hadeler | Travelling fronts in nonlinear diusion equations[END_REF]:

c * a =    2 if 0 ≤ a ≤ 2, 2 a + a 2 if a > 2.
In particular, in the interval a ∈ (1, 2], the minimal wave speed c * is equal to the linear speed 2 f ′ (0) even though condition (1.5) does not hold. We highlight the fact that this interval is nontrivial, which suggests that this situation is not merely theoretical but may indeed occur in the applications.

Furthermore, as mentioned above, it is well-known [START_REF] Aronson | Nonlinear diusion in population genetics, combustion and nerve propagation[END_REF] that c * is also the spreading speed of solutions of (1.1) under initial condition (1.3)- (1.4). More precisely, any such solution satises that:

∀c < c * , lim In particular, any level set between 0 and 1 must be located around c * t, up to some o(t) as t → +∞.

Yet one may want to describe the large time behavior of solutions more precisely, whether by estimating more precisely the position of level sets or by investigating the convergence of the prole of the solution to that of a traveling wave. It turns out that the picture diers depending on whether c * > 2 f ′ (0) (i.e. `pushed' case) or c * = 2 f ′ (0) (i.e. `pulled' case). We refer to [START_REF] Stokes | On two types of moving front in quasilinear diusion[END_REF] for a background on the pushed/pulled terminology.

In the pushed case when c * > 2 f ′ (0), the solution converges to a single shift of the traveling wave U * with minimal speed [START_REF] Rothe | Convergence to pushed fronts[END_REF][START_REF] Uchiyama | The behavior of solutions of some nonlinear diusion equations for large time[END_REF], i.e. there exists some X∞ ∈ R (depending on the initial data) such that u(t, x) -U * (x -c * t + X∞) → 0, as t → +∞, where the convergence is uniform with respect to x ∈ R. This simultaneously answers both questions of level set position and prole convergence.

However, in the case when c * = 2 f ′ (0) and (1.5) is satised, then some logarithmic drift occurs and the solution no longer persists in the moving frame with speed c * . More precisely, u(t, x) -U * x -c * t + 3 2 f ′ (0) ln t + X∞ → 0, as t → +∞, for some X∞ ∈ R. This has rst been proved by a probabilistic approach in [START_REF] Bramson | Convergence of solutions of the Kolmogorov equation to travelling waves[END_REF], and more recently with PDE tools in [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF]. Let us also mention recent developments in the periodic heterogeneous [START_REF] Hamel | The logarithmic delay of KPP fronts in a periodic medium[END_REF] and nonlocal [START_REF] Bouin | The Bramson delay in the non-local Fisher-KPP equation[END_REF][START_REF] Graham | The Bramson correction for FisherKPP equations with nonlocal diusion[END_REF] cases, as well as for the Burgers-Fisher equation [START_REF] An | Pushed, pulled and pushmi-pullyu fronts of the Burgers-FKPP equation[END_REF][START_REF] Leach | On the evolution of travelling wave solutions of the Burgers-Fisher equation[END_REF].

While the above two results are now rather well-known, they leave aside the case when c * = 2 f ′ (0) yet (1.5) does not hold. As we pointed out in the particular case when f is given by (1.6), the set of reaction terms leading to this situation is not trivial and therefore it should also occur in the applications. It had only been shown [START_REF] Rothe | Convergence to travelling fronts in semilinear parabolic equations[END_REF][START_REF] Uchiyama | The behavior of solutions of some nonlinear diusion equations for large time[END_REF] that, for some special class of `steep enough' initial data, u(t, x) -U * (x -c * t + m(t)) → 0, as t → +∞, where m(t) = o(t) as t → +∞, and the logarithmic drift was (formally)

studied in [START_REF] Ebert | Front propagation into unstable states: Universal algebraic convergence towards uniformly translating pulled fronts[END_REF][START_REF] Leach | Matched asymptotic expansions in reaction-diusion theory[END_REF]. More recently, local convergence and drift results were obtained in [START_REF] Avery | Universal selection of pulled fronts[END_REF], under some spectral stability assumption on the traveling wave which is related to what we will call the slow decay case in the next sections.

Therefore, the goal of this paper is to investigate the drift phenomenon in the general pulled case c * = 2 f ′ (0), i.e. without making the KPP assumption. We will see that a logarithmic drift still appears, but may involve a dierent factor.

Main results

Let us rst recall that a traveling wave solution of (1.1) is an entire in time solution of the form u(t, x) = U (x -ct),

where c ∈ R and U satises U (-∞) = 1 > U (•) > U (+∞) = 0.

(2.1)

As we outlined in the Introduction, such a traveling wave solution exists if and only if c ≥ c * , for some c * ≥ 2 f ′ (0). Moreover, for each c ≥ c * , the traveling wave solution is unique up to shift and the prole function U is decreasing [START_REF] Aronson | Nonlinear diusion in population genetics, combustion and nerve propagation[END_REF]. When c = c * we denote it by U * .

Since the pushed case when c * > 2 f ′ (0) is well-understood, throughout this work we will place ourselves in the pulled case where c * = 2 f ′ (0).

(2.2)

We also recall that U * (z) satises the following asymptotics as z → +∞:

U * (z) = (Bz + A)e - √ f ′ (0)z + O(e -(2-η) √ f ′ (0)z ), (2.3) 
where η > 0 can be chosen arbitrarily small thanks to the C 2 -regularity of f [START_REF] Coddington | Theory of ordinary dierential equations[END_REF][START_REF] Pazy | Asymptotic expansions of solutions of ordinary dierential equations in Hilbert space[END_REF].

We point out that in our arguments we will fully use (2.3) and in particular the order of the remainder. Still we expect that our main results should hold true if we only assume f to be C 1,α , up to some appropriate changes in our proofs. Moreover, we have that either B > 0, or B = 0 and A > 0. We refer to the former case as `slow decay' and to the latter as `fast decay'. As predicted in [START_REF] Ebert | Front propagation into unstable states: Universal algebraic convergence towards uniformly translating pulled fronts[END_REF][START_REF] Leach | Matched asymptotic expansions in reaction-diusion theory[END_REF], the logarithmic drift will be dierent in both cases. We also mention the recent work [START_REF] Bouin | The Bramson delay in a Fisher-KPP equation with logsingular nonlinearity[END_REF],

where Bouin and Henderson investigated a situation where the reaction term is singular, which results in dierent asymptotics of the minimal traveling wave and the logarithmic drift is then increased compared to the classical KPP case.

We are now in a position to state our main result, where the above asymptotics play a crucial role: 

E λ (t) := {x | u(t, x) = λ}.
(i) If B > 0, then there exist X > 0 and T > 0 such that

E λ (t) ⊂ c * t - 3 2 f ′ (0) ln t -X, c * t - 3 2 f ′ (0) ln t + X ,
for all t > T .

(ii) If B = 0, then for any ε > 0, there exists T > 0 such that

E λ (t) ⊂ c * t - 1 + ε 2 f ′ (0) ln t, c * t - 1 -ε 2 f ′ (0) ln t ,
for all t > T .

Statement (i) includes the KPP case and we recover the same logarithmic drift;

we again cite the parallel work [START_REF] Avery | Universal selection of pulled fronts[END_REF] where a similar result was proved by a spectral approach, which unfortunately fails in the fast decay case. This is the most typical situation in the sense that it is stable up to small C 1 -perturbations of the reaction term. For instance, in the example of fa(u) = u(1 -u)(1 + au), there holds B > 0 for any a < 2 (recall that the KPP assumption is satised only when a ≤ 1); this can be checked by phase plane analysis. In the special case when B = 0, we nd some new phenomenon where the logarithmic drift still appears but is less than in the KPP case. It is straightforward to check that this new situation does occur, for instance by taking a = 2 and the reaction term f2(u) = u(1 -u)(1 + 2u), and noticing that the traveling wave with minimal speed is then given by U * (z) = (1 + e z ) -1 whose decay is fast. However, in this example there is no other value of the parameter a which falls into this fast decay case. Recalling that the speed is nonlinearly determined for a > 2,

this suggests that the fast decay case appears only as a sharp intermediate situation between a KPP-like logarithmic drift and no drift.

Let us briey point out that, in the KPP case, the correct logarithmic drift is obtained by a truncation procedure in which the Cauchy problem (1.1) is approached by the linearized problem but with a moving Dirichlet boundary condition. More precisely, it is approximated by the equation

∂tu = ∂xxu + f ′ (0)u, together with u(t, 2t -r ln t) = 0.
The resulting solution remains bounded from both above and below in large time if and only if r = 3 2 , which turns out to be the correct logarithmic drift in this case. The Dirichlet boundary condition basically comes from the fact that it is satised by (a shift of ) the function (Bz + A)e -

√

f ′ (0)z (when B > 0), which is also the asymptotic prole of the traveling wave with minimal speed. In the case when B = 0 and the front has the faster decay Ae - √ f ′ (0)z as z → -∞, a dierent boundary condition should be imposed and this is, in short, the reason why a dierent logarithmic drift occurs.

In the slow decay case, our estimate on the position of level sets is sharp, and proceeding as outlined in [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF], one may recover the large time convergence of the solution to a family of shifted traveling waves with minimal speed. Unfortunately, in the fast decay case we were only able to locate the level sets up to the order o(ln t).

Very roughly, this seems to be related to the fact that we have one less parameter to play with in the asymptotic prole Ae - √ f ′ (0)z of the traveling wave, when matching it with the approximated problem sketched above. Still it is expected that our estimate should be valid up to a O(1), and at least the distance between level sets should remain at a bounded distance from each other as t → +∞.

Plan of the paper. In order to exhibit the new phenomenon and give some of the key ideas, we start in Section 3 with a special case when the front has fast decay under the additional assumption that f is linear around 0, i.e. f (u) = f ′ (0)u in an open neighborhood of 0. In this situation, a short argument provides a lower estimate on the position of level sets, and shows that the drift cannot be the same as in the KPP case.

In the last two sections, we turn to the actual proof of our main Theorem 1 in the general pulled case. First, in Section 4, we construct some sub and supersolutions in both the fast decay and the slow decay cases, and whose level sets satisfy the wanted asymptotics. Then, in Section 5 and using these sub and supersolutions, we conclude the proof of Theorem 1.

Before we proceed, we point out that, in order to make the computations simpler and without loss of generality (up to some rescaling), all the proofs will be performed under the additional assumption that

f ′ (0) = 1, so that also c * = 2 and U ′′ * + 2U ′ * + f (U * ) = 0.

A rough argument in a simple case

For the sake of illustrating the quite intricate argument used in the sequel, we briey discuss a special case when, for some δ > 0,

∀s ∈ [0, δ], f (s) = f ′ (0)s = s. (3.1)
Our point is also to provide an example where the lower bound on the level set in statement (ii) of Theorem 1 can be veried, in a more straightforward way which avoids the technicalities of the following sections.

Here we place ourselves in the fast decay case, which under condition (3.1) implies that U * (z) = Ae -z , for some A > 0 on a right half-line. Up to some shift, we can assume without loss of generality that U * (z) = δe -z , ∀z ≥ 0.

(3.2)

We will sketch a short argument to show that in this case the logarithmic drift is at most 1 2 ln t. This already highlights a dierence between the general monostable case and the particular KPP case studied in [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF].

More precisely, we present a short construction of a subsolution. This construction is made easier by the linear assumption and the resulting exact asymptotics for U * , .

which
Here we added the factor δ for convenience. Notice indeed that U0(t, x) ≤ δ if and only if

x ≥ 2t -h(t), where h(t) = 2t -4t 2 -2t ln(t).

In particular, as t → +∞, h(t) ∼ 1 2 ln(t) + o(1).

On the left of the point 2t -h(t), the function U0 is larger than δ and we instead expect the solution to approach a shift of the traveling front with minimal speed U * . In order to ensure continuity at the point x = 2t -h(t) and due to (3.2), more precisely we expect the solution to approach U * (x -2t + h(t)), so that U * (0) = U0(t, 2t -h(t)). From the above formula for h(t) this provides the expected logarithmic drift on the position of level sets.

To make it more rigorous, we may check that the function

U (t, x) := U * (x -2t + h(t)) if x ≤ 2t -h(t), U0(t, x) if x > 2t -h(t).
is a (generalized) subsolution of (1.1) for positive times.

Indeed, by construction, U0(t, x) is a solution of (1.1) for t > 0 and x > 2t -h(t), where it is less than δ. The fact that U * (x -2t + h(t)) is a subsolution of (1.1) easily follows from the fact that U ′ * < 0 and h ′ (t) > 0 for all t > 1. Therefore, the function U is a generalized subsolution for t > 1 if

U ′ * (0) < ∂xU0(t, 2t -h(t)).
The left-hand term is equal to -δ, and the right-hand term is given by

δ e t √ t × -(2t -h(t)) 2t e -(2t-h(t)) 2 4t = -δ + h(t) 2t δ > -δ,
where the last inequality holds for t > 1.

It follows that, as announced, U is a subsolution. Although it is positive on the whole real line, it has the same decay as solutions of (1.1) with initial data satisfying (1.4); hence it is natural to expect that a comparison principle can be applied.

Furthermore, the level sets of U are located around 2t -h(t), which is precisely the expected logarithmic drift in the fast decay case B = 0.
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The general monostable case: sub and supersolutions

We now turn to the construction of sub and supersolutions in the general case when f satises (1.2).

4.1

The fast decay case: a subsolution

In this section we assume that U * has fast decay in the sense that

U * (z) = e -z + O(e -(2-η)z ),
as z → +∞, for any η > 0. Notice that we made the constant A equal to 1, which is possible up to some spatial shift.

Here we will let r > 1 2 ,

to be chosen arbitrarily close to 1 2 . Our goal is to prove the following: Proposition 4.1. For any r ∈ 1 2 , 1 , there exist T > 0 and u(t, x) a subsolution of (1.1) on [T, +∞) × R such that:

(i) for any λ ∈ (0, 1), there exists X1 > 0 such that, for any t large enough, ∀x < 2t -r ln t -X1, u(t, x) > λ, ∀x > 2t -r ln t + X1, u(t, x) < λ;

(ii) it satises the following properties at time T :

sup x∈R u(T, x) < 1, ∃X2 > 0, lim sup x→+∞ (x -X2)u(T, x) e -(x-X 2 ) 2 /4T = 0.
The construction of this subsolution will consist in gluing together two dierent functions, roughly dealing respectively with the nonlinear part (away from 0) and the linear part (close to 0) of (1.1). First, our subsolution will consist on a left half-line of a (perturbation of a) shift of the traveling front with minimal speed, so that its level sets are located around 2t -r ln t. Indeed, one may check that

U * (x -2t + r ln t -h(t)),
is a subsolution of (1.1) at large times if

h(t) = O(1), h ′ (t) = o 1 t as t → +∞, (4.1) 
thanks to the fact that U ′ * < 0 and U ′′ * + 2U ′ * + f (U * ) = 0. Because u(t, x) the solution of the Cauchy problem (1.1) with initial data (1.3)-(1.4) has a faster decay than U * as x → +∞, it is not possible to use a comparison principle. This is why another subsolution will be necessary on the far right. Another issue is the fact that U * goes to 1 as x → -∞, which may not be the case of the solution u(t, x).

The latter diculty can be solved thanks to the linear stability of 1 and by using a similar construction as in [START_REF] Fife | The approach of solutions of nonlinear diusion equations to travelling front solutions[END_REF]. This is the purpose of the following lemma. Then there exist a nontrivial and nonincreasing function χ, whose support is included in (-∞, 0) and which satises χ(-∞) = 1, and T > 0 such that

u 1 (t, x) := U * (x -2t + r ln t -h(t)) -χ(x -2t + r ln t -h(t))e f ′ (1) 2 t ,
is a subsolution of (1.1) on [T, +∞) × R.

We point out that this lemma actually holds true whatever the choice of r > 0. The choice of r > 1 2 will only be needed in the later stages of the proof of Proposition 4.1.

Proof. Consider δ > 0 small enough so that

f ′ (u) ≤ f ′ (1) 2 < 0, (4.2) 
for any u ∈ [1 -δ, 1]. Now take Z > 0 such that U * (z) ≥ 1 - δ 2 ,
for all z ≤ -Z, and χ a smooth and nonincreasing function which is identical to 1 on (-∞, -Z -1) and identical to 0 on (-Z, +∞). Dene also T > 0 such that, for all t ≥ T ,

e f ′ (1) 2 t ≤ δ 2 , 1 ≥ r t -h ′ (t) ≥ r 2t . (4.
3)

It is then straightforward to compute that

∂tu 1 -∂xxu 1 -f (u 1 ) = r t -h ′ (t) U ′ * -U ′′ * + 2U ′ * + f (U * ) + f (U * ) -f (u 1 ) + - f ′ (1) 2 χ + 2 - r t + h ′ (t) χ ′ + χ ′′ e f ′ (1) 2 t ≤ r t -h ′ (t) U ′ * + f (U * ) -f (u 1 ) + - f ′ (1) 2 χ + χ ′ + χ ′′ e f ′ (1) 2 t ,
where U * and χ are evaluated at x -2t + r ln t -h(t). Here we used the facts that χ ′ ≤ 0, and 2 -r t + h ′ (t) ≥ 1 by (4.3). Recall that U * is decreasing. Moreover, for any t ≥ T and x < 2t-r ln t+h(t)-Z-1, we have that χ = 1, χ ′ = χ ′′ = 0. From our choice of Z and T it follows that

U * (x -2t + r ln t -h(t)) ≥ u 1 (t, x) ≥ U * (-Z -1) -e f ′ (1) 2 t ≥ 1 -δ.
Thus, using also (4.2),

∂tu 1 -∂xxu 1 -f (u 1 ) ≤ f (U * ) -f (u 1 ) - f ′ (1) 2 e f ′ (1) 2 t ≤ f ′ (1) 2 e f ′ (1) 2 t - f ′ (1) 2 e f ′ (1) 2 t
≤ 0.

On the other hand, for t ≥ T and x > 2t-r ln t+h(t)-Z, we have that χ

= χ ′ = χ ′′ = 0, hence ∂tu 1 -∂xxu 1 -f (u 1 ) ≤ r t -h ′ (t) U ′ * ≤ 0. Finally, for t ≥ T and x -2t + r ln t -h(t) ∈ [-Z -1, -Z], we have from (4.3) that ∂tu 1 -∂xxu 1 -f (u 1 ) ≤ r 2t U ′ * + ∥f ′ ∥∞∥χ∥∞ - f ′ (1) 2 ∥χ∥∞ + ∥χ ′ ∥∞ + ∥χ ′′ ∥∞ e f ′ (1) 2 t .
Since max [-Z-1,-Z] U ′ * < 0, we get that this is nonpositive up to enlarging T . The lemma is proved.

Let us now turn to the construction of the second subsolution, which shares some similarities with the arguments in [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF]. Here we will look at the equation (1.1) in a moving frame, by letting z = x -2t + 1 2 ln t, that is

∂tu = ∂zzu + 2 - 1 2t ∂zu + f (u). (4.4) 
For now we neglect the nonlinear part and look at the resulting linearized equation

∂tu = ∂zzu + 2 - 1 2t ∂zu + u. (4.5)
We will pick a particular subsolution on a right half-line {z ≥ 0}. To do so, we again rewrite the equation. We let u = e -z v and nd

∂tv = ∂zzv + 1 2t (v -∂zv),
and in the self-similar variables τ = ln t and y = z

√ t , ∂τ v = ∂yyv + y 2 ∂yv + 1 2 v - 1 2 e -τ 2 ∂yv.
As in [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF], we then let

v = w × e -y 2 8 e -τ 2 ,
and get

∂τ w = ∂yyw - y 2 16 - 3 4 w - 1 2 e -τ 2 ∂yw - y 4 w . (4.6) 
Notice that the autonomous part,

∂τ w = ∂yyw - y 2 16 - 3 4 w,
admits a family of particular solutions

C1ye -y 2 8 + C2e -y 2 8 e τ 2 ,
with C1, C2 ∈ R. This comes from a combination of the Dirichlet and Neumann rst eigenfunctions, respectively ye -y 2 /8 and e -y 2 /8 . More precisely these are positive eigenfunctions of the elliptic operator Lw := ∂yyw -y 2 16 -3 4 w on the positive halfline (0, +∞) with either Dirichlet or Neumann boundary conditions at 0. Notice that the Neumann eigenfunction plays the dominant role here as τ → +∞, while in [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF] it was the Dirichlet eigenfunction. This choice is of course consistent with the fast decay of the traveling wave U * at +∞, and it will provide the correct logarithmic drift in this case. The reason we include the Dirichlet eigenfunction in this combination is that it increases the slope at y = 0 of the resulting function, which will eventually help us merging this with u 1 into a subsolution of (1.1).

Before we proceed, let us replace C1 and C2 by some well-chosen functions of time in order to deal with the nonautonomous part of (4.6) (as well as the nonlinear part of (4.4), as we will compute below) and obtain a subsolution. More precisely, we dene

w(τ, y) := (1 + Ce -τ 2 ) × ye -y 2 8 + e -y 2 8 e τ ( 1 2 -ε) . (4.7)
with C > 0 and ε ∈ (0, 1/2) to be specied later. Notice that the exponential growth in time of the Neumann component is slowed down by the inclusion of this parameter ε.

This is consistent with our aim of constructing a subsolution, but also it makes the Dirichlet component relatively larger. This will be crucial later when merging our supersolutions. For convenience, we also introduce

w0(τ, y) := ye -y 2 8 + e -y 2 8 e τ ( 1 2 -ε) , so that w(τ, y) = (1 + Ce -τ 2 )w0(τ, y) and ∂τ w0 = -εe -y 2 8 e τ ( 1 2 -ε) + ∂yyw0 - y 2 16 - 3 4
w0.

Then we have that

∂τ w = -ε(1 + C -τ 2 )e -y 2 8 e τ ( 1 2 -ε) - C 2 e -τ 2 w0 + ∂yyw - y 2 16 - 3 4 w. Thus ∂τ w -∂yyw + y 2 16 - 3 4 w + 1 2 e -τ 2 ∂yw - y 4 w ≤ e -τ 2 2 -Cw0 + ∂yw - y 4 w ≤ e -τ 2 2 e -y 2 8 -Cy -Ce τ ( 1 2 -ε) + (1 + Ce -τ 2 ) 1 - y 2 2 - y 2 e τ ( 1 2 -ε) ≤ e -τ 2 2 e -y 2 8 -Ce τ ( 1 2 -ε) + 1 + Ce -τ 2 ≤ 0,
for all y ≥ 0 and τ large enough. Going back to problem (4.5), this gives some large time T > 0 and ũ(t, z)

:= 1 + C √ t × 1 t ε + z t e -z e -z 2 4t . (4.8) which satises ∂t ũ ≤ ∂zz ũ + 2 - 1 2t ∂z ũ + ũ,
for all t ≥ T and z ≥ 0. Actually this also provides us with a subsolution of (1.1), as we show in the following lemma: Lemma 4.2. For any ε ∈ 0, 1 2 , there exist C > 0 and T > 0 such that the function

u 2 (t, x) := 1 + C √ t × 1 t ε + x -2t + 1 2 ln t t e -(x-2t+ 1 2 ln t) e - (x-2t+ 1 2 ln t) 2 4t
, is a subsolution of (1.1) in the subdomain t ≥ T and x ≥ 2t + ln t -2.

Proof. Notice that u2 and ũ from (4.8) are the same up to the change of variables z = x -2t + 1 2 ln t. In particular it is enough to prove that, up to increasing T , the function ũ(t, z) also satises

∂t ũ ≤ ∂zz ũ + 2 - 1 2t ∂z ũ + f (ũ),
for all t ≥ T and z ≥ 3 2 ln t -2. Indeed, we have

∂t ũ×e z e z 2 4t = - C 2t 3/2 1 t ε + z t - ε t 1+ε + z t 2 1 + C √ t + z 2 4t 2 1 + C √ t 1 t ε + z t . Moreover, ∂z ũ × e z e z 2 4t = 1 + C √ t 1 t -1 + z 2t 1 + C √ t 1 t ε + z t ,
and

∂zz ũ × e z e z 2 4t = -1 + z 2t 1 + C √ t 1 t - 1 2t 1 + C √ t 1 t ε + z t -1 + z 2t 1 + C √ t 1 t + 1 + z 2t 2 1 + C √ t 1 t ε + z t = 1 + C √ t - 2 t - z t 2 + 1 + C √ t 1 t ε + z t - 1 2t + 1 + z t + z 2 4t 2 . Therefore e z e z 2 4t × ∂t ũ -∂zz ũ -2 - 1 2t ∂z ũ -ũ = 1 + C √ t 1 t ε + z t 1 2t -2 - z t + 2 - 1 2t 1 + z 2t + 1 + C √ t 2 t - ε t 1+ε -2 - 1 2t 1 t - C 2t 3/2 1 t ε + z t = - z 4t 2 1 + C √ t 1 t ε + z t + 1 + C √ t 1 2t 2 - ε t 1+ε - C 2t 3/2 1 t ε + z t ≤ - C 2t 3/2 1 t ε + z t ,
where the last inequality holds for all z ≥ 0 and t ≥ T (up to increasing T ). As announced we have a subsolution of (4.5). Furthermore, letting K = ∥f ′′ ∥∞, we then also have

∂t ũ -∂zz ũ -2 - 1 2t ∂z ũ -f (ũ) ≤ ∂t ũ -∂zz ũ -2 - 1 2t ∂z ũ -ũ + K ũ2 ≤ e -z e -z 2 4t 1 t ε + z t - C 2t 3/2 + K 1 + C √ t 2 1 t ε + z t e -z e -z 2 4t
.

Next, we choose C large enough so that

C ≥ 4Ke 2 max s≥0 (1 + s)e -s 2 4 . (4.9) 
and up to increasing T if needed, we assume that

3 2 ln t -2 ≥ 0, 1 + C √ t < √ 2,
for all t ≥ T . In particular T > 1. Now, for t ≥ T and z ≥ 3 2 ln t -2, it follows from (4.9) that

∂t ũ -∂zz ũ -2 - 1 2t ∂z ũ -f (ũ) ≤ e -z e -z 2 4t 1 t ε + z t - C 2t 3/2 + K t 3/2 × 2 1 t ε + z t e 2-z 2 4t ≤ e -z e -z 2 2t 1 t ε + z t 1 2t 3/2 -C + 4K 1 + z √ t e 2-z 2 4t ≤ 0.
This ends the proof of Lemma 4.2.

We are now in a position to conclude the proof of Proposition 4.1. Let us glue together our two subsolutions u 1 and u 2 . To do so, we choose

h(t) = ln 1 + C √ t + ln 1 + 3 ln t 2t 1-ε - 9(ln t) 2 16t , (4.10) 
where C comes from Lemma 4.2. In particular

e h(t) = 1 + C √ t 1 + 3 ln t 2t 1-ε e -9(ln t) 2 16t
and also we have that 

h(t) → 0 and h ′ (t) = O(t -3/2
U * (z) = e -z + O(e -(2-η)z ) as z → +∞,
with η > 0 arbitrarily small. Then, recalling (4.1), the denition of u 1 in Lemma 4.1 and also that r > 1/2, we get as t → +∞ that

u 1 (t, 2t + ln t -1) = U * ((r + 1) ln t -1 -h(t)) = e 1 e h(t) t r+1 + O 1 t 3 .
On the other hand thanks to ε > 0, which originates from our slowing down of the growth of the Neumann component in (4.7). This is in turn the reason why we need to shift the traveling wave U * slightly more than the expected logarithmic drift. Now we nally take r ∈ 1 2 , 1 and ε = r -1/2, so that r + 1 = ε + 3/2. It follows that, up to increasing T > 0 and for all t ≥ T , u 1 (t, 2t + ln t -1) > u 2 (t, 2t + ln t -1).

u 2 (t, 2t + ln t -1) = 1 t ε 1 + C √ t 1 + 3 2 ln t -1 t 1-ε e 1 t 3
In a similar fashion, we have on the one hand

u 1 (t, 2t + ln t + 1) = U * ((r + 1) ln t + 1 -h(t)) = e -1 e h(t) t r+1 + O 1 t 3 .
And on the other hand,

u 2 (t, 2t + ln t + 1) = 1 t ε 1 + C √ t 1 + 3 2 ln t + 1 t 1-ε e -1 t 3/2 e - ( 3 2 ln t+1) 2 4t = e -1 e h(t) t ε+3/2 e -3 ln t 4t e -1 4t + 1 + C √ t e -1 t 5/2 e - ( 3 2 ln t+1) 2 4t > e -1 e h(t) t ε+3/2 - e -1 e h(t) ln t t ε+5/2 + e -1 2t 5/2 , > e -1 e h(t) t ε+3/2 + e -1 4t 5/2 ,
for t large enough. Up to increasing T again, it follows that for all t ≥ T , u 1 (t, 2t + ln t + 1) < u 2 (t, 2t + ln t + 1).

Finally, we may dene the following (generalized) subsolution:

u(t, x) =      u 1 (t, x) if x ≤ 2t + ln t -1, max{u 1 (t, x), u 2 (t, x)} if 2t + ln t -1 < x < 2t + ln t + 1, u 2 (t, x) if x ≥ 2t + ln t + 1.
More precisely, this is a subsolution for all t ≥ T and x ∈ R, for some T > 0 large enough. We highlight that a maximum (not a minimum) of two subsolutions creates another subsolution, which is why parameters had to be tuned carefully to get the necessary inequalities and hence continuity at x = 2t + ln t ± 1.

Notice that from its denition in Lemma 4.2, the function u 2 converges uniformly to 0 as t → +∞ in the subdomain x ≥ 2t + ln -1. It is then straightforward from the denition of u 1 and (4.10) that u satises statement (i) of Proposition 4.1. One may also check statement (ii) of Proposition 4.1, by noticing that

lim x→-∞ u 1 (T, x) = 1 -e f ′ (1) 2 T < 1, and lim x→+∞ (x -X2)u 2 (T, x) e -(x-X 2 ) 2 /4T = 0,
with X2 = 2T -1 2 ln T . This concludes the proof of Proposition 4.1.

A useful lemma

In the KPP case, the nonlinearity f is sublinear and therefore it is enough to consider the linearized equation to construct supersolutions. This is no longer the case for a general monostable reaction term where the nonlinear feature of (1.1) cannot be discarded that easily. Therefore our supersolutions will be modeled on the traveling wave with minimal speed U * of the nonlinear problem. Still, because we must place ourselves in a moving frame with logarithmic drift, the function U * cannot be used directly as a supersolution and one must instead approach it by solving an approximate nonlinear ODE. This is the purpose of the following lemma:

Lemma 4.3. Assume that the functions U and Uε solve on the positive half-line, respectively,

U ′′ + 2U ′ + f (U ) = 0, U ′′ ε + (2 -ε)U ′ ε + f (Uε) = 0,
as well as

U (0) -Uε(0) = O(ε), U ′ (0) -U ′ ε (0) = O(ε),
as ε → 0. We also assume that

U, U ′ = O(ze -z ) (4.11)
as z → +∞.

Then, for any η ∈ (0, 1/2), there exists εη such that for all 0 < ε < εη and z ≥ 0,

max{|U (z) -Uε(z)|; |U ′ (z) -U ′ ε (z)|} ≤ εe -z 1-η .
(4.12)

Remark 4.1. By our assumptions, 2 is the minimal traveling wave speed. In particular, the function Uε does not qualify as a traveling wave, and this is due to the fact that it is not positive on the whole real line as required in (2.1). As a matter of fact, by standard ODE technics one may show that for any ε > 0, the function Uε oscillates around 0 at +∞.

Proof. By the standard stability theory of solutions of an ODE (see for instance [START_REF] Gronwall | Note on the derivatives with respect to a parameter of the solutions of a system of dierential equations[END_REF]), we know that for any Z > 0, there exists CZ > 0 such that

|U (z) -Uε(z)| + |U ′ (z) -U ′ ε (z)| ≤ CZ ε, (4.13) 
for all small ε > 0 and z ∈ [0, Z]. In particular, for any Z > 0 and η ∈ (0, 1/2), one can choose ε small enough so that the wanted inequality (4.12) holds on the interval [0, Z].

Next, we consider the function V = e z U , which solves

V ′′ -V + e z f (V e -z ) = 0.
Similarly Vε = e z Uε solves

V ′′ ε -εV ′ ε -(1 -ε)Vε + e z f (Vεe -z ) = 0.
Then we look at the dierence W := V -Vε, which satises

W ′′ -W + εV ′ ε -εVε + e z f (V e -z ) -e z f (Vεe -z ) = 0.
On the other hand,

f (Vεe -z ) -f (V e -z ) = f ′ (V e -z )(Vε -V )e -z + αε(Vε -V ) 2 e -2z = f ′ (0) + α0V e -z (Vε -V )e -z + αε(Vε -V ) 2 e -2z = (Vε -V )e -z + α0V (Vε -V )e -2z + αε(Vε -V ) 2 e -2z
= -W e -z -α0V W e -2z + αεW 2 e -2z , where |α0|, |αε| ≤ ∥f ′′ ∥∞. Putting this in the equation for W we get

W ′′ = ε(V -V ′ ) + ε(W ′ -W ) -α0V W e -z + αεW 2 e -z .
Now take η ∈ (0, 1/2), and let us introduce

W (z) := ε 1-η e ηz .
We also dene Zη ≥

1 such that ∀z ≥ Zη, Cze -ηz ≤ η 2 4 , (4.15) 
with

C := 1 + ∥f ′′ ∥∞ × 1 + sup z≥1 |V (z)| + |V ′ (z)| z . (4.16) 
The fact that C is a well-dened positive real number comes from the assumption (4.11). From (4.13) and W (z) = e z (U (z) -Uε(z)), we can choose εη small enough so that, for any ε ≤ εη and for all z ∈ [0, Zη],

|W (z)| + |W ′ (z)| ≤ CZ η εe z < ηε 1-η e ηz .
(4.17)

In particular we have

|W (Zη)| < W (Zη) , |W ′ (Zη)| < W ′ (Zη).
We will now apply a comparison argument to infer that

-W (z) < W (z) < W (z)
for all z ≥ Zη. We argue by contradiction and assume that W intersects either -W or W . We denote by z1 the leftmost contact point on (Zη, +∞). Without loss of generality we consider the case when W (z1) = W (z1), and due to W ′ (Zη) < W ′ (Zη)

we get that W -W reaches a positive maximum at some z0 ∈ (Zη, z1). Then W ′′ (z0) ≤ W ′′ (z0).

Putting this together with the equation satised by W , we get

W ′′ (z0) ≤ ε(V -V ′ )(z0) + ε(W ′ -W )(z0) + αεW (z0) 2 -α0V (z0)W (z0) e -z 0 .
Moreover, we also have that

W ′ (z0) = W ′ (z0) , -W (z0) ≤ W (z0) ≤ W (z0).
Thus, using also (4.14) and (4.16) we deduce that

W ′′ (z0) ≤ ε(|V | + |V ′ |)(z0) + ε(W ′ + W )(z0) + αεW (z0) 2 + α0|V (z0)|W (z0) e -z 0 ≤ Cεz0 + ε(W ′ + W )(z0) + Ce -z 0 W (z0) 2 + z0W (z0) .
Since W (z) = ε 1-η e ηz , we have that

ε 1-η η 2 ≤ Cεz0e -ηz 0 + ε 2-η (1 + η) + Ce -(1+η)z 0 (ε 2-2η e 2ηz 0 + ε 1-η z0e ηz 0 ) ≤ Cεz0e -ηz 0 + ε 2-η (1 + η) + 2Cz0e -(1-η)z 0 ε 1-η .
Recalling (4.15) and that η ∈ (0, 1/2), z0 > Zη, we get that

2Cz0e -(1-η)z 0 ) ε 1-η ≤ ε 1-η η 2 2 ,
and then

ε 1-η η 2 2 ≤ ε η 2 4 + ε 2-η (1 + η).
Up to reducing ε, this is a contradiction and we have proved that

|W (z)| ≤ W (z) = ε 1-η e ηz
for all z ≥ Zη. The same argument also shows that

|W ′ (z)| ≤ W ′ (z) = ηε 1-η e ηz
for all z ≥ Zη. Indeed, we know that W ′ (Zη) < W ′ (Zη) and, if there exists some z1 > Zη such that W ′ (z1) > W ′ (z1), then W -W must reach a positive maximum at some z0 ∈ (Zη, z1). We have just shown that such a maximum cannot happen.

Putting this together with (4.17) and (U -Uε)(z) = e -z W (z), we nd for ε small enough that

|U (z) -Uε(z)| ≤ (εe -z ) 1-η , |U ′ (z) -U ′ ε (z)| ≤ (1 + η)(εe -z ) 1-η ,
for all z ≥ 0. Since η can be arbitrarily chosen in (0, 1/2), we may replace it by η/2 in the previous inequalities, and up to reducing ε again, one nally recovers that

max{|U (z) -Uε(z)|; |U ′ (z) -U ′ ε (z)|} ≤ 1 + η 2 (εe -z ) 1-η 2 ≤ (εe -z ) 1-η ,
for all z ≥ 0. This concludes the proof of this lemma.

4.3

The fast decay case: a supersolution

We again assume that U * has fast decay in the sense that

U * (z) = e -z + O(e -(2-η)z ), (4.18) 
as z → +∞, for any η > 0; see also (2.3). Our purpose is now to construct a supersolution whose level sets are located around 2t -r ln t, where r < 1 2 , to be chosen close to 1 2 .

Proposition 4.2. For any r ∈ 1 4 , 1 2 , there exist T > 0 and u(t, x) a supersolution of (1.1) on [T, +∞) × R such that:

(i) for any λ ∈ (0, 1), there exists X1 > 0 such that, for any t large enough, ∀x < 2t -r ln t -X1, u(t, x) > λ, ∀x > 2t -r ln t + X1, u(t, x) < λ;

(ii) the function u is positive on [T, +∞) × R and there exists X2 > 0 such that ∀x ≤ -X2, u(T, x) ≥ 1.

As before, the idea is to glue together dierent supersolutions. However, quite unusually, the construction of the supersolution turns out to be more complicated than the subsolution. One reason is that, if we slow down the traveling wave U * to match the drift, it will not make a supersolution. Some perturbation is needed instead and this is where Lemma 4.3 is used.

We rst introduce δ ∈ 0, 1 2 and Z so that

U * (-Z) = 1 -2δ, with f ′ (u) ≤ f ′ (1) 2 < 0 for u ≥ 1 -2δ. (4.19)
Up to decreasing δ, we can also assume that Z > 0 and

U ′′ * (z) = -2U ′ * (z) -f (U * (z)) < 0, (4.20) 
for all z ≤ -Z. This holds thanks to the fact that, as z → -∞, we have

U * (z) = 1 -Ae -1+ √ 1-f ′ (1) z + o e -1+ √ 1-f ′ (1) z , U ′ * (z) = A 1 -1 -f ′ (1) e -1+ √ 1-f ′ (1) z + o e -1+ √ 1-f ′ (1) z ,
for some A > 0, by standard ODE theory [START_REF] Coddington | Theory of ordinary dierential equations[END_REF].

Then, for any γ > 0, we dene a function u1 by,

∀t > 1 -δ γ , ∀x ≤ 2t -r ln t + h(t) -Z δ (t), u1(t, x) := U * (x -2t + r ln t -h(t)) + γ t , (4.21) 
where h(t) is to be specied later but is already assumed to satisfy (4.1), i.e.

h(t) = O(1), h ′ (t) = o(1/t),
as t → +∞, and Z δ (t) is such that U * (-Z δ (t)) = 1 -δ -γ t .

(4.22)

In particular,

u1(t, 2t -r ln t + h(t) -Z δ (t)) = 1 -δ.
The point Z δ (t) is uniquely dened due to the fact that U ′ * < 0. The latter also implies that Z δ (t) is an increasing function of t and that Z δ (t) > Z, for any t large enough, where we recall that Z is such that U * (-Z) = 1 -2δ and (4.20) holds for any z ≤ -Z. Moreover, it follows from the implicit function theorem that Z δ is C 1 with respect to t large enough, and that

Z ′ δ (t) = O γ t 2 , (4.23) 
as t → +∞. For later use, we also point out that Z δ (t) → Z ∞ δ as t → +∞, where

U * (-Z ∞ δ ) = 1 -δ.
As a consequence of (4.23), we even have that

Z δ (t) -Z ∞ δ = O 1 t , (4.24) hence U ′ * (-Z δ (t)) -U ′ * (-Z ∞ δ ) = O 1 t (4.25)
as t → +∞. Proof. For any x ≤ 2t -r ln t + h(t) -Z δ (t), by (4.22) and the monotonicity of U * we have that u1(t, x) ≥ 1 -δ. Provided T is large enough, for t ≥ T we also get that U * (x -2t + r ln t -h(t)) ≥ 1 -2δ. Then thanks to (4.19) we compute

∂tu1 -∂xxu1 -f (u1) ≥ ∂tu1 -∂xxu1 -f (U * ) - f ′ (1) 2 γ t ≥ - γ t 2 - f ′ (1) 2 γ t + r t -h ′ (t) U ′ * ≥ - f ′ (1) 4 γ t + r t -h ′ (t) U ′ * ,
where the last inequality holds for t large enough and the function U * is evaluated at x -2t + r ln t -h(t). Recalling that f ′ (1) < 0, h ′ (t) = o(1/t) and that U ′ * is uniformly bounded on the whole real line (it converges to 0 as z → ±∞), we can nd γ large enough so that the above is nonnegative, i.e. u1 is a supersolution on the wanted subdomain.

Then we extend u1 on the right of the point 2t -r ln t + h(t) -Z δ (t), by letting

∀t ≥ T, ∀x > 2t -r ln t + h(t) -Z δ (t), u1(t, x) := Ur(x -2t + r ln t -h(t) + Z δ (t); t), (4.26) 
where, for any t ≥ T , the function Ur(•; t) is the solution of the ODE

U ′′ r + 2 - 2r t U ′ r + f (Ur) = 0, (4.27) 
on [0, +∞), together with the boundary conditions Ur(0; t) = 1 -δ, U ′ r (0; t) = U ′ * (-Z δ (t)).

(4.28)

Here the prime denotes the derivative with respect to the rst variable, the other variable t acting as a parameter of the ODE (4.27). To avoid any ambiguity, from hereafter we will denote by z the rst variable of Ur, hence by ∂z the corresponding derivative.

Notice that (4.28) ensures that u1, as dened by (4.21) and (4.26), and its spatial derivative ∂xu1, are continuous functions.

The function u1 will serve as the rst supersolution. However, notice that 2 -2r t is below the minimal wave speed 2. Therefore (see also Remark 4.1), due to the positivity of f in the interval (0, 1) and by a phase plane analysis, there exists Z0(t) such that ∂zUr(z; t) < 0, Thus, one may already expect that a second supersolution will be necessary. Before we construct it, let us check that the newly dened function u1 is again a supersolution. Proof. We have already proved that u1 is a supersolution for t ≥ T and x ≤ 2t-r ln t+ h(t)-Z δ (t), which was Lemma 4.4. Then, since both u1 and ∂xu1 are continuous at x = 2t-r ln t+h(t)-Z δ (t), it is enough to check that (t, x) → Ur(x-2t+r ln t-h(t)+Z δ (t); t) satises the wanted dierential inequality for 0 < x -2t + r ln t -h(t) + Z δ (t) < Z0(t).

Let us briey consider t as a parameter in the ODE (4.27)satised by Ur(•; t). By the standard regularity theory of ODEs [START_REF] Gronwall | Note on the derivatives with respect to a parameter of the solutions of a system of dierential equations[END_REF], the function t → Ur(•; t) admits a derivative. Furthermore, we claim that, for any T ≤ t1 < t2, ∀z ∈ (0, Z0(t1)), Ur(z; t1) < Ur(z; t2). To check this, rst recall that Z δ (t) is an increasing function of t and that it is bounded from below by Z for t ≥ T , up to increasing T ; see (4.22) and the subsequent discussion. Recalling also (4.20) and that ∂zUr(0; t) = U ′ * (-Z δ (t)), we get that t → ∂zUr(0; t) is a negative and increasing function. Since Ur(0; t1) = Ur(0; t2) = 1 -δ, it follows that the wanted inequality (4.31) holds on a right neighborhood of z = 0.

Now proceed by contradiction and assume that (4.31) does not hold. In that case there must exist z1 ∈ (0, Z0(t1)) such that Ur(•; t1) < Ur(•; t2)

in the interval (0, z1), and 0 < Ur(z1; t1) = Ur(z1; t2). In particular Ur(•; t2) > 0 on (0, z1] hence z1 ∈ (0, Z0(t2)).

From the monotonicity property (4.29), we get Ur(0; t1) > Ur(z1; t2).

Then we dene

S * := inf{S ≥ 0 | Ur(• -S; t1) ≥ Ur(•; t2) in (S, z1) } ∈ (0, z1).
By construction, we have that Ur(• -S * ; t1) -Ur(•; t2) ≥ 0 in [S * , z1], and that there exists z2 ∈ [S * , z1] such that Ur(z2 -S * ; t1) -Ur(z2; t2) = 0.

Furthermore, using again the monotonicity property (4.29) for both Ur(•; t1) and Ur(•; t2), we have Ur(0; t1) = Ur(0; t2) > Ur(S * ; t2) and Ur(z1 -S * ; t1) > Ur(z1; t1) = Ur(z1; t2). Thus z2 ∈ (S * , z1) and ∂zUr(z2 -S * ; t1) = ∂zUr(z2; t2), ∂zzUr(z2 -S * ; t1) ≥ ∂zzUr(z2; t2).

However, from the ODEs (4.27) solved by Ur(•; t1) and Ur(•; t2), and the fact that t1 < t2, one may now check that ∂zzUr(z2 -S * ; t1) -∂zzUr(z2; t2) = 2r t1 ∂zUr(z2 -S * ; t1) -2r t2 ∂zUr(z2, t2)

= 2r t1 - 2r t2 ∂zUr(z2, t2) < 0.
We have reached a contradiction and this proves Claim (4.31).

It now follows from Claim (4.31) that ∂tUr(z; t) ≥ 0, for all t ≥ T and z ∈ (0, Z0(t)). We can now compute, for t > 0 and x -2t + r ln t -

h(t) + Z δ (t) ∈ (0, Z0(t)), ∂tu1 -∂xxu1 -f (u1) = ∂tUr -∂zzUr -2 - r t + h ′ (t) -Z ′ δ (t) ∂zUr -f (Ur) ≥ - r t -h ′ (t) + Z ′ δ (t) ∂zUr ≥ 0,
where Ur and its derivatives are evaluated at (x -2t + r ln t -h(t) + Z δ (t), t) and the last inequality holds for large times, thanks to (4.23), (4.29) and our assumption that h ′ (t) = o(1/t) as t → +∞.

As we already mentioned, the function Ur(z; t) (hence u1) changes sign, which is why a second supersolution will be needed. Before we proceed, we need a better understanding of Ur(z; t) as z → +∞, or more precisely around (r + 1) ln t where we will match it with our second supersolution. First recall that Ur(•; t) solves (4.27) and (4.28). Therefore, by (4.25) and Lemma 4.3 with ε = 2r t , U = U * (• -Z ∞ δ ) and Uε = Ur(•; t), we get for any small η > 0, any z ≥ 0 and any t large enough that

|Ur(z; t) -U * (z -Z ∞ δ )| ≤ 2r t e -z 1-η . (4.32)
In particular this gives 

sup z≥(r+1) ln t+Z ∞ δ -2 |Ur(z; t) -U * (z -Z ∞ δ )| = O t -(r+2)(1-η) , ( 4 
U * (Z0(t) -Z ∞ δ ) ≤ 2r t e -Z 0 (t) 1-η .
Due also to (4.18), we have

2r t e -Z 0 (t) 1-η ≥ e -(Z 0 (t)-Z ∞ δ ) -Ke -(2-η)(Z 0 (t)-Z ∞ δ ) ,
for some K > 0 and η > 0 arbitrarily small, from which one can infer that Z0(t) > (r + 2) ln t, in the right-hand term, then the nonautonomous term ∂yw -y 4 w is negative which is the wrong sign when looking for a supersolution of (4.35). Therefore, here we need to proceed more carefully.

We rst take the following combination:

w0(τ, y) := e -y 28 e τ ( 1 2 +ε) -2ye -y 2 8 e 2ετ + y 2 e -y 2 8 e 2ετ .

(4.36)

Here we x

ε = 1 2 -r ∈ 0, 1 2 
,
to be made arbitrarily small.

The above combination (4.36) shares some similarities with the one used in our subsolution; see (4.7). In particular, the rst two functions e -y 2 8 , ye -y 2 steeper than u1, we put a negative constant in front of the Dirichlet component. We also made the exponential growth in time of the Dirichlet component (2ε instead of 0) even faster relatively to the Neumann part (ε+1/2 instead of 1/2), which will eventually ensure that the Dirichlet component is large enough to dictate the slope around the matching point of both supersolutions. Finally, the third term, which is modeled on the second Neumann eigenfunction of L, ensures the positivity of w0. More precisely, there exists τ1 ≥ 0 such that, for any τ ≥ τ1 and y ≥ 0,

e τ ( 1 2 -ε) -2y + y 2 > 0,
hence w0 is positive on [τ1, +∞) × R+.

Let us now check that w0 is a supersolution of (4.35) for τ ≥ τ1 (up to increasing τ1) and y ∈ [0, 3]. For convenience and since the equation is linear, we write w0 as w1 + w2 + w3, each wi denoting the i-th term of the sum in the right-hand side of (4.36).

We now compute the equation for each component separately. 

= 2εw3 + 1 2 w3 -2e -y 2 8 e 2ετ + 1 2 e -τ 2 ∂yw3 - y 4 w3 = 2ε + 1 2 y 2 e -y 2 8 e 2ετ -2e -y 2 8 e 2ετ + e -y 2 8 e -τ 2 e 2ετ y - y 3 4 ≥ -2 + y 3 4 e -y 2 8 e 2ετ .
Putting all the above together, we nd that

∂τ w0 -∂yyw0 + y 2 16 - 3 4 w0 + 1 2 e -τ 2 ∂yw0 - y 4 w0 ≥ εe -y 2 8 e τ ( 1 2 +ε) -K1(1 + y 3 )e -y 2 8 e 2ετ > 0,
where K1 is a positive constant which does not depend on y ≥ 0 and τ ≥ 0, and the last inequality holds on the interval y ∈ [0, 3] for all τ ≥ τ1 (up to increasing τ1).

Unfortunately, looking at the negative sign of the single y 3 -order term in the previous computations, one may observe that w0 cannot be a supersolution on the whole right half-line {y ≥ 0}. Therefore, we need to merge it with yet another function. One may also notice that this y 3 -order term comes from the inclusion of w3 in the denition of w0, and try to remove it to solve this issue. However, if we remove w3 then the function w0 is no longer positive so that an additional step is needed either way. Moreover, by adding this third term, we also make the decay of w0 slower as y → +∞, which actually makes this additional step easier. This leads us to also introduce w which solves (4.35), i.e. for y > 0. Proceeding similarly as in the proof of [13, Lemma 2.2], one may check that there exists W1 > 0, and for any bounded interval [0, L] there exists K(L) > 0, such that

w(τ, y) -W1e -y 2 8 e τ 2 ≤ K(L), (4.37) 
for any τ ≥ 1 and y ∈ [0, L]. For the sake of completeness, we include the details in Appendix A. By the strong maximum principle, the function w is positive. We also notice, for later use, that e τ e y 2

8 is a supersolution of (4.35). and thus, for any τ ≥ 0 and y ≥ 0,

0 < w(τ, y) ≤ e τ e y 2 8 . (4.38) 
Next we dene, for τ ≥ 0,

w(τ, y) :=            w0(τ, y) if 0 ≤ y ≤ 1, min w0(τ, y), 1 W1 w(τ, y) × e ετ if 1 < y < 3, 1 W1 w(τ, y) × e ετ if y ≥ 3. (4.39) 
By denition, this function is positive but coincides with w0 when y ≤ 1, which in the original variables writes as x -2t + 1 2 ln t ≤ √ t. In particular we will be able to compute the resulting supersolution explicitely at the matching point with u 1 , in a similar manner as we did in the proof of Proposition 4.1.

To check that it is a supersolution of (4.35), we must look at which of the two functions realize the minimum at y = 1 and y = 3. First, by (4.36) we have for τ large enough that

w0(τ, 1) -e -1 8 e τ ( 1 2 +ε) = -e -1 8 e 2ετ < - K(3) W1 e ετ .
Using (4.37), we get w0(τ, 1) < 1 W1 w(τ, 1)e ετ , hence w(τ, 1) = w0(τ, 1),

for any τ large enough. On the other hand, at y = 3, we have by (4.37) that 1 W1 w(τ, 3)e ετ ≤ e -9 8 e τ ( 1 2 +ε) + K(3) W1 e ετ , while w0(τ, 3) = e -9 8 e τ ( 1 2 +ε) + 3e -9 8 e 2ετ .

Thus, we nd that w(τ, 3) = 1 W1 w(τ, 3)e ετ , for all τ large enough. Notice that the third term in the denition of w0 is what ensured that w0(τ, •) eventually always intersects 1 W 1 w(τ, y) × e ετ in the interval [START_REF] An | Pushed, pulled and pushmi-pullyu fronts of the Burgers-FKPP equation[END_REF][START_REF] Avery | Universal selection of pulled fronts[END_REF]. We infer that the function w(τ, y) is continuous for τ large enough. Moreover, w0(τ, y) is a supersolution of (4.35) on the domain [τ1, +∞) × [0, 3], and 1

W 1 e ετ w(τ, y) is a supersolution on the whole domain [0, +∞) × [0, +∞) (by a straightforward computation). We nally conclude, up to increasing τ1, that w(τ, y) is a supersolution of (4.35) on [τ1, +∞) × [0, +∞).

Going back to the original problem, we are in position to prove the following lemma, which is the last one before gluing together our supersolutions. Lemma 4.6. For any ε ∈ 0, 1 4 , there exist C > 0 and T > 0 such that the function

u2(t, x) := 1 - C t 1/4 ũ t, x -2t + 1 2 ln t ,
is a supersolution of (1.1) in the subdomain t ≥ T and x ≥ 2t + ln t -2, where ũ is a positive function which satises that

ũ(t, z) = t ε 1 -2 z t 1-ε + z 2 t 3/2-ε e -z e -z 2 4t , (4.40) 
for any t ≥ T and z ∈ [0, √ t], as well as

ũ(t, z) ≤ t 2ε+ 1 2 e -z , (4.41) 
for any t ≥ T and z ≥ 0.

Proof. We dene ũ(t, z) = e -z e -y 2 8 e -τ 2 × w(τ, y),

where τ = ln t, y = z √ t and the (positive) function w was introduced in (4.39). In particular, recalling also (4.36), we immediately get an explicit formula for ũ(t, z) when 0 ≤ z ≤ √ t which is precisely (4.40). Moreover, it follows from (4.39) together with (4.38) that there exists some C > 0 such that w(τ, y) ≤ Ce (1+ε)τ e y 2 8 , for all τ ≥ 0 and y > 1. Up to increasing the constant C, it is straightforward from (4.36) that the same inequality is also satised for y ∈ [0, 1]. In terms of ũ, we infer that ũ(t, z) ≤ Ct ε+1/2 e -z , for any t ≥ 1 and z ≥ 0. Choosing any T large enough, we get (4.41) for all t ≥ T .

Next, it follows from the discussion preceding Lemma 4.6 that w is a supersolution of (4.35) for τ ≥ 0 and y ≥ 0, which is equivalent to

∂t ũ -∂zz ũ -2 - 1 2t ∂z ũ -ũ ≥ 0, for any t ≥ 1 and z ≥ 0. Letting K = ∥f ′′ ∥∞, we compute ∂tu2 -∂xxu2 -f (u2) ≥ ∂tu2 -∂xxu2 -u2 -Ku 2 2 ≥ C 4t 5/4 ũ -K 1 - C t 1/4 2 ũ2 ≥ ũ C 4t 5/4 -K ũ ,
where ũ is evaluated at (t, x -2t + 1 2 ln t).

Now, for all x -2t + 1 2 ln t ∈ 3 2 ln t -2, √ t , we can use the explicit formula (4.40) for ũ. In particular, we nd that

sup [ 3 2 ln t-2, √ t] ũ(t, •) ≤ t ε 1 + t t 3/2-ε e 2-3 2 ln t = O(t ε-3 2 )
as t → +∞. Therefore, thanks to 0 < ε < 

h(t) = ln 1 - C t 1/4 + ln 1 - 3 ln t t 1-ε + 9(ln t) 2 4t 3/2-ε - 9(ln t) 2 16t , so that e h(t) = 1 - C t 1/4 1 - 3 ln t t 1-ε + 9(ln t) 2 4t 3/2-ε e -9(ln t) 2 16t
.

As before, we nd that h(t) → 0 as well as h ′ (t) = o(1/t) as t → +∞. Thus, Lemmas 4.4 and 4.5 apply.

First we point out that the asymptotics (4.18) of the traveling wave can be extended to its rst derivative, i.e. we also have

U ′ * (z) = -e -z + O(e -(2-η)z ),
as z → +∞. Thanks to these asymptotics, using also (4.24) and (4.33) and taking ε = 1 2 -r ∈ 0, 1 4 , we nd that u1(2t + ln t -1) = Ur((r + 1) ln t -1 -h(t) + Z δ (t); t)

= U * ((r + 1) ln t -1 -h(t) + Z δ (t) -Z ∞ δ ) + O 1 t r+2-1 2 ε = U * ((r + 1) ln t -1 -h(t)) + O 1 t r+2-1 2 ε = e 1 e h(t) t r+1 + O 1 t r+2-1 2 ε = e 1 e h(t) t 3/2-ε + O 1 t 5 2 -3 2 ε
22 as t → +∞. On the other hand,

u2(t, 2t + ln t -1) = t ε 1 - C t 1/4 e 1 t 3/2 e - ( 3 2 ln t-1) 2 4t × 1 -2 3 2 ln t -1 t 1-ε + 3 2 ln t -1 2 t 3/2-ε = e 1 e h(t) t 3/2-ε e 3 ln t 4t -1 4t + e 1 t 3/2-ε 1 - C t 1/4 2 t 1-ε + -3 ln t + 1 t 3/2-ε e -( 3 
2 ln t-1) 2 4t > e 1 e h(t) t 3/2-ε + e 1 t 5/2-2ε ,
where as usual the inequality holds at large times. Notice that we used the explicit formula (4.40) from Lemma 4.6 for u2, since 0 ≤ 3 2 ln t -1 ≤ √ t for large enough t.

It follows that u2(t, 2t + ln t -1) > u1(t, 2t + ln t -1).

By similar computations, we get u1(2t

+ ln t + 1) = e -1 e h(t) t 3/2-ε + O 1 t 5 2 -3 2 ε
, and

u2(t, 2t + ln t + 1) = t ε 1 - C t 1/4 e -1 t 3/2 e -( 3 2 ln t+1) 2 4t × 1 -2 3 2 ln t + 1 t 1-ε + 3 2 ln t + 1 2 t 3/2-ε = e -1 e h(t) t 3/2-ε e -3 ln t 4t e -1 4t + e -1 t 3/2-ε 1 - C t 1/4 - 2 t 1-ε + 3 ln t + 1 t 3/2-ε e -( 3 2 ln t+1) 2 4t < e -1 e h(t) t 3/2-ε - e -1 t 5/2-2ε .
Thus u2(t, 2t + ln t + 1) < u1(t, 2t + ln t + 1) for any large enough t.

We have nally obtained the following (generalized) supersolution, for all t ≥ T and x ∈ R:

u(t, x) =      u1(t, x) if x ≤ 2t + ln t -1, min{u1(t, x), u2(t, x)} if 2t + ln t -1 < x < 2t + ln t + 1, u2(t, x) if x ≥ 2t + ln t + 1.
Furthermore, it follows from the denition of u1 in (4.21) that there exists X2 > 0 such that u(T, x) ≥ 1 for any x ≤ -X2. Next, from the fact that u1 is also dened by (4.26), where h(t) and Z δ (t) are bounded, and Ur is positive on the left of the point Z0(t) with (4.34), we infer that u1 is positive for x ≤ 2t + ln t + 1. Since u2 is also positive by construction, we conclude that u satises statement (ii) of Proposition 4.2.

Next, it follows from the denition of u1 in (4.21) and the fact that h(t), Z δ (t) are bounded, that for any λ ∈ (0, 1), there exists X1 > 0 such that ∀x < 2t -r ln t -X1, u(t, x) > λ.

Lastly, by construction Ur(•; t) converges locally uniformly to (a shift of ) U * as t → +∞; indeed recall (4.32). Then, by (4.29) and (4.34), we also have that ∂zUr(z; t) < 0 for any 0 ≤ z ≤ (r + 2) ln t. From the denition of u1 in (4.26), together with the fact that u2(t, x) goes to 0 as t → +∞ uniformly with respect to x ≥ 2t + ln t -1 thanks to (4.41), we infer that for any λ ∈ (0, 1), there exists X1 > 0 such that ∀x > 2t -r ln t + X1, u(t, x) < λ.

Therefore statement (i) of Proposition 4.2 holds true too. This concludes the proof of Proposition 4.2.

4.4

The slow decay case: a supersolution For any f satisfying the monostable assumption (1.2), it is possible to nd a KPP type nonlinearity f such that f ′ (0) = f ′ (0) and f (s) ≤ f (s) for any s ≥ 0. In particular, the lower estimate on the position of the level sets in statement (i) of Theorem 1 immediately follows from a comparison principle and the celebrated result of [START_REF] Bramson | Convergence of solutions of the Kolmogorov equation to travelling waves[END_REF][START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF].

We refer to Section 5 for the details.

Therefore, in the slow decay case it is enough to construct a supersolution. In this section we assume (up to some shift) that

U * (z) = (z + A)e -z + O(e -(2-η)z ), U ′ * (z) = -(z + A -1)e -z + O(e -(2-η)z , (4.42)
as z → +∞, where η > 0 is arbitrarily small. Notice that, since we are shifting the front to make the constant B in (2.3) equal to 1, the constant A ∈ R is now also xed.

Then we prove the following: Proposition 4.3. There exist T > 0 and u(t, x) a supersolution of (1.1) on [T, +∞) × R such that: (i) for any λ ∈ (0, 1), there exists X1 > 0 such that, for any t large enough,

∀x < 2t - 3 2 ln t -X1, u(t, x) > λ,
∀x > 2t -3 2 ln t + X1, u(t, x) < λ;

(ii) the function u is positive on [T, +∞) × R and there exists X2 > 0 such that ∀x ≤ -X2, u(T, x) ≥ 1.

The general strategy remains the same as in Section 4.3, and in particular the left supersolution is constructed in the same way. More precisely, we dene (using the same notation for simplicity)

u1(t, x) = U * (x -2t + 3 2 ln t) + γ t if t > 0, x ≤ 2t -3 2 ln t -Z δ (t), U 3 2 (x -2t + 3 2 ln t + Z δ (t); t) if t > 0, x > 2t -3 2 ln t -Z δ (t),
where we recall that γ > 0, Z δ (t) is such that U * (-Z δ (t)) = 1 -δ -γ t , Ur(•; t) solves the ODE (4.27) and (4.28). Notice that, compared with Section 4.3, here we choose r = 3/2, so that eventually we will recover the exact logarithmic drift, and also h(t) ≡ 0.

Lemma 4.7. There exist γ > 0 and T > 0 so that u1 is a positive supersolution of (1.1) for t ≥ T and x < 2t -3

2 ln t -Z δ (t) + Z0(t).
Moreover, the function Z0(t) satises, for any t ≥ T ,

Z0(t) > 7 2 ln t,
and there holds

sup x≥2t+ln t+Z ∞ δ -Z δ (t)-2 u1(t, x) -U * x -2t + 3 2 ln t + Z δ (t) -Z ∞ δ = O t -7 2 (1-η) ,
as t → +∞, with η > 0 arbitrarily small and

Z δ (t) -Z ∞ δ = O 1 t .
Proof. The proof is the same as in Section 4.3 and thus we omit the details. We refer in particular to (4.24), (4.33) and (4.34).

Let us then focus the discussion on the right supersolution. We rst place ourselves in the moving frame with a logarithmic drift, more precisely in the moving frame around 2t -3 2 + ε ln t with ε > 0 to be made arbitrarily small. Of course this coincides with the expected drift when ε = 0, but we need a slight gap with the position of the level sets of u1 in order to later match our left and right supersolutions. We obtain the linearized equation Notice that w still solves (4.43). The choice of the factor β slightly less than 1 will ensure that the spatial derivative of the right supersolution is slightly less than the spatial derivative of the left supersolution u1. In particular it will be crucial when merging the two together into a generalized supersolution. Equipped with w and going back to the original problem in the moving frame of the expected drift, we nd a function ũ(t, z) such that ∂t ũ -∂zz ũ -2 -3 + 2ε 2t ∂z ũ -ũ ≥ 0.

∂tu = ∂zzu + 2 - 3 + 2ε 2t ∂zu + u. Letting u = e -z v
More precisely we can now prove the following lemma: Lemma 4.8. For any ε ∈ 0, 1 4 , there exist C > 0 and T > 0 such that the function

u2(t, x) := 1 - C t 1/4 ũ t, x -2t + 3 + 2ε 2 ln t ,
is a supersolution of (1.1) in the subdomain t ≥ T and x ≥ 2t, where ũ is a positive function which satises that for any L > 0, there exists K(L) > 0 such that We are now in a position to end the proof of Theorem 1. Recall that we assume, without loss of generality and up to some rescaling, that f ′ (0) = 1.

ũ(t, z) -βt ε ze -z e -z 2 4t ≤ βK(L) W1 z t 1/2-ε e -z , ( 
ũ(t, z) ≤ βt ε ze -z e -z 2 4t + βK(1) W1 z t 1/2-ε e -z ≤ β t ε + K(1) W1t 1/2-ε ze -z ≤ β t ε + K(1) W1t 1/2-ε 3 2t 3/2 ln t = o t -5/

The slow decay case

We rst check statement (i) of Theorem 1, which is the slow decay case. First notice that there exists some K > 0 large enough such that ∀s ≥ 0, f (s) ≥ f (s) := s -Ks 2 .

In particular, applying the comparison principle, we get that u(t, x) the solution of with ũ(t = 0, •) ≡ u0. Since f is of the KPP type, we can apply the well-known result from [START_REF] Bramson | Convergence of solutions of the Kolmogorov equation to travelling waves[END_REF][START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF] and, together with a comparison principle, we conclude that for any λ ∈ (0, 1/K), ∃X(λ) > 0, E λ (t) ⊂ 2t -3 2 ln t -X(λ), +∞ ,

where E λ (t) is the λ-level set of u(t, •). Now consider λ ∈ [1/K, 1) and let us again check (5.1). We proceed by contradiction and assume that there exist sequences tn → +∞ and xn ∈ R such that u(tn, xn) = λ, and xn -2t + 3 2 ln t → -∞.

By standard parabolic estimates, we can extract a subsequence such that u(t+tn, x+xn) converges to some entire in time solution u∞ of (1.1). Moreover u∞(0, 0) = λ and, from the fact that (5.1) holds true for any λ ∈ (0, 1/K), we know that

1 K ≤ u∞ ≤ 1, in R 2 .
By comparison with the solutions of the ODE ∂tv = f (v) with v(0) = 1 K , one may conclude that u∞ ≡ 1, a contradiction. The lower estimate on the position of the λ-level set is proved.

Let us now turn to the upper estimate, and let u be the supersolution provided by Proposition 4.3. We claim that there exists X > 0 such that u(0, x) ≤ u(T, x -X), for all x ∈ R. Indeed, it is sucient to take X = X0 + X2, where X0 comes from (1.4) and X2 from statement (ii) of Proposition 4.3. More precisely, for x ≥ X0 we have u0(x) = 0 ≤ u(T, x -X), and for x ≤ X0 then x -X ≤ -X2 and u(T, x -X) ≥ 1 ≥ u0(x).

Thus, by the parabolic comparison principle, for any t ≥ 0 and x ∈ R we have u(t, x) ≤ u(t + T, x -X).

It now follows from statement (i) of Proposition 4.3 that, for any λ ∈ (0, 1), there exists X1 such that E λ (t) ⊂ -∞, 2(t + T ) -3 2 ln(t + T ) + X1 + X .

This concludes the proof of statement (i) of Theorem 1.

The fast decay case

We now turn to statement (ii) of Theorem 1. We let ε > 0 be arbitrarily small and u, u be the sub and supersolution from Propositions 4.1 and 4.2, respectively with r ∈ 1 2 , 1+ε 2 and r ∈ 1-ε 2 , 1 2 .

Similarly as before, it is enough to prove that there exists X > 0 large enough such that u(0, x) ≤ u(T, x -X),

as well as t0 > 0 such that u(T, x + X) ≤ u(t0, x), e -(x-X 2 ) 2 /4T < δ.

Thus, for X ≥ X0 + X2 large enough, we have that u(T, x + X) ≤ δ x + X -X2 e -(x+X-X 2 ) 2

4T

≤ u(t0, x),

for any x ≥ -X0 + 1; notice that we used the fact that t0 > T . Together with (5.4), we get (5.2).

Finally, with (5.2) and (5.3) in hand, the wanted estimates on E λ (t) follow by the parabolic comparison principle. We omit the details since the argument proceeds almost exactly as in Section 5.1. Theorem 1 is proved.

A Appendix: proof of (4.37)

Here we want to prove the following result. 

  x) -1| = 0, ∀c > c * , lim t→+∞ sup x≥ct |u(t, x)| = 0.
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 41 Assume that h(t) satises (4.1).
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 4 29)on the interval [0, Z0(t)], with Ur(Z0(t); t) = 0.
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 4 34) for t large enough. Let us now construct the second supersolution. As in the construction of the subsolution, we use some combination of Neumann and Dirichlet eigenfunctions of a linear operator obtained by some change of variables in an appropriate moving frame. Let us recall the equation ∂τ w = ∂yywto (1.1) in the moving frame centered at 2t -1 2 ln t; see the computation leading to (4.6) in Subsection 4.1. Notice that, plugging the rst Neumann eigenfunction e -y 2 8

  for τ > 0 and y > 0, together with the Neumann boundary condition ∂y w(τ, 0) = 0, for τ > 0, and the initial data w(0, y) = e -y 2 8 ,
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 488 43)Let us now dene w the solution of (4.43) on the right half-line {y > 0}, together with the Dirichlet boundary condition w(τ, 0) = 0, for any τ > 0, and the initial data w(0, y) = ye -y 2 for y > 0. We point out that this initial condition is none other than the rst Dirichlet eigenfunction of the autonomous part, which is the same as in Sections 4.1 and 4.3; see(4.6). It is a byproduct of the proof of [13, Lemma 2.2] that there exists some W1 > 0, and for any bounded interval [0, L] there exists some K(L) > 0, such that w(τ, y) -W1ye -y 2 K(L)ye -τ 2 , (4.44)for any τ ≥ 1 and y ∈ [0, L]. We also refer to Appendix A for a similar proof of the corresponding result in the case of a Neumann boundary condition. We further point out that e τ e y 2 /8 is a supersolution of (4.43), thus by the comparison principle, we get that w(τ, y) ≤ e τ e y 2 /8 , (4.45)for any τ ≥ 0 and y ≥ 0.

denes a positive supersolution of ( 1 . 1 )

 11 for t ≥ T and x ∈ R. Moreover, the function u satises the required properties (i) and (ii) of Proposition 4.3. Since the argument is the same as in the proof of Proposition 4.2, we omit the details. This ends the proof of Proposition 4.3.5Concluding the proof of Theorem 1
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 11 -(1.3) satises u ≥ ũ,where ũ solves ∂t ũ = ∂xx ũ + f (ũ),
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 3 for all x ∈ R. Regarding (5.2), it is again enough to choose X ≥ X0 + X2, where X0 comes from (1.4) and X2 from statement (ii) of Proposition 4.2.Let us then check(5.3). First, recall from (1.4) that lim infx→-∞ u0(x) > 0. It follows that lim inf x→-∞ u(t, x) ≥ v(t), for any t > 0, where v solves v ′ = f (v) together with v(0) = lim infx→-∞ u0(x) > 0, hence lim t→+∞ lim inf x→-∞ u(t, x) = 1.In particular, by statement (ii) of Proposition 4.1 we can choose t0 > T such that lim inf x→-∞ u(t0, x) > sup x∈R u(T, x), and up to increasing X0 we can assume that inf x≤-X 0 +1 u(t0, x) > sup x∈R u(T, x).

(5. 4 ),

 4 Furthermore, there exists K > 0 large enough such that ∂tu ≥ ∂xxu -Ku, and by the comparison principle,u(t, x) ≥ e -Kt √ 4πt R u0(y)e-(x-y) 2 4t dy for any t > 0 and x ∈ R. Next, using again (1.4) and the fact that +∞ z e -s 2 ds ∼ e -z 2 2z as z → +∞, we get that u(t0, x) ≥ e -Kt 0 √ 4πt0 for some δ > 0 and any x ≥ -X0 + 1. On the other hand, from statement (ii) of Proposition 4.1, we have that ∃X2 > 0, lim sup x→+∞ (x -X2)u(T, x)

Proposition A. 1 .e τ 2 ≤

 12 Fix a nonnegative and nontrivial function w0 such thatw0 ∈ L 2 ((0, +∞)), [y → y w0(y)] ∈ L 2 ((0, +∞)).Let also w solve ∂τ w -∂yy w + for τ > 0 and y > 0, together with the Neumann boundary condition ∂y w(τ, 0) = 0, for τ > 0, and the initial data w(0, y) = w0, for y > 0.Then there exists W1 > 0, and for any bounded interval [0, L] there exists K(L) > 0, such that w(τ, y) -W1e -y 2 8 K(L),for any τ ≥ 1, and y ∈ [0, L].

  allow us to compare the steepness of various solutions. A lower estimate on the position of the level sets follows from a comparison principle argument; here we omit this part of the proof, since it is the same as in the general case tackled in later sections.

	Let us start with a formal argument. When the solution is less than δ from (3.1),
	it satises the linear equation		
	∂tu = ∂xxu + u,
	whose fundamental solution writes		
	U0(t, x) := δ	e t √ t	× e -x 2 4t

  In particular it satises (4.1) and Lemma 4.1 applies. As we will see in the next computations, h is chosen so that u 1 (t, x) intersects u 2 (t, x) around 2t + ln t, which according to Lemma 4.2 is precisely where the latter function u 2 becomes a

	subsolution.
	First, recall that

), as t → +∞.

  /2 e - the inequalities hold for t large enough. Notice that the term -e 1 2t 5/2 basically comes from the Dirichlet component in (4.7). Moreover, it dominates the remain-
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where

  Lemma 4.4. If h ′ (t) = o(1/t) as t → +∞, then there exist γ > 0 and T > 1-δ γ such that the function u1 dened by(4.21) is a supersolution of (1.1) for all t ≥ T andx ≤ 2t -r ln t + h(t) -Z δ (t).

The next lemma states that (4.21) denes a supersolution:

  .33) as t → +∞, with η > 0 arbitrarily small. Moreover, recall from (4.29)-(4.30) that Z0(t) is the smallest positive point where Ur(•; t) equals 0. Then using again (4.32), we get rst that Z0(t) → +∞ as t → +∞, and then also that

  Let us now proceed with the proof of Proposition 4.2 and the matching argument of the two supersolutions u1 (recall Lemmas 4.4 and 4.5) and u2 (seeLemma 4.6). This matching occurs in a bounded neighborhood of 2t + ln t (with respect to the original non moving frame), and it again shares some similarities with the construction of the subsolution. We choose

			1 4 and up to increasing T , we get that
	∂tu2 -∂xxu2 -f (u2) ≥ 0,
	for all t ≥ T and 2t + ln t -2 ≤ x ≤ 2t + Then, for x ≥ 2t + √ t -1 2 ln t, from (4.41) we get that √ t -1 2 ln t.
	ũ t, x -2t +	1 2	ln t ≤ t 2ε+ 1 2 e -√ t ,
	and the wanted dierential inequality is again satised for large enough times. Finally
	we have proved Lemma 4.6.		

  and switching to the self-similar variables τ = ln t and y = z

												√	t	, we
	get										
		∂τ v = ∂yyv +	y 2	∂yv +	3 + 2ε 2	v -	3 + 2ε 2	e -τ 2 ∂yv.
	Then we let			v = w × e -y 2 8 e	τ 2 e ετ ,	
	so that	∂τ w = ∂yyw -	y 2 16	-	3 4	w -	3 + 2ε 2	e -τ 2	∂yw -	y 4	w .

  4 , as t → +∞. A similar estimate holds for x -2t + 3+2ε on the subdomain t ≥ T and x ≥ 2t. Lemma 4.8 is proved.Let us now try to match the supersolutions u1 and u2 in order to conclude the proof t → +∞, where η > 0 can be made arbitrarily small. On the other hand, by (4.47) and the denition of u2 in Lemma 4.8, On the other hand, Using (4.46) again, we nd that (3 + ε)β < 3 and u2(t, 2t + 3 2 ln t) < u1(t, 2t + 3 2 ln t) for any t large enough.

	u2(t, 2t + ln t) =		1 -	C t 1/4 ũ t,	5 + 2ε 2	ln t
	=		1 -	C t 1/4 × βt ε 5 + 2ε 2	ln t × t -ε-5/2 e -(5+2ε) 2 (ln t) 2 16t	+ O	ln t t 3
	=	5 + 2ε 2	β	ln t t 5/2 + o	ln t t 5/2 ,
	as t → +∞. From the left inequality in (4.46), we have that 5+2ε 2 β > 5 2 , and then we
	get that u2(t, 2t + ln t) > u1(t, 2t + ln t) for any t large enough.
	Next, we compute				
	u1 t, 2t +	3 2	ln t			= U * (3 ln t + Z δ (t) -Z ∞ δ ) + O t -7 2 (1-η)
							=	3 ln t t 3 + O	1 t 3 ,
	u2 t, 2t +	3 2	ln t	=	1 -	C t 1/4 ũ(t, (3 + ε) ln t)
							=	(3 + ε)β ln t t 3	+ o	ln t t 3 ,
	We conclude that				
	u(t, x) =	  	u1(t, x) min{u1(t, x), u2(t, x)} if 2t + ln t < x < 2t + 3 if x ≤ 2t + ln t, 2 ln t,
		 	u2(t, x)	if x ≥ 2t + 3 2 ln t,
							2	ln t ≥	√	t thanks to (4.48). It
	follows that, up to increasing T ,
							∂tu2 -∂xxu2 -f (u2) ≥ 0,
	of Proposition 4.3. We rst compute, using (4.42) and Lemma 4.7, that
	u1(t, 2t + ln t) = U *	5 2	ln t + Z δ (t) -Z ∞ δ	+ O t -7 2 (1-η)
						=	5 2 ln t + A t 5/2	+ O t -7 2 (1-η)
						=	5 ln t 2t 5/2 + O	1 t 5/2 ,

as as t → +∞.

as t → +∞.

are the rst eigenfunctions of the elliptic operator Lw := ∂yyw -y 2

w, posed on the positive half-line respectively with a Neumann and a Dirichlet boundary condition at 0, and the corresponding eigenvalues are respectively 1/2 and 0. However, in order to get a supersolution, we instead slightly increased the exponential growth in time of the Neumann component. Furthermore, since it is crucial to make the second supersolution
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Proof. First we write ϕ(τ, y) = e -τ 2 w(τ, y),

Similarly as in [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF], we dene

on the space of functions ϕ ∈ H 1 ((0, +∞)) with yϕ ∈ L 2 ((0, +∞)), and we rewrite the equation as in e ⊥ 0 .

(A.2)

We point out that, for conciseness, we choose to denote ∥ • ∥ L 2 instead of ∥ • ∥ L 2 ((0,+∞)) . Multiplying (A.1) by ϕ and integrating by parts, we nd

Using that

and

and ∥ϕ(τ, •)∥ L 2 is bounded uniformly with respect to τ ≥ 0. By parabolic regularity, so is ϕ(τ, 0).

Then ϕ1(τ

Due to the time-uniform bound on ϕ(τ, 0), we get that ϕ ′ 1 is integrable. It is also positive and therefore there exists

(notice indeed that ϕ1(0) is positive by the fact that w0 is nonnegative and nontrivial). Moreover, there also exists K1 > 0 such that

for all τ ≥ 0.

On the other hand, φ(τ, y) satises, together with the Neumann boundary condition,

We multiply by φ and integrate to get:

Similarly as before, we have

Thus, and using also the fact that ϕ(τ, 0) and the L 2 -norm of ϕ(τ, •) are bounded uniformly with respect to time,

for some constant C > 0. Then, recalling that φ ∈ e ⊥ 0 and (A.2), we get

Notice that ψ(τ ) := C ′ e -τ satises that ∂τ ψ ≥ (2e

for C ′ > 0 large enough. It follows by a comparison argument that, for any τ ≥ 0,

for some C ′ > 0. Recall that by L 2 -norm we refer here to the L 2 ((0, +∞))-norm. By parabolic regularity, we get on any bounded interval [0, L] and for any τ ≥ 1 that

for some K2(L) > 0. Thus, for any τ ≥ 0 and y ∈ [0, L],

where we recall from (A.3) that ϕ ∞ 1 = limτ→+∞⟨e0, ϕ(τ, •)⟩. Using also (A.4), the fact that e0(y) ≤